
LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

LIGGGHTS Documentation, Version 3.X

LIGGGHTS stands for LAMMPS Improved for General Granular and Granular Heat Transfer Simulations. It
is part of the CFDEMproject, www.cfdem.com

The core developers of LIGGGHTS are Christoph Kloss (DCS Computing GmbH, Linz and JKU Linz) and
Richard Berger (JKU Linz), with major contributions from Philippe Seil, Andreas Aigner and Stefan
Amberger (all JKU Linz) and Christoph Goniva (DCS Computing GmbH, Linz and JKU Linz)

CFDEMproject has more information about the code and its uses. For questions about the code, please use the
forums at CFDEMproject.

LIGGGHTS is based on LAMMPS (see below), and so is its manual. So if the manual says 'LAMMPS', you
could read 'LIGGGHTS' instead. However, we want to make clear which parts of the code and framework
stem from the LAMMPS base.

LIGGGHTS Version info:

All LIGGGHTS versions are based on a specific version of LAMMPS, as printed in the file src/version.h
LIGGGHTS version are identidied by a version number (e.g. '3.0'), a branch name (e.g.
'LIGGGHTS-PUBLIC' for the public release of LIGGGHTS), compilation info (date / time stamp and user
name), and a LAMMPS version number (which is the LAMMPS version that the LIGGGHTS release is based
on). For info on the LAMMPS version, see below.

LAMMPS Version info:

The LAMMPS "version" is the date when it was released, such as 1 May 2010. LAMMPS is updated
continuously. Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this
page of the WWW site. Each dated copy of LAMMPS contains all the features and bug-fixes up to and
including that version date. The version date is printed to the screen and logfile every time you run LAMMPS.
It is also in the file src/version.h and in the LAMMPS directory name created when you unpack a tarball, and
at the top of the first page of the manual (this page).

http://www.cfdem.com
http://lammps.sandia.gov
http://www.cfdem.com
http://www.cfdem.com
http://www.cfdem.com
http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov/bug.html

If you browse the HTML doc pages on the LAMMPS WWW site, they always describe the most
current version of LAMMPS.

•

If you browse the HTML doc pages included in your tarball, they describe the version you have.•
The PDF file on the WWW site or in the tarball is updated about once per month. This is because it is
large, and we don't want it to be part of every patch.

•

There is also a Developer.pdf file in the doc directory, which describes the internal structure and
algorithms of LAMMPS.

•

LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator.

LAMMPS is a classical molecular dynamics simulation code designed to run efficiently on parallel
computers. It was developed at Sandia National Laboratories, a US Department of Energy facility, with
funding from the DOE. It is an open-source code, distributed freely under the terms of the GNU Public
License (GPL).

The primary developers of LAMMPS are Steve Plimpton, Aidan Thompson, and Paul Crozier who can be
contacted at sjplimp,athomps,pscrozi at sandia.gov. The LAMMPS WWW Site at http://lammps.sandia.gov
has more information about the code and its uses.

The LAMMPS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the LAMMPS documentation.

Once you are familiar with LAMMPS, you may want to bookmark this page at
Section_commands.html#comm since it gives quick access to documentation for all LAMMPS commands.

PDF file of the entire manual, generated by htmldoc

Introduction
1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non-features
1.4 Open source distribution
1.5 Acknowledgments and citations

1.

Getting started
2.1 What's in the LAMMPS distribution
2.2 Making LAMMPS
2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS via the Make.py script
2.5 Building LAMMPS as a library
2.6 Running LAMMPS
2.7 Command-line options
2.8 Screen output
2.9 Tips for users of previous versions

2.

Commands
3.1 LAMMPS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically

3.

Packages
4.1 Standard packages
4.2 User packages

4.

Accelerating LAMMPS performance
5.1 Measuring performance
5.2 General strategies
5.3 Packages with optimized styles
5.4 OPT package

5.

http://www.sandia.gov/~sjplimp
http://lammps.sandia.gov
http://www.easysw.com/htmldoc

5.5 USER-OMP package
5.6 GPU package
5.7 USER-CUDA package
5.8 Comparison of GPU and USER-CUDA packages
How-to discussions
6.1 Restarting a simulation
6.2 2d simulations
6.3 CHARMM and AMBER force fields
6.4 Running multiple simulations from one input script
6.5 Multi-replica simulations
6.6 Granular models
6.7 TIP3P water model
6.8 TIP4P water model
6.9 SPC water model
6.10 Coupling LAMMPS to other codes
6.11 Visualizing LAMMPS snapshots
6.12 Triclinic (non-orthogonal) simulation boxes
6.13 NEMD simulations
6.14 Finite-size spherical and aspherical particles
6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
6.16 Thermostatting, barostatting, and compute temperature
6.17 Walls
6.18 Elastic constants
6.19 Library interface to LAMMPS
6.20 Calculating thermal conductivity
6.21 Calculating viscosity

6.

Example problems7.
Performance & scalability8.
Additional tools9.
Modifying & extending LAMMPS
10.1 Atom styles
10.2 Bond, angle, dihedral, improper potentials
10.3 Compute styles
10.4 Dump styles
10.5 Dump custom output options
10.6 Fix styles
10.7 Input script commands
10.8 Kspace computations
10.9 Minimization styles
10.10 Pairwise potentials
10.11 Region styles
10.12 Body styles
10.13 Thermodynamic output options
10.14 Variable options
10.15 Submitting new features for inclusion in LAMMPS

10.

Python interface
11.1 Building LAMMPS as a shared library
11.2 Installing the Python wrapper into Python
11.3 Extending Python with MPI to run in parallel
11.4 Testing the Python-LAMMPS interface
11.5 Using LAMMPS from Python
11.6 Example Python scripts that use LAMMPS

11.

Errors
12.1 Common problems
12.2 Reporting bugs
12.3 Error & warning messages

12.

Future and history13.

13.1 Coming attractions
13.2 Past versions

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style charmm command

angle_style charmm/omp command

Syntax:

angle_style charmm

Examples:

angle_style charmm
angle_coeff 1 300.0 107.0 50.0 3.0

Description:

The charmm angle style uses the potential

with an additional Urey_Bradley term based on the distance r between the 1st and 3rd atoms in the angle. K,
theta0, Kub, and Rub are coefficients defined for each angle type.

See (MacKerell) for a description of the CHARMM force field.

The following coefficients must be defined for each angle type via the angle_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy/radian^2)•
theta0 (degrees)•
K_ub (energy/distance^2)•
r_ub (distance)•

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

LIGGGHTS Users Manual

angle_style charmm command 1

http://lammps.sandia.gov

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

angle_coeff

Default: none

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

LIGGGHTS Users Manual

angle_style charmm/omp command 2

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style class2 command

angle_style class2/omp command

Syntax:

angle_style class2

Examples:

angle_style class2
angle_coeff * 75.0
angle_coeff 1 bb 10.5872 1.0119 1.5228
angle_coeff * ba 3.6551 24.895 1.0119 1.5228

Description:

The class2 angle style uses the potential

where Ea is the angle term, Ebb is a bond-bond term, and Eba is a bond-angle term. Theta0 is the equilibrium
angle and r1 and r2 are the equilibrium bond lengths.

See (Sun) for a description of the COMPASS class2 force field.

Coefficients for the Ea, Ebb, and Eba formulas must be defined for each angle type via the bond_coeff
command as in the example above, or in the data file or restart files read by the read_data or read_restart
commands.

These are the 4 coefficients for the Ea formula:

theta0 (degrees)•
K2 (energy/radian^2)•
K3 (energy/radian^3)•
K4 (energy/radian^4)•

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of the various K
are in per-radian.

For the Ebb formula, each line in a bond_coeff command in the input script lists 4 coefficients, the first of
which is "bb" to indicate they are BondBond coefficients. In a data file, these coefficients should be listed
under a "BondBond Coeffs" heading and you must leave out the "bb", i.e. only list 3 coefficients after the
angle type.

LIGGGHTS Users Manual

angle_style class2 command 3

http://lammps.sandia.gov

bb•
M (energy/distance^2)•
r1 (distance)•
r2 (distance)•

For the Eba formula, each line in a bond_coeff command in the input script lists 5 coefficients, the first of
which is "ba" to indicate they are BondAngle coefficients. In a data file, these coefficients should be listed
under a "BondAngle Coeffs" heading and you must leave out the "ba", i.e. only list 4 coefficients after the
angle type.

ba•
N1 (energy/distance^2)•
N2 (energy/distance^2)•
r1 (distance)•
r2 (distance)•

The theta0 value in the Eba formula is not specified, since it is the same value from the Ea formula.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the CLASS2 package. See the Making
LAMMPS section for more info on packages.

Related commands:

angle_coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

LIGGGHTS Users Manual

angle_style class2/omp command 4

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_coeff command

Syntax:

angle_coeff N args

N = angle type (see asterisk form below)•
args = coefficients for one or more angle types•

Examples:

angle_coeff 1 300.0 107.0
angle_coeff * 5.0
angle_coeff 2*10 5.0

Description:

Specify the angle force field coefficients for one or more angle types. The number and meaning of the
coefficients depends on the angle style. Angle coefficients can also be set in the data file read by the read_data
command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild-card asterisk can be used to set the coefficients for multiple angle types. This takes the form "*" or "*n"
or "n*" or "m*n". If N = the number of angle types, then an asterisk with no numeric values means all types
from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types
from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using an angle_coeff command can override a previous setting for the same angle type. For
example, these commands set the coeffs for all angle types, then overwrite the coeffs for just angle type 2:

angle_coeff * 200.0 107.0 1.2
angle_coeff 2 50.0 107.0

A line in a data file that specifies angle coefficients uses the exact same format as the arguments of the
angle_coeff command in an input script, except that wild-card asterisks should not be used since coefficients
for all N types must be listed in the file. For example, under the "Angle Coeffs" section of a data file, the line
that corresponds to the 1st example above would be listed as

1 300.0 107.0

The angle_style class2 is an exception to this rule, in that an additional argument is used in the input script to
allow specification of the cross-term coefficients. See its doc page for details.

Here is an alphabetic list of angle styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated angle_coeff command.

Note that there are also additional angle styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the angle section of this page.

angle_style none - turn off angle interactions•
angle_style hybrid - define multiple styles of angle interactions•

angle_style charmm - CHARMM angle•

LIGGGHTS Users Manual

angle_coeff command 5

http://lammps.sandia.gov

angle_style class2 - COMPASS (class 2) angle•
angle_style cosine - cosine angle potential•
angle_style cosine/delta - difference of cosines angle potential•
angle_style cosine/periodic - DREIDING angle•
angle_style cosine/squared - cosine squared angle potential•
angle_style harmonic - harmonic angle•
angle_style table - tabulated by angle•

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

An angle style must be defined before any angle coefficients are set, either in the input script or in a data file.

Related commands:

angle_style

Default: none

LIGGGHTS Users Manual

angle_coeff command 6

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/delta command

angle_style cosine/delta/omp command

Syntax:

angle_style cosine/delta

Examples:

angle_style cosine/delta
angle_coeff 2*4 75.0 100.0

Description:

The cosine/delta angle style uses the potential

where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is
included in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•
theta0 (degrees)•

Theta0 is specified in degrees, but LAMMPS converts it to radians internally.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

LIGGGHTS Users Manual

angle_style cosine/delta command 7

http://lammps.sandia.gov

Related commands:

angle_coeff, angle_style cosine/squared

Default: none

LIGGGHTS Users Manual

angle_style cosine/delta/omp command 8

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine command

angle_style cosine/omp command

Syntax:

angle_style cosine

Examples:

angle_style cosine
angle_coeff * 75.0

Description:

The cosine angle style uses the potential

where K is defined for each angle type.

The following coefficients must be defined for each angle type via the angle_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

angle_coeff

LIGGGHTS Users Manual

angle_style cosine command 9

http://lammps.sandia.gov

Default: none

LIGGGHTS Users Manual

angle_style cosine/omp command 10

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/periodic command

angle_style cosine/periodic/omp command

Syntax:

angle_style cosine/periodic

Examples:

angle_style cosine/periodic
angle_coeff * 75.0 1 6

Description:

The cosine/periodic angle style uses the following potential, which is commonly used in the DREIDING force
field, particularly for organometallic systems where n = 4 might be used for an octahedral complex and n = 3
might be used for a trigonal center:

where C, B and n are coefficients defined for each angle type.

See (Mayo) for a description of the DREIDING force field

The following coefficients must be defined for each angle type via the angle_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

C (energy)•
B = 1 or -1•
n = 1, 2, 3, 4, 5 or 6 for periodicity•

Note that the prefactor C is specified and not the overall force constant K = C / n^2. When B = 1, it leads to a
minimum for the linear geometry. When B = -1, it leads to a maximum for the linear geometry.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

LIGGGHTS Users Manual

angle_style cosine/periodic command 11

http://lammps.sandia.gov

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

angle_coeff

Default: none

(Mayo) Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909 (1990).

LIGGGHTS Users Manual

angle_style cosine/periodic/omp command 12

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/shift/exp command

angle_style cosine/shift/exp/omp command

Syntax:

angle_style cosine/shift/exp

Examples:

angle_style cosine/shift/exp
angle_coeff * 10.0 45.0 2.0

Description:

The cosine/shift/exp angle style uses the potential

where Umin, theta, and a are defined for each angle type.

The potential is bounded between [-Umin:0] and the minimum is located at the angle theta0. The a parameter
can be both positive or negative and is used to control the spring constant at the equilibrium.

The spring constant is given by k = A exp(A) Umin / [2 (Exp(a)-1)]. For a > 3, k/Umin = a/2 to better than 5%
relative error. For negative values of the a parameter, the spring constant is essentially zero, and anharmonic
terms takes over. The potential is furthermore well behaved in the limit a -> 0, where it has been implemented
to linear order in a for a < 0.001. In this limit the potential reduces to the cosineshifted potential.

The following coefficients must be defined for each angle type via the angle_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

umin (energy)•
theta (angle)•
A (real number)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

LIGGGHTS Users Manual

angle_style cosine/shift/exp command 13

http://lammps.sandia.gov

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

angle_coeff, angle_cosineshift, dihedral_cosineshift

Default: none

LIGGGHTS Users Manual

angle_style cosine/shift/exp/omp command 14

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/shift command

angle_style cosine/shift/omp command

Syntax:

angle_style cosine/shift

Examples:

angle_style cosine/shift
angle_coeff * 10.0 45.0

Description:

The cosine/shift angle style uses the potential

where theta0 is the equilibrium angle. The potential is bounded between -Umin and zero. In the neighborhood
of the minimum E=- Umin + Umin/4(theta-theta0)^2 hence the spring constant is umin/2.

The following coefficients must be defined for each angle type via the angle_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

umin (energy)•
theta (angle)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

LIGGGHTS Users Manual

angle_style cosine/shift command 15

http://lammps.sandia.gov

Related commands:

angle_coeff, angle_cosineshiftexp

Default: none

LIGGGHTS Users Manual

angle_style cosine/shift/omp command 16

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/squared command

angle_style cosine/squared/omp command

Syntax:

angle_style cosine/squared

Examples:

angle_style cosine/squared
angle_coeff 2*4 75.0 100.0

Description:

The cosine/squared angle style uses the potential

where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is
included in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•
theta0 (degrees)•

Theta0 is specified in degrees, but LAMMPS converts it to radians internally.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

LIGGGHTS Users Manual

angle_style cosine/squared command 17

http://lammps.sandia.gov

Related commands:

angle_coeff

Default: none

LIGGGHTS Users Manual

angle_style cosine/squared/omp command 18

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style dipole command

angle_style dipole/omp command

Syntax:

angle_style dipole

Examples:

angle_style dipole
angle_coeff 6 2.1 180.0

Description:

The dipole angle style is used to control the orientation of a dipolar atom within a molecule (Orsi).
Specifically, the dipole angle style restrains the orientation of a point dipole mu_j (embedded in atom 'j') with
respect to a reference (bond) vector r_ij = r_i - r_j, where 'i' is another atom of the same molecule (typically, 'i'
and 'j' are also covalently bonded).

It is convenient to define an angle gamma between the 'free' vector mu_j and the reference (bond) vector r_ij:

The dipole angle style uses the potential:

where K is a rigidity constant and gamma0 is an equilibrium (reference) angle.

The torque on the dipole can be obtained by differentiating the potential using the 'chain rule' as in appendix
C.3 of (Allen):

Example: if gamma0 is set to 0 degrees, the torque generated by the potential will tend to align the dipole
along the reference direction defined by the (bond) vector r_ij (in other words, mu_j is restrained to point
towards atom 'i').

Note that the angle dipole potential does not give rise to any force, because it does not depend on the distance
between i and j (it only depends on the angle between mu_j and r_ij).

LIGGGHTS Users Manual

angle_style dipole command 19

http://lammps.sandia.gov

The following coefficients must be defined for each angle type via the angle_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•
gamma0 (degrees)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

IMPORTANT NOTE: In the "Angles" section of the data file, the atom ID 'j' corresponding to the dipole to
restrain must come before the atom ID of the reference atom 'i'. A third atom ID 'k' must also be provided,
although 'k' is just a 'dummy' atom which can be any atom; it may be useful to choose a convention (e.g.,
'k'='i') and adhere to it. For example, if ID=1 for the dipolar atom to restrain, and ID=2 for the reference atom,
the corresponding line in the "Angles" section of the data file would read: X X 1 2 2

The "newton" command for intramolecular interactions must be "on" (which is the default).

This angle style should not be used with SHAKE.

Related commands:

angle_coeff, angle_hybrid

Default: none

(Orsi) Orsi & Essex, The ELBA force field for coarse-grain modeling of lipid membranes, PloS ONE 6(12):
e28637, 2011.

(Allen) Allen & Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.

LIGGGHTS Users Manual

angle_style dipole/omp command 20

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style fourier command

angle_style fourier/omp command

Syntax:

angle_style fourier

Examples:

angle_style fourier angle_coeff 75.0 1.0 1.0 1.0

Description:

The fourier angle style uses the potential

The following coefficients must be defined for each angle type via the angle_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•
C0 (real)•
C1 (real)•
C2 (real)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

angle_coeff

LIGGGHTS Users Manual

angle_style fourier command 21

http://lammps.sandia.gov

Default: none

LIGGGHTS Users Manual

angle_style fourier/omp command 22

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style fourier/simple command

angle_style fourier/simple/omp command

Syntax:

angle_style fourier/simple

Examples:

angle_style fourier/simple angle_coeff 100.0 -1.0 1.0

Description:

The fourier/simple angle style uses the potential

The following coefficients must be defined for each angle type via the angle_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•
c (real)•
n (real)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

angle_coeff

LIGGGHTS Users Manual

angle_style fourier/simple command 23

http://lammps.sandia.gov

Default: none

LIGGGHTS Users Manual

angle_style fourier/simple/omp command 24

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style harmonic command

angle_style harmonic/omp command

Syntax:

angle_style harmonic

Examples:

angle_style harmonic
angle_coeff 1 300.0 107.0

Description:

The harmonic angle style uses the potential

where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is
included in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy/radian^2)•
theta0 (degrees)•

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions: none

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

LIGGGHTS Users Manual

angle_style harmonic command 25

http://lammps.sandia.gov

Related commands:

angle_coeff

Default: none

LIGGGHTS Users Manual

angle_style harmonic/omp command 26

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style hybrid command

Syntax:

angle_style hybrid style1 style2 ...

style1,style2 = list of one or more angle styles•

Examples:

angle_style hybrid harmonic cosine
angle_coeff 1 harmonic 80.0 30.0
angle_coeff 2* cosine 50.0

Description:

The hybrid style enables the use of multiple angle styles in one simulation. An angle style is assigned to each
angle type. For example, angles in a polymer flow (of angle type 1) could be computed with a harmonic
potential and angles in the wall boundary (of angle type 2) could be computed with a cosine potential. The
assignment of angle type to style is made via the angle_coeff command or in the data file.

In the angle_coeff commands, the name of an angle style must be added after the angle type, with the
remaining coefficients being those appropriate to that style. In the example above, the 2 angle_coeff
commands set angles of angle type 1 to be computed with a harmonic potential with coefficients 80.0, 30.0
for K, theta0. All other angle types (2-N) are computed with a cosine potential with coefficient 50.0 for K.

If angle coefficients are specified in the data file read via the read_data command, then the same rule applies.
E.g. "harmonic" or "cosine", must be added after the angle type, for each line in the "Angle Coeffs" section,
e.g.

Angle Coeffs

1 harmonic 80.0 30.0
2 cosine 50.0
...

If class2 is one of the angle hybrid styles, the same rule holds for specifying additional BondBond (and
BondAngle) coefficients either via the input script or in the data file. I.e. class2 must be added to each line
after the angle type. For lines in the BondBond (or BondAngle) section of the data file for angle types that are
not class2, you must use an angle style of skip as a placeholder, e.g.

BondBond Coeffs

1 skip
2 class2 3.6512 1.0119 1.0119
...

Note that it is not necessary to use the angle style skip in the input script, since BondBond (or BondAngle)
coefficients need not be specified at all for angle types that are not class2.

An angle style of none with no additional coefficients can be used in place of an angle style, either in a input
script angle_coeff command or in the data file, if you desire to turn off interactions for specific angle types.

Restrictions:

LIGGGHTS Users Manual

angle_style hybrid command 27

http://lammps.sandia.gov

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Unlike other angle styles, the hybrid angle style does not store angle coefficient info for individual sub-styles
in a binary restart files. Thus when retarting a simulation from a restart file, you need to re-specify
angle_coeff commands.

Related commands:

angle_coeff

Default: none

LIGGGHTS Users Manual

angle_style hybrid command 28

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style none command

Syntax:

angle_style none

Examples:

angle_style none

Description:

Using an angle style of none means angle forces are not computed, even if triplets of angle atoms were listed
in the data file read by the read_data command.

Restrictions: none

Related commands: none

Default: none

LIGGGHTS Users Manual

angle_style none command 29

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style quartic command

angle_style quartic/omp command

Syntax:

angle_style quartic

Examples:

angle_style quartic
angle_coeff 1 129.1948 56.8726 -25.9442 -14.2221

Description:

The quartic angle style uses the potential

where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is
included in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

theta0 (degrees)•
K2 (energy/radian^2)•
K3 (energy/radian^3)•
K4 (energy/radian^4)•

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

LIGGGHTS Users Manual

angle_style quartic command 30

http://lammps.sandia.gov

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

angle_coeff

Default: none

LIGGGHTS Users Manual

angle_style quartic/omp command 31

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style sdk command

Syntax:

angle_style sdk

angle_style sdk/omp

Examples:

angle_style sdk
angle_coeff 1 300.0 107.0

Description:

The sdk angle style is a combination of the harmonic angle potential,

where theta0 is the equilibrium value of the angle and K a prefactor, with the repulsive part of the non-bonded
lj/sdk pair style between the atoms 1 and 3. This angle potential is intended for coarse grained MD simulations
with the CMM parametrization using the pair_style lj/sdk. Relative to the pair_style lj/sdk, however, the
energy is shifted by epsilon, to avoid sudden jumps. Note that the usual 1/2 factor is included in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the
example above:

K (energy/radian^2)•
theta0 (degrees)•

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2. The also required lj/sdk parameters will be extracted automatically from the pair_style.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-CG-CMM package. See the Making
LAMMPS section for more info on packages.

Related commands:

angle_coeff, angle_style harmonic, pair_style lj/sdk, pair_style lj/sdk/coul/long

Default: none

LIGGGHTS Users Manual

angle_style sdk command 32

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style command

Syntax:

angle_style style

style = none or hybrid or charmm or class2 or cosine or cosine/squared or harmonic•

Examples:

angle_style harmonic
angle_style charmm
angle_style hybrid harmonic cosine

Description:

Set the formula(s) LAMMPS uses to compute angle interactions between triplets of atoms, which remain in
force for the duration of the simulation. The list of angle triplets is read in by a read_data or read_restart
command from a data or restart file.

Hybrid models where angles are computed using different angle potentials can be setup using the hybrid angle
style.

The coefficients associated with a angle style can be specified in a data or restart file or via the angle_coeff
command.

All angle potentials store their coefficient data in binary restart files which means angle_style and angle_coeff
commands do not need to be re-specified in an input script that restarts a simulation. See the read_restart
command for details on how to do this. The one exception is that angle_style hybrid only stores the list of
sub-styles in the restart file; angle coefficients need to be re-specified.

IMPORTANT NOTE: When both an angle and pair style is defined, the special_bonds command often needs
to be used to turn off (or weight) the pairwise interaction that would otherwise exist between 3 bonded atoms.

In the formulas listed for each angle style, theta is the angle between the 3 atoms in the angle.

Here is an alphabetic list of angle styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated angle_coeff command.

Note that there are also additional angle styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the angle section of this page.

angle_style none - turn off angle interactions•
angle_style hybrid - define multiple styles of angle interactions•

angle_style charmm - CHARMM angle•
angle_style class2 - COMPASS (class 2) angle•
angle_style cosine - cosine angle potential•
angle_style cosine/delta - difference of cosines angle potential•
angle_style cosine/periodic - DREIDING angle•
angle_style cosine/squared - cosine squared angle potential•
angle_style harmonic - harmonic angle•
angle_style table - tabulated by angle•

LIGGGHTS Users Manual

angle_style command 33

http://lammps.sandia.gov

Restrictions:

Angle styles can only be set for atom_styles that allow angles to be defined.

Most angle styles are part of the MOLECULAR package. They are only enabled if LAMMPS was built with
that package. See the Making LAMMPS section for more info on packages. The doc pages for individual
bond potentials tell if it is part of a package.

Related commands:

angle_coeff

Default:

angle_style none

LIGGGHTS Users Manual

angle_style command 34

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style table command

angle_style table/omp command

Syntax:

angle_style table style N

style = linear or spline = method of interpolation•
N = use N values in table•

Examples:

angle_style table linear 1000
angle_coeff 3 file.table ENTRY1

Description:

Style table creates interpolation tables of length N from angle potential and derivative values listed in a file(s)
as a function of angle The files are read by the angle_coeff command.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and
derivative values at each of N angles. During a simulation, these tables are used to interpolate energy and
force values on individual atoms as needed. The interpolation is done in one of 2 styles: linear or spline.

For the linear style, the angle is used to find 2 surrounding table values from which an energy or its derivative
is computed by linear interpolation.

For the spline style, a cubic spline coefficients are computed and stored at each of the N values in the table.
The angle is used to find the appropriate set of coefficients which are used to evaluate a cubic polynomial
which computes the energy or derivative.

The following coefficients must be defined for each angle type via the angle_coeff command as in the
example above.

filename•
keyword•

The filename specifies a file containing tabulated energy and derivative values. The keyword specifies a
section of the file. The format of this file is described below.

The format of a tabulated file is as follows (without the parenthesized comments):

Angle potential for harmonic (one or more comment or blank lines)

HAM (keyword is the first text on line)
N 181 FP 0 0 EQ 90.0 (N, FP, EQ parameters)
 (blank line)
N 181 FP 0 0 (N, FP parameters)
1 0.0 200.5 2.5 (index, angle, energy, derivative)
2 1.0 198.0 2.5
...
181 180.0 0.0 0.0

LIGGGHTS Users Manual

angle_style table command 35

http://lammps.sandia.gov

A section begins with a non-blank line whose 1st character is not a "#"; blank lines or lines starting with "#"
can be used as comments between sections. The first line begins with a keyword which identifies the section.
The line can contain additional text, but the initial text must match the argument specified in the angle_coeff
command. The next line lists (in any order) one or more parameters for the table. Each parameter is a keyword
followed by one or more numeric values.

The parameter "N" is required and its value is the number of table entries that follow. Note that this may be
different than the N specified in the angle_style table command. Let Ntable = N in the angle_style command,
and Nfile = "N" in the tabulated file. What LAMMPS does is a preliminary interpolation by creating splines
using the Nfile tabulated values as nodal points. It uses these to interpolate as needed to generate energy and
derivative values at Ntable different points. The resulting tables of length Ntable are then used as described
above, when computing energy and force for individual angles and their atoms. This means that if you want
the interpolation tables of length Ntable to match exactly what is in the tabulated file (with effectively no
preliminary interpolation), you should set Ntable = Nfile.

The "FP" parameter is optional. If used, it is followed by two values fplo and fphi, which are the 2nd
derivatives at the innermost and outermost angle settings. These values are needed by the spline construction
routines. If not specified by the "FP" parameter, they are estimated (less accurately) by the first two and last
two derivative values in the table.

The "EQ" parameter is also optional. If used, it is followed by a the equilibrium angle value, which is used,
for example, by the fix shake command. If not used, the equilibrium angle is set to 180.0.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from
1 to N, the 2nd value is the angle value (in degrees), the 3rd value is the energy (in energy units), and the 4th
is -dE/d(theta) (also in energy units). The 3rd term is the energy of the 3-atom configuration for the specified
angle. The last term is the derivative of the energy with respect to the angle (in degrees, not radians). Thus the
units of the last term are still energy, not force. The angle values must increase from one line to the next. The
angle values must also begin with 0.0 and end with 180.0, i.e. span the full range of possible angles.

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section
by section until it finds one that matches the specified keyword.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

LIGGGHTS Users Manual

angle_style table/omp command 36

angle_coeff

Default: none

LIGGGHTS Users Manual

angle_style table/omp command 37

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

atom_modify command

Syntax:

atom_modify keyword values ...

one or more keyword/value pairs may be appended•
keyword = map or first or sort

map value = array or hash
first value = group-ID = group whose atoms will appear first in internal atom lists
sort values = Nfreq binsize

 Nfreq = sort atoms spatially every this many time steps
 binsize = bin size for spatial sorting (distance units)

•

Examples:

atom_modify map hash
atom_modify map array sort 10000 2.0
atom_modify first colloid

Description:

Modify properties of the atom style selected within LAMMPS.

The map keyword determines how atom ID lookup is done for molecular problems. Lookups are performed
by bond (angle, etc) routines in LAMMPS to find the local atom index associated with a global atom ID.
When the array value is used, each processor stores a lookup table of length N, where N is the total # of atoms
in the system. This is the fastest method for most simulations, but a processor can run out of memory to store
the table for very large simulations. The hash value uses a hash table to perform the lookups. This method can
be slightly slower than the array method, but its memory cost is proportional to N/P on each processor, where
P is the total number of processors running the simulation.

The first keyword allows a group to be specified whose atoms will be maintained as the first atoms in each
processor's list of owned atoms. This in only useful when the specified group is a small fraction of all the
atoms, and there are other operations LAMMPS is performing that will be sped-up significantly by being able
to loop over the smaller set of atoms. Otherwise the reordering required by this option will be a net
slow-down. The neigh_modify include and communicate group commands are two examples of commands
that require this setting to work efficiently. Several fixes, most notably time integration fixes like fix nve, also
take advantage of this setting if the group they operate on is the group specified by this command. Note that
specifying "all" as the group-ID effectively turns off the first option.

It is OK to use the first keyword with a group that has not yet been defined, e.g. to use the atom_modify first
command at the beginning of your input script. LAMMPS does not use the group until a simullation is run.

The sort keyword turns on a spatial sorting or reordering of atoms within each processor's sub-domain every
Nfreq timesteps. If Nfreq is set to 0, then sorting is turned off. Sorting can improve cache performance and
thus speed-up a LAMMPS simulation, as discussed in a paper by (Meloni). Its efficacy depends on the
problem size (atoms/processor), how quickly the system becomes disordered, and various other factors. As a
general rule, sorting is typically more effective at speeding up simulations of liquids as opposed to solids. In
tests we have done, the speed-up can range from zero to 3-4x.

Reordering is peformed every Nfreq timesteps during a dynamics run or iterations during a minimization.
More precisely, reordering occurs at the first reneighboring that occurs after the target timestep. The

LIGGGHTS Users Manual

atom_modify command 38

http://lammps.sandia.gov

reordering is performed locally by each processor, using bins of the specified binsize. If binsize is set to 0.0,
then a binsize equal to half the neighbor cutoff distance (force cutoff plus skin distance) is used, which is a
reasonable value. After the atoms have been binned, they are reordered so that atoms in the same bin are
adjacent to each other in the processor's 1d list of atoms.

The goal of this procedure is for atoms to put atoms close to each other in the processor's one-dimensional list
of atoms that are also near to each other spatially. This can improve cache performance when pairwise
intereractions and neighbor lists are computed. Note that if bins are too small, there will be few atoms/bin.
Likewise if bins are too large, there will be many atoms/bin. In both cases, the goal of cache locality will be
undermined.

IMPORTANT NOTE: Running a simulation with sorting on versus off should not change the simulation
results in a statistical sense. However, a different ordering will induce round-off differences, which will lead
to diverging trajectories over time when comparing two simluations. Various commands, particularly those
which use random numbers (e.g. velocity create, and fix langevin), may generate (statistically identical)
results which depend on the order in which atoms are processed. The order of atoms in a dump file will also
typically change if sorting is enabled.

Restrictions:

The map keyword can only be used before the simulation box is defined by a read_data or create_box
command.

The first and sort options cannot be used together. Since sorting is on by default, it will be turned off if the
first keyword is used with a group-ID that is not "all".

Related commands: none

Default:

By default, atomic (non-molecular) problems do not allocate maps. For molecular problems, the option
default is map = array. By default, a "first" group is not defined. By default, sorting is enabled with a
frequency of 1000 and a binsize of 0.0, which means the neighbor cutoff will be used to set the bin size.

(Meloni) Meloni, Rosati and Colombo, J Chem Phys, 126, 121102 (2007).

LIGGGHTS Users Manual

atom_modify command 39

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

atom_style command

Syntax:

atom_style style args

style = angle or atomic or body or bond or charge or dipole or electron or ellipsoid or full or line or
meso or molecular or peri or sphere or granular or tri or hybrid or sph

•

 args = none for any style except body and hybrid
body args = bstyle bstyle-args

 bstyle = style of body particles
 bstyle-args = additional arguments specific to the bstyle
 see the body doc page for details

hybrid args = list of one or more sub-styles, each with their args

Examples:

atom_style atomic
atom_style bond
atom_style full
atom_style body nparticle 2 10
atom_style hybrid charge bond
atom_style hybrid charge body nparticle 2 5

Description:

Define what style of atoms to use in a simulation. This determines what attributes are associated with the
atoms. This command must be used before a simulation is setup via a read_data, read_restart, or create_box
command.

Once a style is assigned, it cannot be changed, so use a style general enough to encompass all attributes. E.g.
with style bond, angular terms cannot be used or added later to the model. It is OK to use a style more general
than needed, though it may be slightly inefficient.

The choice of style affects what quantities are stored by each atom, what quantities are communicated
between processors to enable forces to be computed, and what quantities are listed in the data file read by the
read_data command.

These are the additional attributes of each style and the typical kinds of physical systems they are used to
model. All styles store coordinates, velocities, atom IDs and types. See the read_data, create_atoms, and set
commands for info on how to set these various quantities.

angle bonds and angles bead-spring polymers with
stiffness

atomic only the default values coarse-grain liquids, solids, metals

body
mass, inertia moments, quaternion, angular
momentum arbitrary bodies

bond bonds bead-spring polymers
charge charge atomic system with charges
dipole charge and dipole moment system with dipolar particles
electron charge and spin and eradius electronic force field
ellipsoid shape, quaternion, angular momentum aspherical particles

LIGGGHTS Users Manual

atom_style command 40

http://lammps.sandia.gov

full molecular + charge bio-molecules
line end points, angular velocity rigid bodies
meso rho, e, cv SPH particles
sph q(pressure), density SPH particles
molecular bonds, angles, dihedrals, impropers uncharged molecules
peri mass, volume mesocopic Peridynamic models
sphere or granular diameter, mass, angular velocity granular models
tri corner points, angular momentum rigid bodies
wavepacket charge, spin, eradius, etag, cs_re, cs_im AWPMD
IMPORTANT NOTE: It is possible to add some attributes, such as a molecule ID, to atom styles that do not
have them via the fix property/atom command. This command also allows new custom attributes consisting of
extra integer or floating-point values to be added to atoms. See the fix property/atom doc page for examples of
cases where this is useful and details on how to initialize, access, and output the custom values.

All of the above styles define point particles, except the sphere, ellipsoid, electron, peri, wavepacket, line, tri,
and body styles, which define finite-size particles. See Section_howto 14 for an overview of using finite-size
particle models with LAMMPS.

All of the styles assign mass to particles on a per-type basis, using the mass command, except for the
finite-size particle styles. They assign mass to individual particles on a per-particle basis.

For the sphere style, the particles are spheres and each stores a per-particle diameter and mass. If the diameter
> 0.0, the particle is a finite-size sphere. If the diameter = 0.0, it is a point particle.

For the ellipsoid style, the particles are ellipsoids and each stores a flag which indicates whether it is a
finite-size ellipsoid or a point particle. If it is an ellipsoid, it also stores a shape vector with the 3 diamters of
the ellipsoid and a quaternion 4-vector with its orientation.

For the electron style, the particles representing electrons are 3d Gaussians with a specified position and
bandwidth or uncertainty in position, which is represented by the eradius = electron size.

For the peri style, the particles are spherical and each stores a per-particle mass and volume.

The meso style is for smoothed particle hydrodynamics (SPH) particles which store a density (rho), energy
(e), and heat capacity (cv).

The wavepacket style is similar to electron, but the electrons may consist of several Gaussian wave packets,
summed up with coefficients cs= (cs_re,cs_im). Each of the wave packets is treated as a separate particle in
LAMMPS, wave packets belonging to the same electron must have identical etag values.

For the line style, the particles are idealized line segments and each stores a per-particle mass and length and
orientation (i.e. the end points of the line segment).

For the tri style, the particles are planar triangles and each stores a per-particle mass and size and orientation
(i.e. the corner points of the triangle).

For the body style, the particles are arbitrary bodies with internal attributes defined by the "style" of the
bodies, which is specified by the bstyle argument. Body particles can represent complex entities, such as
surface meshes of discrete points, collections of sub-particles, deformable objects, etc.

The body doc page descibes the body styles LAMMPS currently supports, and provides more details as to the
kind of body particles they represent. For all styles, each body particle stores moments of inertia and a
quaternion 4-vector, so that its orientation and position can be time integrated due to forces and torques.

LIGGGHTS Users Manual

atom_style command 41

Note that there may be additional arguments required along with the bstyle specification, in the atom_style
body command. These arguments are described in the body doc page.

Typically, simulations require only a single (non-hybrid) atom style. If some atoms in the simulation do not
have all the properties defined by a particular style, use the simplest style that defines all the needed properties
by any atom. For example, if some atoms in a simulation are charged, but others are not, use the charge style.
If some atoms have bonds, but others do not, use the bond style.

The only scenario where the hybrid style is needed is if there is no single style which defines all needed
properties of all atoms. For example, if you want dipolar particles which will rotate due to torque, you would
need to use "atom_style hybrid sphere dipole". When a hybrid style is used, atoms store and communicate the
union of all quantities implied by the individual styles.

LAMMPS can be extended with new atom styles as well as new body styles; see this section.

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command.

The angle, bond, full, and molecular styles are part of the MOLECULAR package. The line and tri styles are
part of the ASPHERE pacakge. The body style is part of the BODY package. The dipole style is part of the
DIPOLE package. The peri style is part of the PERI package for Peridynamics. The electron style is part of
the USER-EFF package for electronic force fields. The meso style is part of the USER-SPH package for
smoothed particle hydrodyanmics (SPH). See this PDF guide to using SPH in LAMMPS. The wavepacket
style is part of the USER-AWPMD package for the antisymmetrized wave packet MD method. They are only
enabled if LAMMPS was built with that package. See the Making LAMMPS section for more info.

Related commands:

read_data, pair_style

Default:

atom_style atomic

LIGGGHTS Users Manual

atom_style command 42

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

Body particles

Overview:

This doc page is not about a LAMMPS input script command, but about body particles, which are generalized
finite-size particles. Individual body particles can represent complex entities, such as surface meshes of
discrete points, collections of sub-particles, deformable objects, etc. Note that other kinds of finite-size
spherical and aspherical particles are also supported by LAMMPS, such as spheres, ellipsoids, line segments,
and triangles, but they are simpler entities that body particles. See Section_howto 14 for a general overview of
all these particle types.

Body particles are used via the atom_style body command. It takes a body style as an argument. The current
body styles supported by LAMMPS are as follows. The name in the first column is used as the bstyle
argument for the atom_style body command.

nparticle rigid body with N sub-particles
The body style determines what attributes are stored for each body and thus how they can be used to compute
pairwise body/body or bond/non-body (point particle) interactions. More details of each style are described
below.

We hope to add more styles in the future. See Section_modify 12 for details on how to add a new body style
to the code.

When to use body particles:

You should not use body particles to model a rigid body made of simpler particles (e.g. point, sphere,
ellipsoid, line segment, triangular particles), if the interaction between pairs of rigid bodies is just the
summation of pairwise interactions between the simpler particles. LAMMPS already supports this kind of
model via the fix rigid command. Any of the numerous pair styles that compute interactions between simpler
particles can be used. The fix rigid command time integrates the motion of the rigid bodies. All of the
standard LAMMPS commands for thermostatting, adding constraints, performing output, etc will operate as
expected on the simple particles.

By contrast, when body particles are used, LAMMPS treats an entire body as a single particle for purposes of
computing pairwise interactions, building neighbor lists, migrating particles between processors, outputting
particles to a dump file, etc. This means that interactions between pairs of bodies or between a body and
non-body (point) particle need to be encoded in an appropriate pair style. If such a pair style were to mimic
the fix rigid model, it would need to loop over the entire collection of interactions between pairs of simple
particles within the two bodies, each time a single body/body interaction was computed.

Thus it only makes sense to use body particles and develop such a pair style, when particle/particle
interactions are more complex than what the fix rigid command can already calculate. For example, if
particles have one or more of the following attributes:

represented by a surface mesh•
represented by a collection of geometric entities (e.g. planes + spheres)•
deformable•
internal stress that induces fragmentation•

then the interaction between pairs of particles is likely to be more complex than the summation of simple
sub-particle interactions. An example is contact or frictional forces between particles with planar sufaces that
inter-penetrate.

LIGGGHTS Users Manual

Body particles 43

http://lammps.sandia.gov

These are additional LAMMPS commands that can be used with body particles of different styles

fix nve/body integrate motion of a body particle
compute body/local store sub-particle attributes of a body particle
dump local output sub-particle attributes of a body particle

The pair styles defined for use with specific body styles are listed in the sections below.

Specifics of body style nparticle:

The nparticle body style represents body particles as a rigid body with a variable number N of sub-particles. It
is provided as a vanillia, prototypical example of a body particle, although as mentioned above, the fix rigid
command already duplicates its functionality.

The atom_style body command for this body style takes two additional arguments:

atom_style body nparticle Nmin Nmax
Nmin = minimum # of sub-particles in any body in the system
Nmax = maximum # of sub-particles in any body in the system

The Nmin and Nmax arguments are used to bound the size of data structures used internally by each particle.

When the read_data command reads a data file for this body style, the following information must be provided
for each entry in the Bodies section of the data file:

atom-ID 1 M
N
ixx iyy izz ixy ixz iyz x1 y1 z1 ...
...
... xN yN zN

N is the number of sub-particles in the body particle. M = 6 + 3*N. The integer line has a single value N. The
floating point line(s) list 6 moments of inertia followed by the coordinates of the N sub-particles (x1 to zN) as
3N values on as many lines as required. Note that this in not N lines, but 10 values per line; see the read_data
command for details. The 6 moments of inertia (ixx,iyy,izz,ixy,ixz,iyz) should be the values consistent with
the current orientation of the rigid body around its center of mass. The values are with respect to the
simulation box XYZ axes, not with respect to the prinicpal axes of the rigid body itself. LAMMPS performs
the latter calculation internally. The coordinates of each sub-particle are specified as its x,y,z displacement
from the center-of-mass of the body particle. The center-of-mass position of the particle is specified by the
x,y,z values in the Atoms section of the data file.

The pair_style body command can be used with this body style to compute body/body and body/non-body
interactions.

For output purposes via the compute body/local and dump local commands, this body style produces one
datum for each of the N sub-particles in a body particle. The datum has 3 values:

1 = x position of sub-particle
2 = y position of sub-particle
3 = z position of sub-particle

These values are the current position of the sub-particle within the simulation domain, not a displacement
from the center-of-mass (COM) of the body particle itself. These values are calculated using the current COM
and orientiation of the body particle.

LIGGGHTS Users Manual

Body particles 44

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style class2 command

bond_style class2/omp command

Syntax:

bond_style class2

Examples:

bond_style class2
bond_coeff 1 1.0 100.0 80.0 80.0

Description:

The class2 bond style uses the potential

where r0 is the equilibrium bond distance.

See (Sun) for a description of the COMPASS class2 force field.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

R0 (distance)•
K2 (energy/distance^2)•
K3 (energy/distance^3)•
K4 (energy/distance^4)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

LIGGGHTS Users Manual

bond_style class2 command 45

http://lammps.sandia.gov

This bond style can only be used if LAMMPS was built with the CLASS2 package. See the Making
LAMMPS section for more info on packages.

Related commands:

bond_coeff, delete_bonds

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

LIGGGHTS Users Manual

bond_style class2/omp command 46

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_coeff command

Syntax:

bond_coeff N args

N = bond type (see asterisk form below)•
args = coefficients for one or more bond types•

Examples:

bond_coeff 5 80.0 1.2
bond_coeff * 30.0 1.5 1.0 1.0
bond_coeff 1*4 30.0 1.5 1.0 1.0
bond_coeff 1 harmonic 200.0 1.0

Description:

Specify the bond force field coefficients for one or more bond types. The number and meaning of the
coefficients depends on the bond style. Bond coefficients can also be set in the data file read by the read_data
command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild-card asterisk can be used to set the coefficients for multiple bond types. This takes the form "*" or "*n"
or "n*" or "m*n". If N = the number of bond types, then an asterisk with no numeric values means all types
from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types
from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using a bond_coeff command can override a previous setting for the same bond type. For example,
these commands set the coeffs for all bond types, then overwrite the coeffs for just bond type 2:

bond_coeff * 100.0 1.2
bond_coeff 2 200.0 1.2

A line in a data file that specifies bond coefficients uses the exact same format as the arguments of the
bond_coeff command in an input script, except that wild-card asterisks should not be used since coefficients
for all N types must be listed in the file. For example, under the "Bond Coeffs" section of a data file, the line
that corresponds to the 1st example above would be listed as

5 80.0 1.2

Here is an alphabetic list of bond styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated bond_coeff command.

Note that here are also additional bond styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the bond section of this page.

bond_style none - turn off bonded interactions•
bond_style hybrid - define multiple styles of bond interactions•

bond_style class2 - COMPASS (class 2) bond•
bond_style fene - FENE (finite-extensible non-linear elastic) bond•
bond_style fene/expand - FENE bonds with variable size particles•

LIGGGHTS Users Manual

bond_coeff command 47

http://lammps.sandia.gov

bond_style harmonic - harmonic bond•
bond_style morse - Morse bond•
bond_style nonlinear - nonlinear bond•
bond_style quartic - breakable quartic bond•
bond_style table - tabulated by bond length•

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

A bond style must be defined before any bond coefficients are set, either in the input script or in a data file.

Related commands:

bond_style

Default: none

LIGGGHTS Users Manual

bond_coeff command 48

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style fene/expand command

bond_style fene/expand/omp command

Syntax:

bond_style fene/expand

Examples:

bond_style fene/expand
bond_coeff 1 30.0 1.5 1.0 1.0 0.5

Description:

The fene/expand bond style uses the potential

to define a finite extensible nonlinear elastic (FENE) potential (Kremer), used for bead-spring polymer
models. The first term is attractive, the 2nd Lennard-Jones term is repulsive.

The fene/expand bond style is similar to fene except that an extra shift factor of delta (positive or negative) is
added to r to effectively change the bead size of the bonded atoms. The first term now extends to R0 + delta
and the 2nd term is cutoff at 2^(1/6) sigma + delta.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy/distance^2)•
R0 (distance)•
epsilon (energy)•
sigma (distance)•
delta (distance)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

LIGGGHTS Users Manual

bond_style fene/expand command 49

http://lammps.sandia.gov

input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

You typically should specify special_bonds fene or special_bonds lj/coul 0 1 1 to use this bond style.
LAMMPS will issue a warning it that's not the case.

Related commands:

bond_coeff, delete_bonds

Default: none

(Kremer) Kremer, Grest, J Chem Phys, 92, 5057 (1990).

LIGGGHTS Users Manual

bond_style fene/expand/omp command 50

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style fene command

bond_style fene/omp command

Syntax:

bond_style fene

Examples:

bond_style fene
bond_coeff 1 30.0 1.5 1.0 1.0

Description:

The fene bond style uses the potential

to define a finite extensible nonlinear elastic (FENE) potential (Kremer), used for bead-spring polymer
models. The first term is attractive, the 2nd Lennard-Jones term is repulsive. The first term extends to R0, the
maximum extent of the bond. The 2nd term is cutoff at 2^(1/6) sigma, the minimum of the LJ potential.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy/distance^2)•
R0 (distance)•
epsilon (energy)•
sigma (distance)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

LIGGGHTS Users Manual

bond_style fene command 51

http://lammps.sandia.gov

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

You typically should specify special_bonds fene or special_bonds lj/coul 0 1 1 to use this bond style.
LAMMPS will issue a warning it that's not the case.

Related commands:

bond_coeff, delete_bonds

Default: none

(Kremer) Kremer, Grest, J Chem Phys, 92, 5057 (1990).

LIGGGHTS Users Manual

bond_style fene/omp command 52

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style harmonic command

bond_style harmonic/omp command

Syntax:

bond_style harmonic

Examples:

bond_style harmonic
bond_coeff 5 80.0 1.2

Description:

The harmonic bond style uses the potential

where r0 is the equilibrium bond distance. Note that the usual 1/2 factor is included in K.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy/distance^2)•
r0 (distance)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

bond_coeff, delete_bonds

LIGGGHTS Users Manual

bond_style harmonic command 53

http://lammps.sandia.gov

Default: none

LIGGGHTS Users Manual

bond_style harmonic/omp command 54

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style harmonic/shift/cut command

bond_style harmonic/shift/cut/omp command

Syntax:

bond_style harmonic/shift/cut

Examples:

bond_style harmonic/shift/cut
bond_coeff 5 10.0 0.5 1.0

Description:

The harmonic/shift/cut bond style is a shifted harmonic bond that uses the potential

where r0 is the equilibrium bond distance, and rc the critical distance. The bond potential is zero for distances
r > rc. The potential is -Umin at r0 and zero at rc. The spring constant is k = Umin / [2 (r0-rc)^2].

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

Umin (energy)•
r0 (distance)•
rc (distance)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

LIGGGHTS Users Manual

bond_style harmonic/shift/cut command 55

http://lammps.sandia.gov

Related commands:

bond_coeff, delete_bonds, bond_harmonic, bond_harmonicshift

Default: none

LIGGGHTS Users Manual

bond_style harmonic/shift/cut/omp command 56

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style harmonic/shift command

bond_style harmonic/shift/omp command

Syntax:

bond_style harmonic/shift

Examples:

bond_style harmonic/shift
bond_coeff 5 10.0 0.5 1.0

Description:

The harmonic/shift bond style is a shifted harmonic bond that uses the potential

where r0 is the equilibrium bond distance, and rc the critical distance. The potential is -Umin at r0 and zero at
rc. The spring constant is k = Umin / [2 (r0-rc)^2].

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

Umin (energy)•

r0 (distance)•

rc (distance)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

LIGGGHTS Users Manual

bond_style harmonic/shift command 57

http://lammps.sandia.gov

This bond style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

bond_coeff, delete_bonds, bond_harmonic

Default: none

LIGGGHTS Users Manual

bond_style harmonic/shift/omp command 58

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style hybrid command

Syntax:

bond_style hybrid style1 style2 ...

style1,style2 = list of one or more bond styles•

Examples:

bond_style hybrid harmonic fene
bond_coeff 1 harmonic 80.0 1.2
bond_coeff 2* fene 30.0 1.5 1.0 1.0

Description:

The hybrid style enables the use of multiple bond styles in one simulation. A bond style is assigned to each
bond type. For example, bonds in a polymer flow (of bond type 1) could be computed with a fene potential
and bonds in the wall boundary (of bond type 2) could be computed with a harmonic potential. The
assignment of bond type to style is made via the bond_coeff command or in the data file.

In the bond_coeff commands, the name of a bond style must be added after the bond type, with the remaining
coefficients being those appropriate to that style. In the example above, the 2 bond_coeff commands set bonds
of bond type 1 to be computed with a harmonic potential with coefficients 80.0, 1.2 for K, r0. All other bond
types (2-N) are computed with a fene potential with coefficients 30.0, 1.5, 1.0, 1.0 for K, R0, epsilon, sigma.

If bond coefficients are specified in the data file read via the read_data command, then the same rule applies.
E.g. "harmonic" or "fene" must be added after the bond type, for each line in the "Bond Coeffs" section, e.g.

Bond Coeffs

1 harmonic 80.0 1.2
2 fene 30.0 1.5 1.0 1.0
...

A bond style of none with no additional coefficients can be used in place of a bond style, either in a input
script bond_coeff command or in the data file, if you desire to turn off interactions for specific bond types.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Unlike other bond styles, the hybrid bond style does not store bond coefficient info for individual sub-styles in
a binary restart files. Thus when retarting a simulation from a restart file, you need to re-specify bond_coeff
commands.

Related commands:

bond_coeff, delete_bonds

Default: none

LIGGGHTS Users Manual

bond_style hybrid command 59

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style morse command

bond_style morse/omp command

Syntax:

bond_style morse

Examples:

bond_style morse
bond_coeff 5 1.0 2.0 1.2

Description:

The morse bond style uses the potential

where r0 is the equilibrium bond distance, alpha is a stiffness parameter, and D determines the depth of the
potential well.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

D (energy)•
alpha (inverse distance)•
r0 (distance)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

LIGGGHTS Users Manual

bond_style morse command 60

http://lammps.sandia.gov

Related commands:

bond_coeff, delete_bonds

Default: none

LIGGGHTS Users Manual

bond_style morse/omp command 61

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style none command

Syntax:

bond_style none

Examples:

bond_style none

Description:

Using a bond style of none means bond forces are not computed, even if pairs of bonded atoms were listed in
the data file read by the read_data command.

Restrictions: none

Related commands: none

Default: none

LIGGGHTS Users Manual

bond_style none command 62

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style nonlinear command

bond_style nonlinear/omp command

Syntax:

bond_style nonlinear

Examples:

bond_style nonlinear
bond_coeff 2 100.0 1.1 1.4

Description:

The nonlinear bond style uses the potential

to define an anharmonic spring (Rector) of equilibrium length r0 and maximum extension lamda.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

epsilon (energy)•
r0 (distance)•
lamda (distance)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

LIGGGHTS Users Manual

bond_style nonlinear command 63

http://lammps.sandia.gov

Related commands:

bond_coeff, delete_bonds

Default: none

(Rector) Rector, Van Swol, Henderson, Molecular Physics, 82, 1009 (1994).

LIGGGHTS Users Manual

bond_style nonlinear/omp command 64

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style quartic command

bond_style quartic/omp command

Syntax:

bond_style quartic

Examples:

bond_style quartic
bond_coeff 2 1200 -0.55 0.25 1.3 34.6878

Description:

The quartic bond style uses the potential

to define a bond that can be broken as the simulation proceeds (e.g. due to a polymer being stretched). The
sigma and epsilon used in the LJ portion of the formula are both set equal to 1.0 by LAMMPS.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy/distance^4)•
B1 (distance)•
B2 (distance)•
Rc (distance)•
U0 (energy)•

This potential was constructed to mimic the FENE bond potential for coarse-grained polymer chains. When
monomers with sigma = epsilon = 1.0 are used, the following choice of parameters gives a quartic potential
that looks nearly like the FENE potential: K = 1200, B1 = -0.55, B2 = 0.25, Rc = 1.3, and U0 = 34.6878.
Different parameters can be specified using the bond_coeff command, but you will need to choose them
carefully so they form a suitable bond potential.

Rc is the cutoff length at which the bond potential goes smoothly to a local maximum. If a bond length ever
becomes > Rc, LAMMPS "breaks" the bond, which means two things. First, the bond potential is turned off
by setting its type to 0, and is no longer computed. Second, a pairwise interaction between the two atoms is
turned on, since they are no longer bonded.

LAMMPS does the second task via a computational sleight-of-hand. It subtracts the pairwise interaction as
part of the bond computation. When the bond breaks, the subtraction stops. For this to work, the pairwise
interaction must always be computed by the pair_style command, whether the bond is broken or not. This
means that special_bonds must be set to 1,1,1, as indicated as a restriction below.

LIGGGHTS Users Manual

bond_style quartic command 65

http://lammps.sandia.gov

Note that when bonds are dumped to a file via the dump local command, bonds with type 0 are not included.
The delete_bonds command can also be used to query the status of broken bonds or permanently delete them,
e.g.:

delete_bonds all stats
delete_bonds all bond 0 remove

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

The quartic style requires that special_bonds parameters be set to 1,1,1. Three- and four-body interactions
(angle, dihedral, etc) cannot be used with quartic bonds.

Related commands:

bond_coeff, delete_bonds

Default: none

LIGGGHTS Users Manual

bond_style quartic/omp command 66

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style command

Syntax:

bond_style style args

style = none or hybrid or class2 or fene or fene/expand or harmonic or morse or nonlinear or quartic•

 args = none for any style except hybrid
hybrid args = list of one or more styles

Examples:

bond_style harmonic
bond_style fene
bond_style hybrid harmonic fene

Description:

Set the formula(s) LAMMPS uses to compute bond interactions between pairs of atoms. In LAMMPS, a bond
differs from a pairwise interaction, which are set via the pair_style command. Bonds are defined between
specified pairs of atoms and remain in force for the duration of the simulation (unless the bond breaks which
is possible in some bond potentials). The list of bonded atoms is read in by a read_data or read_restart
command from a data or restart file. By contrast, pair potentials are typically defined between all pairs of
atoms within a cutoff distance and the set of active interactions changes over time.

Hybrid models where bonds are computed using different bond potentials can be setup using the hybrid bond
style.

The coefficients associated with a bond style can be specified in a data or restart file or via the bond_coeff
command.

All bond potentials store their coefficient data in binary restart files which means bond_style and bond_coeff
commands do not need to be re-specified in an input script that restarts a simulation. See the read_restart
command for details on how to do this. The one exception is that bond_style hybrid only stores the list of
sub-styles in the restart file; bond coefficients need to be re-specified.

IMPORTANT NOTE: When both a bond and pair style is defined, the special_bonds command often needs to
be used to turn off (or weight) the pairwise interaction that would otherwise exist between 2 bonded atoms.

In the formulas listed for each bond style, r is the distance between the 2 atoms in the bond.

Here is an alphabetic list of bond styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated bond_coeff command.

Note that there are also additional bond styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the bond section of this page.

bond_style none - turn off bonded interactions•
bond_style hybrid - define multiple styles of bond interactions•

bond_style class2 - COMPASS (class 2) bond•
bond_style fene - FENE (finite-extensible non-linear elastic) bond•

LIGGGHTS Users Manual

bond_style command 67

http://lammps.sandia.gov

bond_style fene/expand - FENE bonds with variable size particles•
bond_style harmonic - harmonic bond•
bond_style morse - Morse bond•
bond_style nonlinear - nonlinear bond•
bond_style quartic - breakable quartic bond•
bond_style table - tabulated by bond length•

Restrictions:

Bond styles can only be set for atom styles that allow bonds to be defined.

Most bond styles are part of the MOLECULAR package. They are only enabled if LAMMPS was built with
that package. See the Making LAMMPS section for more info on packages. The doc pages for individual
bond potentials tell if it is part of a package.

Related commands:

bond_coeff, delete_bonds

Default:

bond_style none

LIGGGHTS Users Manual

bond_style command 68

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style table command

bond_style table/omp command

Syntax:

bond_style table style N

style = linear or spline = method of interpolation•
N = use N values in table•

Examples:

bond_style table linear 1000
bond_coeff 1 file.table ENTRY1

Description:

Style table creates interpolation tables of length N from bond potential and force values listed in a file(s) as a
function of bond length. The files are read by the bond_coeff command.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and
force values at each of N distances. During a simulation, these tables are used to interpolate energy and force
values as needed. The interpolation is done in one of 2 styles: linear or spline.

For the linear style, the bond length is used to find 2 surrounding table values from which an energy or force
is computed by linear interpolation.

For the spline style, a cubic spline coefficients are computed and stored at each of the N values in the table.
The bond length is used to find the appropriate set of coefficients which are used to evaluate a cubic
polynomial which computes the energy or force.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above.

filename•
keyword•

The filename specifies a file containing tabulated energy and force values. The keyword specifies a section of
the file. The format of this file is described below.

The format of a tabulated file is as follows (without the parenthesized comments):

Bond potential for harmonic (one or more comment or blank lines)

HAM (keyword is the first text on line)
N 101 FP 0 0 EQ 0.5 (N, FP, EQ parameters)
 (blank line)
1 0.00 338.0000 1352.0000 (index, bond-length, energy, force)
2 0.01 324.6152 1324.9600
...
101 1.00 338.0000 -1352.0000

LIGGGHTS Users Manual

bond_style table command 69

http://lammps.sandia.gov

A section begins with a non-blank line whose 1st character is not a "#"; blank lines or lines starting with "#"
can be used as comments between sections. The first line begins with a keyword which identifies the section.
The line can contain additional text, but the initial text must match the argument specified in the bond_coeff
command. The next line lists (in any order) one or more parameters for the table. Each parameter is a keyword
followed by one or more numeric values.

The parameter "N" is required and its value is the number of table entries that follow. Note that this may be
different than the N specified in the bond_style table command. Let Ntable = N in the bond_style command,
and Nfile = "N" in the tabulated file. What LAMMPS does is a preliminary interpolation by creating splines
using the Nfile tabulated values as nodal points. It uses these to interpolate as needed to generate energy and
force values at Ntable different points. The resulting tables of length Ntable are then used as described above,
when computing energy and force for individual bond lengths. This means that if you want the interpolation
tables of length Ntable to match exactly what is in the tabulated file (with effectively no preliminary
interpolation), you should set Ntable = Nfile.

The "FP" parameter is optional. If used, it is followed by two values fplo and fphi, which are the derivatives
of the force at the innermost and outermost bond lengths. These values are needed by the spline construction
routines. If not specified by the "FP" parameter, they are estimated (less accurately) by the first two and last
two force values in the table.

The "EQ" parameter is also optional. If used, it is followed by a the equilibrium bond length, which is used,
for example, by the fix shake command. If not used, the equilibrium bond length is set to 0.0.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from
1 to N, the 2nd value is the bond length r (in distance units), the 3rd value is the energy (in energy units), and
the 4th is the force (in force units). The bond lengths must range from a LO value to a HI value, and increase
from one line to the next. If the actual bond length is ever smaller than the LO value or larger than the HI
value, then the bond energy and force is evaluated as if the bond were the LO or HI length.

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section
by section until it finds one that matches the specified keyword.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

LIGGGHTS Users Manual

bond_style table/omp command 70

bond_coeff, delete_bonds

Default: none

LIGGGHTS Users Manual

bond_style table/omp command 71

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

boundary command

Syntax:

boundary x y z

x,y,z = p or s or f or m, one or two letters

p is periodic
f is non-periodic and fixed
s is non-periodic and shrink-wrapped
m is non-periodic and shrink-wrapped with a minimum value

•

Examples:

boundary p p f
boundary p fs p
boundary s f fm

Description:

Set the style of boundaries for the global simulation box in each dimension. A single letter assigns the same
style to both the lower and upper face of the box. Two letters assigns the first style to the lower face and the
second style to the upper face. The initial size of the simulation box is set by the read_data, read_restart, or
create_box commands.

The style p means the box is periodic, so that particles interact across the boundary, and they can exit one end
of the box and re-enter the other end. A periodic dimension can change in size due to constant pressure
boundary conditions or box deformation (see the fix npt and fix deform commands). The p style must be
applied to both faces of a dimension.

The styles f, s, and m mean the box is non-periodic, so that particles do not interact across the boundary and
do not move from one side of the box to the other. For style f, the position of the face is fixed. If an atom
moves outside the face it may be lost. For style s, the position of the face is set so as to encompass the atoms
in that dimension (shrink-wrapping), no matter how far they move. For style m, shrink-wrapping occurs, but is
bounded by the value specified in the data or restart file or set by the create_box command. For example, if
the upper z face has a value of 50.0 in the data file, the face will always be positioned at 50.0 or above, even if
the maximum z-extent of all the atoms becomes less than 50.0.

For triclinic (non-orthogonal) simulation boxes, if the 2nd dimension of a tilt factor (e.g. y for xy) is periodic,
then the periodicity is enforced with the tilt factor offset. If the 1st dimension is shrink-wrapped, then the
shrink wrapping is applied to the tilted box face, to encompass the atoms. E.g. for a positive xy tilt, the xlo
and xhi faces of the box are planes tilting in the +y direction as y increases. These tilted planes are
shrink-wrapped around the atoms to determine the x extent of the box.

See Section_howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by
LAMMPS, and how to transform these parameters to and from other commonly used triclinic representations.

IMPORTANT NOTE: If mesh walls (e.g. fix mesh/surface) are used, not only atom positions, but also the
mesh nodes are used for setting the boundaries.

Restrictions:

LIGGGHTS Users Manual

boundary command 72

http://lammps.sandia.gov

This command cannot be used after the simulation box is defined by a read_data or create_box command or
read_restart command. See the change_box command for how to change the simulation box boundaries after
it has been defined.

For 2d simulations, the z dimension must be periodic.

Related commands:

See the thermo_modify command for a discussion of lost atoms.

Default:

boundary p p p

LIGGGHTS Users Manual

boundary command 73

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

box command

Syntax:

box keyword value ...

one or more keyword/value pairs may be appended•
keyword = tilt

tilt value = small or large

•

Examples:

box tilt large
box tilt small

Description:

Set attributes of the simulation box.

For triclinic (non-orthogonal) simulation boxes, the tilt keyword allows simulation domains to be created with
arbitrary tilt factors, e.g. via the create_box or read_data commands. Tilt factors determine how skewed the
triclinic box is; see this section of the manual for a discussion of triclinic boxes in LAMMPS.

LAMMPS normally requires that no tilt factor can skew the box more than half the distance of the parallel
box length, which is the 1st dimension in the tilt factor (x for xz). If tilt is set to small, which is the default,
then an error will be generated if a box is created which exceeds this limit. If tilt is set to large, then no limit
is enforced. You can create a box with any tilt factors you wish.

Note that if a simulation box has a large tilt factor, LAMMPS will run less efficiently, due to the large volume
of communication needed to acquire ghost atoms around a processor's irregular-shaped sub-domain. For
extreme values of tilt, LAMMPS may also lose atoms and generate an error.

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command or
read_restart command.

Related commands: none

Default:

The default value is tilt = small.

LIGGGHTS Users Manual

box command 74

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

change_box command

Syntax:

change_box group-ID parameter args ... keyword args ...

group-ID = ID of group of atoms to (optionally) displace•
one or more parameter/arg pairs may be appended

parameter = x or y or z or xy or xz or yz or boundary or ortho or triclinic or set or remap
x, y, z args = style value(s)

 style = final or delta or scale or volume
final values = lo hi

 lo hi = box boundaries after displacement (distance units)
delta values = dlo dhi

 dlo dhi = change in box boundaries after displacement (distance units)
scale values = factor

 factor = multiplicative factor for change in box length after displacement
volume value = none = adjust this dim to preserve volume of system

xy, xz, yz args = style value
 style = final or delta

final value = tilt
 tilt = tilt factor after displacement (distance units)

delta value = dtilt
 dtilt = change in tilt factor after displacement (distance units)
boundary args = x y z

 x,y,z = p or s or f or m, one or two letters
p is periodic
f is non-periodic and fixed
s is non-periodic and shrink-wrapped
m is non-periodic and shrink-wrapped with a minimum value

ortho args = none = change box to orthogonal
triclinic args = none = change box to triclinic
set args = none = store state of current box
remap args = none = remap atom coords from last saved state to current box

•

zero or more keyword/value pairs may be appended•
keyword = units

units value = lattice or box
 lattice = distances are defined in lattice units
 box = distances are defined in simulation box units

•

Examples:

change_box all xy final -2.0 z final 0.0 5.0 boundary p p f remap units box
change_box all x scale 1.1 y volume z volume remap

Description:

Change the volume and/or shape and/or boundary conditions for the simulation box. Orthogonal simulation
boxes have 3 adjustable size parameters (x,y,z). Triclinic (non-orthogonal) simulation boxes have 6 adjustable
size/shape parameters (x,y,z,xy,xz,yz). Any or all of them can be adjusted independently by this command.
Thus it can be used to expand or contract a box, or to apply a shear strain to a non-orthogonal box. It can also
be used to change the boundary conditions for the simulation box, similar to the boundary command.

The size and shape of the initial simulation box are specified by the create_box or read_data or read_restart
command used to setup the simulation. The size and shape may be altered by subsequent runs, e.g. by use of
the fix npt or fix deform commands. The create_box, read data, and read_restart commands also determine

LIGGGHTS Users Manual

change_box command 75

http://lammps.sandia.gov

whether the simulation box is orthogonal or triclinic and their doc pages explain the meaning of the xy,xz,yz
tilt factors.

See Section_howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by
LAMMPS, and how to transform these parameters to and from other commonly used triclinic representations.

The keywords used in this command are applied sequentially to the simulation box and the atoms in it, in the
order specified.

Before the sequence of keywords are invoked, the current box size/shape is stored, in case a remap keyword is
used to map the atom coordinates from a previously stored box size/shape to the current one.

After all the keywords have been processed, any shrink-wrap boundary conditions are invoked (see the
boundary command) which may change simulation box boundaries, and atoms are migrated to new owning
processors.

IMPORTANT NOTE: Unlike the earlier "displace_box" version of this command, atom remapping is NOT
performed by default. This command allows remapping to be done in a more general way, exactly when you
specify it (zero or more times) in the sequence of transformations. Thus if you do not use the remap keyword,
atom coordinates will not be changed even if the box size/shape changes. If a uniformly strained state is
desired, the remap keyword should be specified.

IMPORTANT NOTE: It is possible to lose atoms with this command. E.g. by changing the box without
remapping the atoms, and having atoms end up outside of non-periodic boundaries. It is also possible to alter
bonds between atoms straddling a boundary in bad ways. E.g. by converting a boundary from periodic to
non-periodic. It is also possible when remapping atoms to put them (nearly) on top of each other. E.g. by
converting a boundary from non-periodic to periodic. All of these will typically lead to bad dynamics and/or
generate error messages.

IMPORTANT NOTE: The simulation box size/shape can be changed by arbitrarily large amounts by this
command. This is not a problem, except that the mapping of processors to the simulation box is not changed
from its initial 3d configuration; see the processors command. Thus, if the box size/shape changes
dramatically, the mapping of processors to the simulation box may not end up as optimal as the initial
mapping attempted to be.

IMPORTANT NOTE: Because the keywords used in this command are applied one at a time to the simulation
box and the atoms in it, care must be taken with triclinic cells to avoid exceeding the limits on skew after each
transformation in the sequence. If skew is exceeded before the final transformation this can be avoided by
changing the order of the sequence, or breaking the transformation into two or more smaller transformations.
For more information on the allowed limits for box skew see the discussion on triclinic boxes on this page.

For the x, y, and z parameters, this is the meaning of their styles and values.

For style final, the final lo and hi box boundaries of a dimension are specified. The values can be in lattice or
box distance units. See the discussion of the units keyword below.

For style delta, plus or minus changes in the lo/hi box boundaries of a dimension are specified. The values can
be in lattice or box distance units. See the discussion of the units keyword below.

For style scale, a multiplicative factor to apply to the box length of a dimension is specified. For example, if
the initial box length is 10, and the factor is 1.1, then the final box length will be 11. A factor less than 1.0
means compression.

The volume style changes the specified dimension in such a way that the overall box volume remains constant

LIGGGHTS Users Manual

change_box command 76

with respect to the operation performed by the preceding keyword. The volume style can only be used
following a keyword that changed the volume, which is any of the x, y, z keywords. If the preceding keyword
"key" had a volume style, then both it and the current keyword apply to the keyword preceding "key". I.e. this
sequence of keywords is allowed:

change_box all x scale 1.1 y volume z volume

The volume style changes the associated dimension so that the overall box volume is unchanged relative to its
value before the preceding keyword was invoked.

If the following command is used, then the z box length will shrink by the same 1.1 factor the x box length
was increased by:

change_box all x scale 1.1 z volume

If the following command is used, then the y,z box lengths will each shrink by sqrt(1.1) to keep the volume
constant. In this case, the y,z box lengths shrink so as to keep their relative aspect ratio constant:

change_box all"x scale 1.1 y volume z volume

If the following command is used, then the final box will be a factor of 10% larger in x and y, and a factor of
21% smaller in z, so as to keep the volume constant:

change_box all x scale 1.1 z volume y scale 1.1 z volume

IMPORTANT NOTE: For solids or liquids, when one dimension of the box is expanded, it may be physically
undesirable to hold the other 2 box lengths constant since that implies a density change. For solids, adjusting
the other dimensions via the volume style may make physical sense (just as for a liquid), but may not be
correct for materials and potentials whose Poisson ratio is not 0.5.

For the scale and volume styles, the box length is expanded or compressed around its mid point.

For the xy, xz, and yz parameters, this is the meaning of their styles and values. Note that changing the tilt
factors of a triclinic box does not change its volume.

For style final, the final tilt factor is specified. The value can be in lattice or box distance units. See the
discussion of the units keyword below.

For style delta, a plus or minus change in the tilt factor is specified. The value can be in lattice or box distance
units. See the discussion of the units keyword below.

All of these styles change the xy, xz, yz tilt factors. In LAMMPS, tilt factors (xy,xz,yz) for triclinic boxes are
required to be no more than half the distance of the parallel box length. For example, if xlo = 2 and xhi = 12,
then the x box length is 10 and the xy tilt factor must be between -5 and 5. Similarly, both xz and yz must be
between -(xhi-xlo)/2 and +(yhi-ylo)/2. Note that this is not a limitation, since if the maximum tilt factor is 5
(as in this example), then configurations with tilt = ..., -15, -5, 5, 15, 25, ... are all equivalent. Any tilt factor
specified by this command must be within these limits.

The boundary keyword takes arguments that have exactly the same meaning as they do for the boundary
command. In each dimension, a single letter assigns the same style to both the lower and upper face of the
box. Two letters assigns the first style to the lower face and the second style to the upper face.

The style p means the box is periodic; the other styles mean non-periodic. For style f, the position of the face
is fixed. For style s, the position of the face is set so as to encompass the atoms in that dimension
(shrink-wrapping), no matter how far they move. For style m, shrink-wrapping occurs, but is bounded by the

LIGGGHTS Users Manual

change_box command 77

current box edge in that dimension, so that the box will become no smaller. See the boundary command for
more explanation of these style options.

Note that the "boundary" command itself can only be used before the simulation box is defined via a
read_data or create_box or read_restart command. This command allows the boundary conditions to be
changed later in your input script. Also note that the read_restart will change boundary conditions to match
what is stored in the restart file. So if you wish to change them, you should use the change_box command
after the read_restart command.

The ortho and triclinic keywords convert the simulation box to be orthogonal or triclinic (non-orthongonal).
See this section for a discussion of how non-orthongal boxes are represented in LAMMPS.

The simulation box is defined as either orthogonal or triclinic when it is created via the create_box, read_data,
or read_restart commands.

These keywords allow you to toggle the existing simulation box from orthogonal to triclinic and vice versa.
For example, an initial equilibration simulation can be run in an orthogonal box, the box can be toggled to
triclinic, and then a non-equilibrium MD (NEMD) simulation can be run with deformation via the fix deform
command.

If the simulation box is currently triclinic and has non-zero tilt in xy, yz, or xz, then it cannot be converted to
an orthogonal box.

The set keyword saves the current box size/shape. This can be useful if you wish to use the remap keyword
more than once or if you wish it to be applied to an intermediate box size/shape in a sequence of keyword
operations. Note that the box size/shape is saved before any of the keywords are processed, i.e. the box
size/shape at the time the create_box command is encountered in the input script.

The remap keyword remaps atom coordinates from the last saved box size/shape to the current box state. For
example, if you stretch the box in the x dimension or tilt it in the xy plane via the x and xy keywords, then the
remap commmand will dilate or tilt the atoms to conform to the new box size/shape, as if the atoms moved
with the box as it deformed.

Note that this operation is performed without regard to periodic boundaries. Also, any shrink-wrapping of
non-periodic boundaries (see the boundary command) occurs after all keywords, including this one, have been
processed.

Only atoms in the specified group are remapped.

The units keyword determines the meaning of the distance units used to define various arguments. A box
value selects standard distance units as defined by the units command, e.g. Angstroms for units = real or
metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing.

Restrictions:

If you use the ortho or triclinic keywords, then at the point in the input script when this command is issued, no
dumps can be active, nor can a fix ave/spatial or fix deform be active. This is because these commands test
whether the simulation box is orthogonal when they are first issued. Note that these commands can be used in
your script before a change_box command is issued, so long as an undump or unfix command is also used to
turn them off.

Related commands:

LIGGGHTS Users Manual

change_box command 78

fix deform, boundary

Default:

The option default is units = lattice.

LIGGGHTS Users Manual

change_box command 79

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

clear command

Syntax:

clear

Examples:

(commands for 1st simulation)
clear
(commands for 2nd simulation)

Description:

This command deletes all atoms, restores all settings to their default values, and frees all memory allocated by
LAMMPS. Once a clear command has been executed, it is as if LAMMPS were starting over, with only the
exceptions noted below. This command enables multiple jobs to be run sequentially from one input script.

These settings are not affected by a clear command: the working directory (shell command), log file status
(log command), echo status (echo command), and input script variables (variable command).

Restrictions: none

Related commands: none

Default: none

LIGGGHTS Users Manual

clear command 80

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

communicate command

Syntax:

communicate style keyword value ...

style = single or multi•
zero or more keyword/value pairs may be appended•
keyword = cutoff or group or vel

cutoff value = Rcut (distance units) = communicate atoms from this far away
group value = group-ID = only communicate atoms in the group
vel value = yes or no = do or do not communicate velocity info with ghost atoms

•

Examples:

communicate multi
communicate multi group solvent
communicate single vel yes
communicate single cutoff 5.0 vel yes

Description:

This command sets the style of inter-processor communication that occurs each timestep as atom coordinates
and other properties are exchanged between neighboring processors and stored as properties of ghost atoms.

The default style is single which means each processor acquires information for ghost atoms that are within a
single distance from its sub-domain. The distance is the maximum of the neighbor cutoff for all atom type
pairs.

For many systems this is an efficient algorithm, but for systems with widely varying cutoffs for different type
pairs, the multi style can be faster. In this case, each atom type is assigned its own distance cutoff for
communication purposes, and fewer atoms will be communicated. However, for granular systems
optimization is automatically performed with the single style, so multi is not necessary/available for granular
systems. See the neighbor multi command for a neighbor list construction option that may also be beneficial
for simulations of this kind.

The cutoff option allows you to set a ghost cutoff distance, which is the distance from the borders of a
processor's sub-domain at which ghost atoms are acquired from other processors. By default the ghost cutoff =
neighbor cutoff = pairwise force cutoff + neighbor skin. See the neighbor command for more information
about the skin distance. If the specified Rcut is greater than the neighbor cutoff, then extra ghost atoms will be
acquired. If it is smaller, the ghost cutoff is set to the neighbor cutoff.

These are simulation scenarios in which it may be useful or even necessary to set a ghost cutoff > neighbor
cutoff:

a single polymer chain with bond interactions, but no pairwise interactions•
bonded interactions (e.g. dihedrals) extend further than the pairwise cutoff•
ghost atoms beyond the pairwise cutoff are needed for some computation•

In the first scenario, a pairwise potential is not defined. Thus the pairwise neighbor cutoff will be 0.0. But
ghost atoms are still needed for computing bond, angle, etc interactions between atoms on different
processors, or when the interaction straddles a periodic boundary.

LIGGGHTS Users Manual

communicate command 81

http://lammps.sandia.gov

The appropriate ghost cutoff depends on the newton bond setting. For newton bond off, the distance needs to
be the furthest distance between any two atoms in the bond, angle, etc. E.g. the distance between 1-4 atoms in
a dihedral. For newton bond on, the distance between the central atom in the bond, angle, etc and any other
atom is sufficient. E.g. the distance between 2-4 atoms in a dihedral.

In the second scenario, a pairwise potential is defined, but its neighbor cutoff is not sufficiently long enough
to enable bond, angle, etc terms to be computed. As in the previous scenario, an appropriate ghost cutoff
should be set.

In the last scenario, a fix or compute or pairwise potential needs to calculate with ghost atoms beyond the
normal pairwise cutoff for some computation it performs (e.g. locate neighbors of ghost atoms in a multibody
pair potential). Setting the ghost cutoff appropriately can insure it will find the needed atoms.

IMPORTANT NOTE: In these scenarios, if you do not set the ghost cutoff long enough, and if there is only
one processor in a periodic dimension (e.g. you are running in serial), then LAMMPS may "find" the atom it
is looking for (e.g. the partner atom in a bond), that is on the far side of the simulation box, across a periodic
boundary. This will typically lead to bad dynamics (i.e. the bond length is now the simulation box length). To
detect if this is happening, see the neigh_modify cluster command.

The group option will limit communication to atoms in the specified group. This can be useful for models
where no ghost atoms are needed for some kinds of particles. All atoms (not just those in the specified group)
will still migrate to new processors as they move. The group specified with this option must also be specified
via the atom_modify first command.

The vel option enables velocity information to be communicated with ghost particles. Depending on the
atom_style, velocity info includes the translational velocity, angular velocity, and angular momentum of a
particle. If the vel option is set to yes, then ghost atoms store these quantities; if no then they do not. The yes
setting is needed by some pair styles which require the velocity state of both the I and J particles to compute a
pairwise I,J interaction.

Note that if the fix deform command is being used with its "remap v" option enabled, then the velocities for
ghost atoms (in the fix deform group) mirrored across a periodic boundary will also include components due
to any velocity shift that occurs across that boundary (e.g. due to dilation or shear).

Restrictions: none

Related commands:

neighbor

Default:

The default settings are style = single, group = all, cutoff = 0.0, vel = no. The cutoff default of 0.0 means that
ghost cutoff = neighbor cutoff = pairwise force cutoff + neighbor skin.

LIGGGHTS Users Manual

communicate command 82

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ackland/atom command

Syntax:

compute ID group-ID ackland/atom

ID, group-ID are documented in compute command•
ackland/atom = style name of this compute command•

Examples:

compute 1 all ackland/atom

Description:

Defines a computation that calculates the local lattice structure according to the formulation given in
(Ackland).

In contrast to the centro-symmetry parameter this method is stable against temperature boost, because it is
based not on the distance between particles but the angles. Therefore statistical fluctuations are averaged out a
little more. A comparison with the Common Neighbor Analysis metric is made in the paper.

The result is a number which is mapped to the following different lattice structures:

0 = UNKNOWN•
1 = BCC•
2 = FCC•
3 = HCP•
4 = ICO•

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each of which computes this quantity.-

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

Restrictions:

This compute is part of the USER-MISC package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

The per-atom vector values will be unitless since they are the integers defined above.

Related commands:

compute centro/atom

Default: none

LIGGGHTS Users Manual

compute ackland/atom command 83

http://lammps.sandia.gov

(Ackland) Ackland, Jones, Phys Rev B, 73, 054104 (2006).

LIGGGHTS Users Manual

compute ackland/atom command 84

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute angle/local command

Syntax:

compute ID group-ID angle/local input1 input2 ...

ID, group-ID are documented in compute command•
angle/local = style name of this compute command•
one or more keywords may be appended•
keyword = theta or eng

theta = tabulate angles
eng = tabulate angle energies

•

Examples:

compute 1 all angle/local theta
compute 1 all angle/local eng theta

Description:

Define a computation that calculates properties of individual angle interactions. The number of datums
generated, aggregated across all processors, equals the number of angles in the system, modified by the group
parameter as explained below.

The local data stored by this command is generated by looping over all the atoms owned on a processor and
their angles. An angle will only be included if all 3 atoms in the angle are in the specified compute group. Any
angles that have been broken (see the angle_style command) by setting their angle type to 0 are not included.
Angles that have been turned off (see the fix shake or delete_bonds commands) by setting their angle type
negative are written into the file, but their energy will be 0.0.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, angle output from the compute property/local command can be combined with data
from this command and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of angles. If a single keyword is specified, a local vector
is produced. If two or more keywords are specified, a local array is produced where the number of columns =
the number of keywords. The vector or array can be accessed by any command that uses local values from a
compute as input. See this section for an overview of LAMMPS output options.

The output for theta will be in degrees. The output for eng will be in energy units.

Restrictions: none

Related commands:

dump local, compute property/local

LIGGGHTS Users Manual

compute angle/local command 85

http://lammps.sandia.gov

Default: none

LIGGGHTS Users Manual

compute angle/local command 86

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute atom/molecule command

Syntax:

compute ID group-ID atom/molecule input1 input2 ...

ID, group-ID are documented in compute command•
atom/molecule = style name of this compute command•
one or more inputs can be listed•
input = c_ID, c_ID[N], f_ID, f_ID[N], v_name

 c_ID = per-atom vector calculated by a compute with ID
 c_ID[I] = Ith column of per-atom array calculated by a compute with ID
 f_ID = per-atom vector calculated by a fix with ID
 f_ID[I] = Ith column of per-atom array calculated by a fix with ID
 v_name = per-atom vector calculated by an atom-style variable with name

•

Examples:

compute 1 all atom/molecule c_ke c_pe
compute 1 top atom/molecule v_myFormula c_stress3

Description:

Define a calculation that sums per-atom values on a per-molecule basis, one per listed input. The inputs can
computes, fixes, or variables that generate per-atom quantities. Note that attributes stored by atoms, such as
mass or force, can also be summed on a per-molecule basis, by accessing these quantities via the compute
property/atom command.

Each listed input is operated on independently. Only atoms within the specified group contribute to the
per-molecule sum. Note that compute or fix inputs define their own group which may affect the quantities
they return. For example, if a compute is used as an input which generates a per-atom vector, it will generate
values of 0.0 for atoms that are not in the group specified for that compute.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

If an input begins with "c_", a compute ID must follow which has been previously defined in the input script
and which generates per-atom quantities. See the individual compute doc page for details. If no bracketed
integer is appended, the vector calculated by the compute is used. If a bracketed integer is appended, the Ith
column of the array calculated by the compute is used. Users can also write code for their own compute styles
and add them to LAMMPS.

If an input begins with "f_", a fix ID must follow which has been previously defined in the input script and
which generates per-atom quantities. See the individual fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with when compute atom/molecule
references the values, else an error results. If no bracketed integer is appended, the vector calculated by the fix
is used. If a bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can
also write code for their own fix style and add them to LAMMPS.

If an input begins with "v_", a variable name must follow which has been previously defined in the input
script. It must be an atom-style variable. Atom-style variables can reference thermodynamic keywords and
various per-atom attributes, or invoke other computes, fixes, or variables when they are evaluated, so this is a

LIGGGHTS Users Manual

compute atom/molecule command 87

http://lammps.sandia.gov

very general means of generating per-atom quantities to sum on a per-molecule basis.

Output info:

This compute calculates a global vector or global array depending on the number of input values. The length
of the vector or number of rows in the array is the number of molecules. If a single input is specified, a global
vector is produced. If two or more inputs are specified, a global array is produced where the number of
columns = the number of inputs. The vector or array can be accessed by any command that uses global values
from a compute as input. See this section for an overview of LAMMPS output options.

All the vector or array values calculated by this compute are "extensive".

The vector or array values will be in whatever units the input quantities are in.

Restrictions: none

Related commands:

compute, fix, variable

Default: none

LIGGGHTS Users Manual

compute atom/molecule command 88

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute basal/atom command

Syntax:

compute ID group-ID basal/atom

ID, group-ID are documented in compute command•
basal/atom = style name of this compute command•

Examples:

compute 1 all basal/atom

Description:

Defines a computation that calculates the hexagonal close-packed "c" lattice vector for each atom in the
group. It does this by calculating the normal unit vector to the basal plane for each atom. The results enable
efficient identification and characterization of twins and grains in hexagonal close-packed structures.

The output of the compute is thus the 3 components of a unit vector associdate with each atom. The
components are set to 0.0 for atoms not in the group.

Details of the calculation are given in (Barrett).

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each of which computes this quantity.

An example input script that uses this compute is provided in examples/USER/misc/basal.

Output info:

This compute calculates a per-atom array with 3 columns, which can be accessed by indices 1-3 by any
command that uses per-atom values from a compute as input. See Section_howto 15 for an overview of
LAMMPS output options.

The per-atom vector values are unitless since the 3 columns represent components of a unit vector.

Restrictions:

This compute is part of the USER-MISC package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

The output of this compute will be meaningless unless the atoms are on (or near) hcp lattice sites, since the
calculation assumes a well-defined basal plane.

Related commands:

compute centro/atom, compute ackland/atom

Default: none

LIGGGHTS Users Manual

compute basal/atom command 89

http://lammps.sandia.gov

(Barrett) Barrett, Tschopp, El Kadiri, Scripta Mat. 66, p.666 (2012).

LIGGGHTS Users Manual

compute basal/atom command 90

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute body/local command

Syntax:

compute ID group-ID body/local input1 input2 ...

ID, group-ID are documented in compute command•
body/local = style name of this compute command•
one or more keywords may be appended•
keyword = type or integer

type = atom type of the body particle
integer = 1,2,3,etc = index of fields defined by body style

•

Examples:

compute 1 all body/local type 1 2 3
compute 1 all body/local 3 6

Description:

Define a computation that calculates properties of individual body sub-particles. The number of datums
generated, aggregated across all processors, equals the number of body sub-particles plus the number of
non-body particles in the system, modified by the group parameter as explained below. See Section_howto 14
of the manual and the body doc page for more details on using body particles.

The local data stored by this command is generated by looping over all the atoms. An atom will only be
included if it is in the group. If the atom is a body particle, then its N sub-particles will be looped over, and it
will contribute N datums to the count of datums. If it is not a body particle, it will contribute 1 datum.

For both body particles and non-body particles, the type keyword will store the type of the atom.

The integer keywords mean different things for body and non-body particles. If the atom is not a body
particle, only its x, y, z coordinates can be referenced, using the integer keywords 1,2,3. Note that this means
that if you want to access more fields than this for body particles, then you cannot include non-body particles
in the group.

For a body particle, the integer keywords refer to fields calculated by the body style for each sub-particle. The
body style, as specified by the atom_style body, determines how many fields exist and what they are. See the
body doc page for details of the different styles.

Here is an example of how to output body information using the dump local command with this compute. If
fields 1,2,3 for the body sub-particles are x,y,z coordinates, then the dump file will be formatted similar to the
output of a dump atom or custom command.

compute 1 all body/local type 1 2 3
dump 1 all local 1000 tmp.dump index c_1[1] c_1[2] c_1[3] c_1[4]

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of datums as described above. If a single keyword is
specified, a local vector is produced. If two or more keywords are specified, a local array is produced where

LIGGGHTS Users Manual

compute body/local command 91

http://lammps.sandia.gov

the number of columns = the number of keywords. The vector or array can be accessed by any command that
uses local values from a compute as input. See this section for an overview of LAMMPS output options.

The units for output values depend on the body style.

Restrictions: none

Related commands:

dump local

Default: none

LIGGGHTS Users Manual

compute body/local command 92

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute bond/local command

Syntax:

compute ID group-ID bond/local input1 input2 ...

ID, group-ID are documented in compute command•
bond/local = style name of this compute command•
one or more keywords may be appended•
keyword = dist or eng

dist = bond distance
eng = bond energy
force = bond force

•

Examples:

compute 1 all bond/local eng
compute 1 all bond/local dist eng force

Description:

Define a computation that calculates properties of individual bond interactions. The number of datums
generated, aggregated across all processors, equals the number of bonds in the system, modified by the group
parameter as explained below.

The local data stored by this command is generated by looping over all the atoms owned on a processor and
their bonds. A bond will only be included if both atoms in the bond are in the specified compute group. Any
bonds that have been broken (see the bond_style command) by setting their bond type to 0 are not included.
Bonds that have been turned off (see the fix shake or delete_bonds commands) by setting their bond type
negative are written into the file, but their energy will be 0.0.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, bond output from the compute property/local command can be combined with data
from this command and output by the dump local command in a consistent way.

Here is an example of how to do this:

compute 1 all property/local batom1 batom2 btype
compute 2 all bond/local dist eng
dump 1 all local 1000 tmp.dump index c_1[1] c_1[2] c_1[3] c_2[1] c_2[2]

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of bonds. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns =
the number of keywords. The vector or array can be accessed by any command that uses local values from a
compute as input. See this section for an overview of LAMMPS output options.

The output for dist will be in distance units. The output for eng will be in energy units. The output for force
will be in force units.

LIGGGHTS Users Manual

compute bond/local command 93

http://lammps.sandia.gov

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

LIGGGHTS Users Manual

compute bond/local command 94

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute centro/atom command

Syntax:

compute ID group-ID centro/atom lattice

ID, group-ID are documented in compute command•
centro/atom = style name of this compute command•
lattice = fcc or bcc or N = # of neighbors per atom to include•

Examples:

compute 1 all centro/atom fcc

compute 1 all centro/atom 8

Description:

Define a computation that calculates the centro-symmetry parameter for each atom in the group. In solid-state
systems the centro-symmetry parameter is a useful measure of the local lattice disorder around an atom and
can be used to characterize whether the atom is part of a perfect lattice, a local defect (e.g. a dislocation or
stacking fault), or at a surface.

The value of the centro-symmetry parameter will be 0.0 for atoms not in the specified compute group.

This parameter is computed using the following formula from (Kelchner)

where the N nearest neighbors or each atom are identified and Ri and Ri+N/2 are vectors from the central
atom to a particular pair of nearest neighbors. There are N*(N-1)/2 possible neighbor pairs that can contribute
to this formula. The quantity in the sum is computed for each, and the N/2 smallest are used. This will
typically be for pairs of atoms in symmetrically opposite positions with respect to the central atom; hence the
i+N/2 notation.

N is an input parameter, which should be set to correspond to the number of nearest neighbors in the
underlying lattice of atoms. If the keyword fcc or bcc is used, N is set to 12 and 8 respectively. More
generally, N can be set to a positive, even integer.

For an atom on a lattice site, surrounded by atoms on a perfect lattice, the centro-symmetry parameter will be
0. It will be near 0 for small thermal perturbations of a perfect lattice. If a point defect exists, the symmetry is
broken, and the parameter will be a larger positive value. An atom at a surface will have a large positive
parameter. If the atom does not have N neighbors (within the potential cutoff), then its centro-symmetry
parameter is set to 0.0.

Only atoms within the cutoff of the pairwise neighbor list are considered as possible neighbors. Atoms not in
the compute group are included in the N neighbors used in this calculation.

LIGGGHTS Users Manual

compute centro/atom command 95

http://lammps.sandia.gov

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (e.g.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each with a centro/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values are unitless values >= 0.0. Their magnitude depends on the lattice style due to the
number of contibuting neighbor pairs in the summation in the formula above. And it depends on the local
defects surrounding the central atom, as described above.

Here are typical centro-symmetry values, from a a nanoindentation simulation into gold (FCC). These were
provided by Jon Zimmerman (Sandia):

Bulk lattice = 0
Dislocation core ~ 1.0 (0.5 to 1.25)
Stacking faults ~ 5.0 (4.0 to 6.0)
Free surface ~ 23.0

These values are *not* normalized by the square of the lattice parameter. If they were, normalized values
would be:

Bulk lattice = 0
Dislocation core ~ 0.06 (0.03 to 0.075)
Stacking faults ~ 0.3 (0.24 to 0.36)
Free surface ~ 1.38

For BCC materials, the values for dislocation cores and free surfaces would be somewhat different, due to
their being only 8 neighbors instead of 12.

Restrictions: none

Related commands:

compute cna/atom

Default: none

(Kelchner) Kelchner, Plimpton, Hamilton, Phys Rev B, 58, 11085 (1998).

LIGGGHTS Users Manual

compute centro/atom command 96

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute cluster/atom command

Syntax:

compute ID group-ID cluster/atom cutoff

ID, group-ID are documented in compute command•
cluster/atom = style name of this compute command•
cutoff = distance within which to label atoms as part of same cluster (distance units)•

Examples:

compute 1 all cluster/atom 1.0

Description:

Define a computation that assigns each atom a cluster ID.

A cluster is defined as a set of atoms, each of which is within the cutoff distance from one or more other
atoms in the cluster. If an atom has no neighbors within the cutoff distance, then it is a 1-atom cluster. The ID
of every atom in the cluster will be the smallest atom ID of any atom in the cluster.

Only atoms in the compute group are clustered and assigned cluster IDs. Atoms not in the compute group are
assigned a cluster ID = 0.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each of a clsuter/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be an ID > 0, as explained above.

Restrictions: none

Related commands:

compute coord/atom

Default: none

LIGGGHTS Users Manual

compute cluster/atom command 97

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute cna/atom command

Syntax:

compute ID group-ID cna/atom cutoff

ID, group-ID are documented in compute command•
cna/atom = style name of this compute command•
cutoff = cutoff distance for nearest neighbors (distance units)•

Examples:

compute 1 all cna/atom 3.08

Description:

Define a computation that calculates the CNA (Common Neighbor Analysis) pattern for each atom in the
group. In solid-state systems the CNA pattern is a useful measure of the local crystal structure around an
atom. The CNA methodology is described in (Faken) and (Tsuzuki).

Currently, there are five kinds of CNA patterns LAMMPS recognizes:

fcc = 1•
hcp = 2•
bcc = 3•
icosohedral = 4•
unknown = 5•

The value of the CNA pattern will be 0 for atoms not in the specified compute group. Note that normally a
CNA calculation should only be performed on mono-component systems.

The CNA calculation can be sensitive to the specified cutoff value. You should insure the appropriate nearest
neighbors of an atom are found within the cutoff distance for the presumed crystal strucure. E.g. 12 nearest
neighbor for perfect FCC and HCP crystals, 14 nearest neighbors for perfect BCC crystals. These formulas
can be used to obtain a good cutoff distance:

where a is the lattice constant for the crystal structure concerned and in the HCP case, x = (c/a) / 1.633, where
1.633 is the ideal c/a for HCP crystals.

LIGGGHTS Users Manual

compute cna/atom command 98

http://lammps.sandia.gov

Also note that since the CNA calculation in LAMMPS uses the neighbors of an owned atom to find the
nearest neighbors of a ghost atom, the following relation should also be satisfied:

where Rc is the cutoff distance of the potential, Rs is the skin distance as specified by the neighbor command,
and cutoff is the argument used with the compute cna/atom command. LAMMPS will issue a warning if this
is not the case.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (e.g.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each with a cna/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be a number from 0 to 5, as explained above.

Restrictions: none

Related commands:

compute centro/atom

Default: none

(Faken) Faken, Jonsson, Comput Mater Sci, 2, 279 (1994).

(Tsuzuki) Tsuzuki, Branicio, Rino, Comput Phys Comm, 177, 518 (2007).

LIGGGHTS Users Manual

compute cna/atom command 99

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute com command

Syntax:

compute ID group-ID com

ID, group-ID are documented in compute command•
com = style name of this compute command•

Examples:

compute 1 all com

Description:

Define a computation that calculates the center-of-mass of the group of atoms, including all effects due to
atoms passing thru periodic boundaries.

A vector of three quantites is calculated by this compute, which are the x,y,z coordinates of the center of
mass.

IMPORTANT NOTE: The coordinates of an atom contribute to the center-of-mass in "unwrapped" form, by
using the image flags associated with each atom. See the dump custom command for a discussion of
"unwrapped" coordinates. See the Atoms section of the read_data command for a discussion of image flags
and how they are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by
using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the center-of-mass may not reflect its true contribution. See the fix rigid
command for details. Thus, to compute the center-of-mass of rigid bodies as they cross periodic boundaries,
you will need to post-process a dump file containing coordinates of the atoms in the bodies.

Output info:

This compute calculates a global vector of length 3, which can be accessed by indices 1-3 by any command
that uses global vector values from a compute as input. See this section for an overview of LAMMPS output
options.

The vector values are "intensive". The vector values will be in distance units.

Restrictions: none

Related commands:

compute com/molecule

Default: none

LIGGGHTS Users Manual

compute com command 100

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute com/molecule command

Syntax:

compute ID group-ID com/molecule

ID, group-ID are documented in compute command•
com/molecule = style name of this compute command•

Examples:

compute 1 fluid com/molecule

Description:

Define a computation that calculates the center-of-mass of individual molecules. The calculation includes all
effects due to atoms passing thru periodic boundaries.

The x,y,z coordinates of the center-of-mass for a particular molecule are only computed if one or more of its
atoms are in the specified group. Normally all atoms in the molecule should be in the group, however this is
not required. LAMMPS will warn you if this is not the case. Only atoms in the group contribute to the
center-of-mass calculation for the molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The coordinates of an atom contribute to the molecule's center-of-mass in "unwrapped"
form, by using the image flags associated with each atom. See the dump custom command for a discussion of
"unwrapped" coordinates. See the Atoms section of the read_data command for a discussion of image flags
and how they are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by
using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the center-of-mass may not reflect its true contribution. See the fix rigid
command for details. Thus, to compute the center-of-mass of rigid bodies as they cross periodic boundaries,
you will need to post-process a dump file containing coordinates of the atoms in the bodies.

Output info:

This compute calculates a global array where the number of rows = Nmolecules and the number of columns =
3 for the x,y,z center-of-mass coordinates of each molecule. These values can be accessed by any command
that uses global array values from a compute as input. See Section_howto 15 for an overview of LAMMPS
output options.

The array values are "intensive". The array values will be in distance units.

Restrictions: none

Related commands:

compute com

LIGGGHTS Users Manual

compute com/molecule command 101

http://lammps.sandia.gov

Default: none

LIGGGHTS Users Manual

compute com/molecule command 102

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute contact/atom command

Syntax:

compute ID group-ID contact/atom

ID, group-ID are documented in compute command•
contact/atom = style name of this compute command•

Examples:

compute 1 all contact/atom

Description:

Define a computation that calculates the number of contacts for each atom in a group.

The contact number is defined for finite-size spherical particles as the number of neighbor atoms which
overlap the central particle, meaning that their distance of separation is less than or equal to the sum of the
radii of the two particles.

The value of the contact number will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, whose values can be accessed by any command that uses per-atom
values from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be a number >= 0.0, as explained above.

Restrictions:

This compute requires that atoms store a radius as defined by the atom_style sphere command.

Related commands:

compute coord/atom

Default: none

LIGGGHTS Users Manual

compute contact/atom command 103

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute coord/atom command

Syntax:

compute ID group-ID coord/atom cutoff keyword value

ID, group-ID are documented in compute command•
coord/atom = style name of this compute command cutoff = distance within which to count
coordination neighbors (distance units) zero or more keyword/value pairs may be appended to args

•

keyword = mix or type1, type2, ...

mix value = yes or no -ID
 no = count all neighbors
 yes = count only neighbors that have same atom type

typeN = atom type for Nth coordination count (see asterisk form below)

•

Examples:

compute 1 all coord/atom 0.003 mix
compute 1 all coord/atom 2.0
compute 1 all coord/atom 6.0 1 2
compute 1 all coord/atom 6.0 2*4 5*8 *

Description:

Define a computation that calculates one or more coordination numbers for each atom in a group.

A coordination number is defined as the number of neighbor atoms with specified atom type(s) that are within
the specified cutoff distance from the central atom. Atoms not in the group are included in a coordination
number of atoms in the group.

The typeN keywords allow you to specify which atom types contribute to each coordination number. One
coordination number is computed for each of the typeN keywords listed. If no typeN keywords are listed, a
single coordination number is calculated, which includes atoms of all types (same as the "*" format, see
below).

The typeN keywords can be specified in one of two ways. An explicit numeric value can be used, as in the 2nd
example above. Or a wild-card asterisk can be used to specify a range of atom types. This takes the form "*"
or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values means all
types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all
types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

The value of all coordination numbers will be 0.0 for atoms not in the specified compute group.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently.

Keyword mix controlls if all neighbors are counted or if only neighbors with same atom type are counted. The
latter can be useful to quanitfy mixture of different species.

IMPORTANT NOTE: If you have a bonded system, then the settings of special_bonds command can remove
pairwise interactions between atoms in the same bond, angle, or dihedral. This is the default setting for the

LIGGGHTS Users Manual

compute coord/atom command 104

http://lammps.sandia.gov

special_bonds command, and means those pairwise interactions do not appear in the neighbor list. Because
this fix uses the neighbor list, it also means those pairs will not be included in the coordination count. One
way to get around this, is to write a dump file, and use the rerun command to compute the coordination for
snapshots in the dump file. The rerun script can use a special_bonds command that includes all pairs in the
neighbor list.

Output info:

If single type1 keyword is specified (or if none are specified), or the mix keyword is used, this compute
calculates a per-atom vector. If multiple typeN keywords are specified, this compute calculates a per-atom
array, with N columns. These values can be accessed by any command that uses per-atom values from a
compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector or array values will be a number >= 0.0, as explained above.

Restrictions: none

Related commands:

compute cluster/atom

Default: none

LIGGGHTS Users Manual

compute coord/atom command 105

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute damage/atom command

Syntax:

compute ID group-ID damage/atom

ID, group-ID are documented in compute command•
damage/atom = style name of this compute command•

Examples:

compute 1 all damage/atom

Description:

Define a computation that calculates the per-atom damage for each atom in a group. Please see the
PDLAMMPS user guide for a formal definition of "damage" and more details about Peridynamics as it is
implemented in LAMMPS.

The value of the damage will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be a number >= 0.0, as explained above.

Restrictions:

This compute is part of the PERI package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:

dump custom

Default: none

LIGGGHTS Users Manual

compute damage/atom command 106

http://lammps.sandia.gov
http://www.sandia.gov/~mlparks/papers/PDLAMMPS.pdf

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute dihedral/local command

Syntax:

compute ID group-ID dihedral/local input1 input2 ...

ID, group-ID are documented in compute command•
dihedral/local = style name of this compute command•
one or more keywords may be appended•
keyword = phi

phi = tabulate dihedral angles

•

Examples:

compute 1 all dihedral/local phi

Description:

Define a computation that calculates properties of individual dihedral interactions. The number of datums
generated, aggregated across all processors, equals the number of angles in the system, modified by the group
parameter as explained below.

The local data stored by this command is generated by looping over all the atoms owned on a processor and
their dihedrals. A dihedral will only be included if all 4 atoms in the dihedral are in the specified compute
group.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, dihedral output from the compute property/local command can be combined with
data from this command and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of dihedrals. If a single keyword is specified, a local
vector is produced. If two or more keywords are specified, a local array is produced where the number of
columns = the number of keywords. The vector or array can be accessed by any command that uses local
values from a compute as input. See this section for an overview of LAMMPS output options.

The output for phi will be in degrees.

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

LIGGGHTS Users Manual

compute dihedral/local command 107

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute displace/atom command

Syntax:

compute ID group-ID displace/atom

ID, group-ID are documented in compute command•
displace/atom = style name of this compute command•

Examples:

compute 1 all displace/atom

Description:

Define a computation that calculates the current displacement of each atom in the group from its original
coordinates, including all effects due to atoms passing thru periodic boundaries.

A vector of four quantites per atom is calculated by this compute. The first 3 elements of the vector are the
dx,dy,dz displacements. The 4th component is the total displacement, i.e. sqrt(dx*dx + dy*dy + dz*dz).

The displacement of an atom is from its original position at the time the compute command was issued. The
value of the displacement will be 0.0 for atoms not in the specified compute group.

IMPORTANT NOTE: Initial coordinates are stored in "unwrapped" form, by using the image flags associated
with each atom. See the dump custom command for a discussion of "unwrapped" coordinates. See the Atoms
section of the read_data command for a discussion of image flags and how they are set for each atom. You
can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and the computed displacement may not reflect its true displacement. See the fix rigid command
for details. Thus, to compute the displacement of rigid bodies as they cross periodic boundaries, you will need
to post-process a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: If you want the quantities calculated by this compute to be continuous when running
from a restart file, then you should use the same ID for this compute, as in the original run. This is so that the
created fix will also have the same ID, and thus be initialized correctly with atom coordinates from the restart
file.

Output info:

This compute calculates a per-atom array with 4 columns, which can be accessed by indices 1-4 by any
command that uses per-atom values from a compute as input. See Section_howto 15 for an overview of
LAMMPS output options.

The per-atom array values will be in distance units.

Restrictions: none

Related commands:

compute msd, dump custom, fix store/state

LIGGGHTS Users Manual

compute displace/atom command 108

http://lammps.sandia.gov

Default: none

LIGGGHTS Users Manual

compute displace/atom command 109

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute erotate/asphere command

Syntax:

compute ID group-ID erotate/asphere

ID, group-ID are documented in compute command•
erotate/asphere = style name of this compute command•

Examples:

compute 1 all erotate/asphere

Description:

Define a computation that calculates the rotational kinetic energy of a group of aspherical particles. The
aspherical particles can be ellipsoids, or line segments, or triangles. See the atom_style and read_data
commands for descriptions of these options.

For all 3 types of particles, the rotational kinetic energy is computed as 1/2 I w^2, where I is the inertia tensor
for the aspherical particle and w is its angular velocity, which is computed from its angular momentum if
needed.

IMPORTANT NOTE: For 2d models, ellipsoidal particles are treated as ellipsoids, not ellipses, meaning their
moments of inertia will be the same as in 3d.

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.

Restrictions:

This compute requires that ellipsoidal particles atoms store a shape and quaternion orientation and angular
momentum as defined by the atom_style ellipsoid command.

This compute requires that line segment particles atoms store a length and orientation and angular velocity as
defined by the atom_style line command.

This compute requires that triangular particles atoms store a size and shape and quaternion orientation and
angular momentum as defined by the atom_style tri command.

All particles in the group must be finite-size. They cannot be point particles.

Related commands: none

compute erotate/sphere

Default: none

LIGGGHTS Users Manual

compute erotate/asphere command 110

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute erotate/sphere/atom command

Syntax:

compute ID group-ID erotate/sphere/atom

ID, group-ID are documented in compute command•
erotate/sphere/atom = style name of this compute command•

Examples:

compute 1 all erotate/sphere/atom

Description:

Define a computation that calculates the rotational kinetic energy for each particle in a group.

The rotational energy is computed as 1/2 I w^2, where I is the moment of inertia for a sphere and w is the
particle's angular velocity.

IMPORTANT NOTE: For 2d models, particles are treated as spheres, not disks, meaning their moment of
inertia will be the same as in 3d.

The value of the rotational kinetic energy will be 0.0 for atoms not in the specified compute group or for point
particles with a radius = 0.0.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in energy units.

Restrictions: none

Related commands:

dump custom

Default: none

LIGGGHTS Users Manual

compute erotate/sphere/atom command 111

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute erotate/sphere command

Syntax:

compute ID group-ID erotate/sphere

ID, group-ID are documented in compute command•
erotate/sphere = style name of this compute command•

Examples:

compute 1 all erotate/sphere

Description:

Define a computation that calculates the rotational kinetic energy of a group of spherical particles.

The rotational energy is computed as 1/2 I w^2, where I is the moment of inertia for a sphere and w is the
particle's angular velocity.

IMPORTANT NOTE: For 2d models, particles are treated as spheres, not disks, meaning their moment of
inertia will be the same as in 3d.

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.

Restrictions:

This compute requires that atoms store a radius and angular velocity (omega) as defined by the atom_style
sphere command.

All particles in the group must be finite-size spheres or point particles. They cannot be aspherical. Point
particles will not contribute to the rotational energy.

Related commands:

compute erotate/asphere

Default: none

LIGGGHTS Users Manual

compute erotate/sphere command 112

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute event/displace command

Syntax:

compute ID group-ID event/displace threshold

ID, group-ID are documented in compute command•
event/displace = style name of this compute command•
threshold = minimum distance anyparticle must move to trigger an event (distance units)•

Examples:

compute 1 all event/displace 0.5

Description:

Define a computation that flags an "event" if any particle in the group has moved a distance greater than the
specified threshold distance when compared to a previously stored reference state (i.e. the previous event).
This compute is typically used in conjunction with the prd and tad commands, to detect if a transition to a new
minimum energy basin has occurred.

This value calculated by the compute is equal to 0 if no particle has moved far enough, and equal to 1 if one or
more particles have moved further than the threshold distance.

NOTE: If the system is undergoing significant center-of-mass motion, due to thermal motion, an external
force, or an initial net momentum, then this compute will not be able to distinguish that motion from local
atom displacements and may generate "false postives."

Output info:

This compute calculates a global scalar (the flag). This value can be used by any command that uses a global
scalar value from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The scalar value will be a 0 or 1 as explained
above.

Restrictions:

This command can only be used if LAMMPS was built with the REPLICA package. See the Making
LAMMPS section for more info on packages.

Related commands:

prd, tad

Default: none

LIGGGHTS Users Manual

compute event/displace command 113

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute group/group command

Syntax:

compute ID group-ID group/group group2-ID keyword value ...

ID, group-ID are documented in compute command•
group/group = style name of this compute command•
group2-ID = group ID of second (or same) group•
zero or more keyword/value pairs may be appended•
keyword = pair or kspace or boundary

pair value = yes or no
kspace value = yes or no
boundary value = yes or no

•

Examples:

compute 1 lower group/group upper
compute 1 lower group/group upper kspace yes
compute mine fluid group/group wall

Description:

Define a computation that calculates the total energy and force interaction between two groups of atoms: the
compute group and the specified group2. The two groups can be the same.

If the pair keyword is set to yes, which is the default, then the the interaction energy will include a pair
component which is defined as the pairwise energy between all pairs of atoms where one atom in the pair is in
the first group and the other is in the second group. Likewise, the interaction force calculated by this compute
will include the force on the compute group atoms due to pairwise interactions with atoms in the specified
group2.

If the kspace keyword is set to yes, which is not the default, and if a kspace_style is defined, then the
interaction energy will include a Kspace component which is the long-range Coulombic energy between all
the atoms in the first group and all the atoms in the 2nd group. Likewise, the interaction force calculated by
this compute will include the force on the compute group atoms due to long-range Coulombic interactions
with atoms in the specified group2.

Normally the long-range Coulombic energy converges only when the net charge of the unit cell is zero.
However, one can assume the net charge of the system is neutralized by a uniform background plasma, and a
correction to the system energy can be applied to reduce artifacts. For more information see (Bogusz). If the
boundary keyword is set to yes, which is the default, and kspace contributions are included, then this energy
correction term will be added to the total group-group energy. This correction term does not affect the force
calculation and will be zero if one or both of the groups are charge neutral. This energy correction term is the
same as that included in the regular Ewald and PPPM routines.

This compute does not calculate any bond or angle or dihedral or improper interactions between atoms in the
two groups.

The pairwise contributions to the group-group interactions are calculated by looping over a neighbor list. The
Kspace contribution to the group-group interactions require essentially the same amount of work (FFTs,
Ewald summation) as computing long-range forces for the entire system. Thus it can be costly to invoke this

LIGGGHTS Users Manual

compute group/group command 114

http://lammps.sandia.gov

compute too frequently.

If you desire a breakdown of the interactions into a pairwise and Kspace component, simply invoke the
compute twice with the appropriate yes/no settings for the pair and kspace keywords. This is no more costly
than using a single compute with both keywords set to yes. The individual contributions can be summed in a
variable if desired.

This document describes how the long-range group-group calculations are performed.

Output info:

This compute calculates a global scalar (the energy) and a global vector of length 3 (force), which can be
accessed by indices 1-3. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

Both the scalar and vector values calculated by this compute are "extensive". The scalar value will be in
energy units. The vector values will be in force units.

Restrictions:

Not all pair styles can be evaluated in a pairwise mode as required by this compute. For example, 3-body and
other many-body potentials, such as Tersoff and Stillinger-Weber cannot be used. EAM potentials only
include the pair potential portion of the EAM interaction when used by this compute, not the embedding term.

Not all Kspace styles support calculation of group/group interactions. The ewald and pppm styles do.

Related commands: none

Default:

The option defaults are pair = yes, kspace = no, and boundary = yes.

Bogusz et al, J Chem Phys, 108, 7070 (1998)

LIGGGHTS Users Manual

compute group/group command 115

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute gyration command

Syntax:

compute ID group-ID gyration

ID, group-ID are documented in compute command•
gyration = style name of this compute command•

Examples:

compute 1 molecule gyration

Description:

Define a computation that calculates the radius of gyration Rg of the group of atoms, including all effects due
to atoms passing thru periodic boundaries.

Rg is a measure of the size of the group of atoms, and is computed by this formula

where M is the total mass of the group, Rcm is the center-of-mass position of the group, and the sum is over
all atoms in the group.

A Rg tensor, stored as a 6-element vector, is also calculated by this compute. The formula for the components
of the tensor is the same as the above formula, except that (Ri - Rcm)^2 is replaced by (Rix - Rcmx) * (Riy -
Rcmy) for the xy component, etc. The 6 components of the vector are ordered xx, yy, zz, xy, xz, yz.

IMPORTANT NOTE: The coordinates of an atom contribute to Rg in "unwrapped" form, by using the image
flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read_data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

Output info:

This compute calculates a global scalar (Rg) and a global vector of length 6 (Rg tensor), which can be
accessed by indices 1-6. These values can be used by any command that uses a global scalar value or vector
values from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The scalar and vector values calculated by this compute are "intensive". The scalar and vector values will be
in distance units.

Restrictions: none

Related commands:

compute gyration/molecule

LIGGGHTS Users Manual

compute gyration command 116

http://lammps.sandia.gov

Default: none

LIGGGHTS Users Manual

compute gyration command 117

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute gyration/molecule command

Syntax:

compute ID group-ID gyration/molecule keyword value ...

ID, group-ID are documented in compute command•
gyration/molecule = style name of this compute command•
zero or more keyword/value pairs may be appended•
keyword = tensor

tensor value = none

•

Examples:

compute 1 molecule gyration/molecule
compute 2 molecule gyration/molecule tensor

Description:

Define a computation that calculates the radius of gyration Rg of individual molecules. The calculation
includes all effects due to atoms passing thru periodic boundaries.

Rg is a measure of the size of a molecule, and is computed by this formula

where M is the total mass of the molecule, Rcm is the center-of-mass position of the molecule, and the sum is
over all atoms in the molecule and in the group.

If the tensor keyword is specified, then the scalar Rg value is not calculated, but an Rg tensor is instead
calculated for each molecule. The formula for the components of the tensor is the same as the above formula,
except that (Ri - Rcm)^2 is replaced by (Rix - Rcmx) * (Riy - Rcmy) for the xy component, etc. The 6
components of the tensor are ordered xx, yy, zz, xy, xz, yz.

Rg for a particular molecule is only computed if one or more of its atoms are in the specified group. Normally
all atoms in the molecule should be in the group, however this is not required. LAMMPS will warn you if this
is not the case. Only atoms in the group contribute to the Rg calculation for the molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The coordinates of an atom contribute to Rg in "unwrapped" form, by using the image
flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read_data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

Output info:

LIGGGHTS Users Manual

compute gyration/molecule command 118

http://lammps.sandia.gov

This compute calculates a global vector if the tensor keyword is not specified and a global array if it is. The
length of the vector or number of rows in the array is the number of molecules. If the tensor keyword is
specified, the global array has 6 columns. The vector or array can be accessed by any command that uses
global values from a compute as input. See this section for an overview of LAMMPS output options.

All the vector or array values calculated by this compute are "intensive". The vector or array values will be in
distance units.

Restrictions: none

Related commands: none

compute gyration

Default: none

LIGGGHTS Users Manual

compute gyration/molecule command 119

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute heat/flux command

Syntax:

compute ID group-ID heat/flux ke-ID pe-ID stress-ID

ID, group-ID are documented in compute command•
heat/flux = style name of this compute command•
ke-ID = ID of a compute that calculates per-atom kinetic energy•
pe-ID = ID of a compute that calculates per-atom potential energy•
stress-ID = ID of a compute that calculates per-atom stress•

Examples:

compute myFlux all heat/flux myKE myPE myStress

Description:

Define a computation that calculates the heat flux vector based on contributions from atoms in the specified
group. This can be used by itself to measure the heat flux into or out of a reservoir of atoms, or to calculate a
thermal conductivity using the Green-Kubo formalism.

See the fix thermal/conductivity command for details on how to compute thermal conductivity in an alternate
way, via the Muller-Plathe method. See the fix heat command for a way to control the heat added or
subtracted to a group of atoms.

The compute takes three arguments which are IDs of other computes. One calculates per-atom kinetic energy
(ke-ID), one calculates per-atom potential energy (pe-ID), and the third calcualtes per-atom stress (stress-ID).
These should be defined for the same group used by compute heat/flux, though LAMMPS does not check for
this.

The Green-Kubo formulas relate the ensemble average of the auto-correlation of the heat flux J to the thermal
conductivity kappa:

LIGGGHTS Users Manual

compute heat/flux command 120

http://lammps.sandia.gov

Ei in the first term of the equation for J is the per-atom energy (potential and kinetic). This is calculated by the
computes ke-ID and pe-ID. Si in the second term of the equation for J is the per-atom stress tensor calculated
by the compute stress-ID. The tensor multiplies Vi as a 3x3 matrix-vector multiply to yield a vector. Note that
as discussed below, the 1/V scaling factor in the equation for J is NOT included in the calculation performed
by this compute; you need to add it for a volume appropriate to the atoms included in the calculation.

IMPORTANT NOTE: The compute pe/atom and compute stress/atom commands have options for which
terms to include in their calculation (pair, bond, etc). The heat flux calculation will thus include exactly the
same terms. Normally you should use compute stress/atom virial so as not to include a kinetic energy term in
the heat flux.

This compute calculates 6 quantities and stores them in a 6-component vector. The first 3 components are the
x, y, z components of the full heat flux vector, i.e. (Jx, Jy, Jz). The next 3 components are the x, y, z
components of just the convective portion of the flux, i.e. the first term in the equation for J above.

The heat flux can be output every so many timesteps (e.g. via the thermo_style custom command). Then as a
post-processing operation, an autocorrelation can be performed, its integral estimated, and the Green-Kubo
formula above evaluated.

The fix ave/correlate command can calclate the autocorrelation. The trap() function in the variable command
can calculate the integral.

An example LAMMPS input script for solid Ar is appended below. The result should be: average conductivity
~0.29 in W/mK.

Output info:

This compute calculates a global vector of length 6 (total heat flux vector, followed by conductive heat flux
vector), which can be accessed by indices 1-6. These values can be used by any command that uses global
vector values from a compute as input. See this section for an overview of LAMMPS output options.

The vector values calculated by this compute are "extensive", meaning they scale with the number of atoms in
the simulation. They can be divided by the appropriate volume to get a flux, which would then be an
"intensive" value, meaning independent of the number of atoms in the simulation. Note that if the compute is
"all", then the appropriate volume to divide by is the simulation box volume. However, if a sub-group is used,
it should be the volume containing those atoms.

The vector values will be in energy*velocity units. Once divided by a volume the units will be that of flux,
namely energy/area/time units

Restrictions: none

Related commands:

fix thermal/conductivity, fix ave/correlate, variable

Default: none

LIGGGHTS Users Manual

compute heat/flux command 121

Sample LAMMPS input script for thermal conductivity of solid Ar

units real
variable T equal 70
variable V equal vol
variable dt equal 4.0
variable p equal 200 # correlation length
variable s equal 10 # sample interval
variable d equal $p*$s # dump interval

convert from LAMMPS real units to SI

variable kB equal 1.3806504e-23 # [J/K] Boltzmann
variable kCal2J equal 4186.0/6.02214e23
variable A2m equal 1.0e-10
variable fs2s equal 1.0e-15
variable convert equal ${kCal2J}*${kCal2J}/${fs2s}/${A2m}

setup problem

dimension 3
boundary p p p
lattice fcc 5.376 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1
region box block 0 4 0 4 0 4
create_box 1 box
create_atoms 1 box
mass 1 39.948
pair_style lj/cut 13.0
pair_coeff * * 0.2381 3.405
timestep ${dt}
thermo $d

equilibration and thermalization

velocity all create $T 102486 mom yes rot yes dist gaussian
fix NVT all nvt temp $T $T 10 drag 0.2
run 8000

thermal conductivity calculation, switch to NVE if desired

#unfix NVT
#fix NVE all nve

reset_timestep 0
compute myKE all ke/atom
compute myPE all pe/atom
compute myStress all stress/atom virial
compute flux all heat/flux myKE myPE myStress
variable Jx equal c_flux[1]/vol
variable Jy equal c_flux[2]/vol
variable Jz equal c_flux[3]/vol
fix JJ all ave/correlate $s $p $d &
 c_flux[1] c_flux[2] c_flux[3] type auto file J0Jt.dat ave running
variable scale equal ${convert}/${kB}/$T/$T/$V*$s*${dt}
variable k11 equal trap(f_JJ[3])*${scale}
variable k22 equal trap(f_JJ[4])*${scale}
variable k33 equal trap(f_JJ[5])*${scale}
thermo_style custom step temp v_Jx v_Jy v_Jz v_k11 v_k22 v_k33
run 100000
variable k equal (v_k11+v_k22+v_k33)/3.0
variable ndens equal count(all)/vol
print "average conductivity: $k[W/mK] @ $T K, ${ndens} /A^3"

LIGGGHTS Users Manual

compute heat/flux command 122

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute command

Syntax:

compute ID group-ID style args

ID = user-assigned name for the computation•
group-ID = ID of the group of atoms to perform the computation on•
style = one of a list of possible style names (see below)•
args = arguments used by a particular style•

Examples:

compute 1 all temp
compute newtemp flow temp/partial 1 1 0
compute 3 all ke/atom

Description:

Define a computation that will be performed on a group of atoms. Quantities calculated by a compute are
instantaneous values, meaning they are calculated from information about atoms on the current timestep or
iteration, though a compute may internally store some information about a previous state of the system.
Defining a compute does not perform a computation. Instead computes are invoked by other LAMMPS
commands as needed, e.g. to calculate a temperature needed for a thermostat fix or to generate
thermodynamic or dump file output. See this howto section for a summary of various LAMMPS output
options, many of which involve computes.

The ID of a compute can only contain alphanumeric characters and underscores.

Computes calculate one of three styles of quantities: global, per-atom, or local. A global quantity is one or
more system-wide values, e.g. the temperature of the system. A per-atom quantity is one or more values per
atom, e.g. the kinetic energy of each atom. Per-atom values are set to 0.0 for atoms not in the specified
compute group. Local quantities are calculated by each processor based on the atoms it owns, but there may
be zero or more per atom, e.g. a list of bond distances. Computes that produce per-atom quantities have the
word "atom" in their style, e.g. ke/atom. Computes that produce local quantities have the word "local" in their
style, e.g. bond/local. Styles with neither "atom" or "local" in their style produce global quantities.

Note that a single compute produces either global or per-atom or local quantities, but never more than one of
these.

Global, per-atom, and local quantities each come in three kinds: a single scalar value, a vector of values, or a
2d array of values. The doc page for each compute describes the style and kind of values it produces, e.g. a
per-atom vector. Some computes produce more than one kind of a single style, e.g. a global scalar and a
global vector.

When a compute quantity is accessed, as in many of the output commands discussed below, it can be
referenced via the following bracket notation, where ID is the ID of the compute:

c_ID entire scalar, vector, or array
c_ID[I] one element of vector, one column of array
c_ID[I][J] one element of array

LIGGGHTS Users Manual

compute command 123

http://lammps.sandia.gov

In other words, using one bracket reduces the dimension of the quantity once (vector -> scalar, array ->
vector). Using two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar
compute values as input can also process elements of a vector or array.

Note that commands and variables which use compute quantities typically do not allow for all kinds, e.g. a
command may require a vector of values, not a scalar. This means there is no ambiguity about referring to a
compute quantity as c_ID even if it produces, for example, both a scalar and vector. The doc pages for various
commands explain the details.

In LAMMPS, the values generated by a compute can be used in several ways:

The results of computes that calculate a global temperature or pressure can be used by fixes that do
thermostatting or barostatting or when atom velocities are created.

•

Global values can be output via the thermo_style custom or fix ave/time command. Or the values can
be referenced in a variable equal or variable atom command.

•

Per-atom values can be output via the dump custom command or the fix ave/spatial command. Or
they can be time-averaged via the fix ave/atom command or reduced by the compute reduce
command. Or the per-atom values can be referenced in an atom-style variable.

•

Local values can be reduced by the compute reduce command, or histogrammed by the fix ave/histo
command, or output by the dump local command.

•

The results of computes that calculate global quantities can be either "intensive" or "extensive" values.
Intensive means the value is independent of the number of atoms in the simulation, e.g. temperature.
Extensive means the value scales with the number of atoms in the simulation, e.g. total rotational kinetic
energy. Thermodynamic output will normalize extensive values by the number of atoms in the system,
depending on the "thermo_modify norm" setting. It will not normalize intensive values. If a compute value is
accessed in another way, e.g. by a variable, you may want to know whether it is an intensive or extensive
value. See the doc page for individual computes for further info.

LAMMPS creates its own computes internally for thermodynamic output. Three computes are always created,
named "thermo_temp", "thermo_press", and "thermo_pe", as if these commands had been invoked in the input
script:

compute thermo_temp all temp
compute thermo_press all pressure thermo_temp
compute thermo_pe all pe

Additional computes for other quantities are created if the thermo style requires it. See the documentation for
the thermo_style command.

Fixes that calculate temperature or pressure, i.e. for thermostatting or barostatting, may also create computes.
These are discussed in the documentation for specific fix commands.

In all these cases, the default computes LAMMPS creates can be replaced by computes defined by the user in
the input script, as described by the thermo_modify and fix modify commands.

Properties of either a default or user-defined compute can be modified via the compute_modify command.

Computes can be deleted with the uncompute command.

Code for new computes can be added to LAMMPS (see this section of the manual) and the results of their
calculations accessed in the various ways described above.

Each compute style has its own doc page which describes its arguments and what it does. Here is an
alphabetic list of compute styles available in LAMMPS:

LIGGGHTS Users Manual

compute command 124

angle/local - theta and energy of each angle•
atom/molecule - sum per-atom properties for each molecule•
body/local - attributes of body sub-particles•
bond/local - distance and energy of each bond•
centro/atom - centro-symmetry parameter for each atom•
cluster/atom - cluster ID for each atom•
cna/atom - common neighbor analysis (CNA) for each atom•
com - center-of-mass of group of atoms•
com/molecule - center-of-mass for each molecule•
contact/atom - contact count for each spherical particle•
coord/atom - coordination number for each atom•
damage/atom - Peridynamic damage for each atom•
dihedral/local - angle of each dihedral•
displace/atom - displacement of each atom•
erotate/asphere - rotational energy of aspherical particles•
erotate/rigid - rotational energy of rigid bodies•
erotate/sphere - rotational energy of spherical particles•
erotate/sphere/atom - rotational energy for each spherical particle•
event/displace - detect event on atom displacement•
group/group - energy/force between two groups of atoms•
gyration - radius of gyration of group of atoms•
gyration/molecule - radius of gyration for each molecule•
heat/flux - heat flux through a group of atoms•
improper/local - angle of each improper•
inertia/molecule - inertia tensor for each molecule•
ke - translational kinetic energy•
ke/atom - kinetic energy for each atom•
ke/rigid - translational kinetic energy of rigid bodies•
msd - mean-squared displacement of group of atoms•
msd/molecule - mean-squared displacement for each molecule•
pair - values computed by a pair style•
pair/local - distance/energy/force of each pairwise interaction•
pe - potential energy•
pe/atom - potential energy for each atom•
pressure - total pressure and pressure tensor•
property/atom - convert atom attributes to per-atom vectors/arrays•
property/local - convert local attributes to localvectors/arrays•
property/molecule - convert molecule attributes to localvectors/arrays•
rdf - radial distribution function g(r) histogram of group of atoms•
reduce - combine per-atom quantities into a single global value•
reduce/region - same as compute reduce, within a region•
slice - extract values from global vector or array•
stress/atom - stress tensor for each atom•
temp - temperature of group of atoms•
temp/asphere - temperature of aspherical particles•
temp/com - temperature after subtracting center-of-mass velocity•
temp/deform - temperature excluding box deformation velocity•
temp/partial - temperature excluding one or more dimensions of velocity•
temp/profile - temperature excluding a binned velocity profile•
temp/ramp - temperature excluding ramped velocity component•
temp/region - temperature of a region of atoms•
temp/sphere - temperature of spherical particles•
ti - thermodyanmic integration free energy values•
voronoi/atom - Voronoi volume and neighbors for each atom•

LIGGGHTS Users Manual

compute command 125

There are also additional compute styles submitted by users which are included in the LAMMPS distribution.
The list of these with links to the individual styles are given in the compute section of this page.

There are also additional accelerated compute styles included in the LAMMPS distribution for faster
performance on CPUs and GPUs. The list of these with links to the individual styles are given in the pair
section of this page.

Restrictions: none

Related commands:

uncompute, compute_modify, fix ave/atom, fix ave/spatial, fix ave/time, fix ave/histo

Default: none

LIGGGHTS Users Manual

compute command 126

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute improper/local command

Syntax:

compute ID group-ID improper/local input1 input2 ...

ID, group-ID are documented in compute command•
improper/local = style name of this compute command•
one or more keywords may be appended•
keyword = chi

chi = tabulate improper angles

•

Examples:

compute 1 all improper/local chi

Description:

Define a computation that calculates properties of individual improper interactions. The number of datums
generated, aggregated across all processors, equals the number of impropers in the system, modified by the
group parameter as explained below.

The local data stored by this command is generated by looping over all the atoms owned on a processor and
their impropers. An improper will only be included if all 4 atoms in the improper are in the specified compute
group.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, improper output from the compute property/local command can be combined with
data from this command and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of impropers. If a single keyword is specified, a local
vector is produced. If two or more keywords are specified, a local array is produced where the number of
columns = the number of keywords. The vector or array can be accessed by any command that uses local
values from a compute as input. See this section for an overview of LAMMPS output options.

The output for chi will be in degrees.

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

LIGGGHTS Users Manual

compute improper/local command 127

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute inertia/molecule command

Syntax:

compute ID group-ID inertia/molecule

ID, group-ID are documented in compute command•
inertia/molecule = style name of this compute command•

Examples:

compute 1 fluid inertia/molecule

Description:

Define a computation that calculates the inertia tensor of individual molecules. The calculation includes all
effects due to atoms passing thru periodic boundaries.

The symmetric intertia tensor has 6 components, ordered Ixx,Iyy,Izz,Ixy,Iyz,Ixz. The tensor for a particular
molecule is only computed if one or more of its atoms is in the specified group. Normally all atoms in the
molecule should be in the group, however this is not required. LAMMPS will warn you if this is not the case.
Only atoms in the group contribute to the inertia tensor and associated center-of-mass calculation for the
molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, the molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The coordinates of an atom contribute to the molecule's inertia tensor in "unwrapped"
form, by using the image flags associated with each atom. See the dump custom command for a discussion of
"unwrapped" coordinates. See the Atoms section of the read_data command for a discussion of image flags
and how they are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by
using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the inertia tensor may not reflect its true contribution. See the fix rigid
command for details. Thus, to compute the inertia tensor of rigid bodies as they cross periodic boundaries, you
will need to post-process a dump file containing coordinates of the atoms in the bodies.

Output info:

This compute calculates a global array where the number of rows = Nmolecules and the number of columns =
6 for the 6 components of the inertia tensor of each molecule, ordered as listed above. These values can be
accessed by any command that uses global array values from a compute as input. See Section_howto 15 for an
overview of LAMMPS output options.

The array values are "intensive". The array values will be in distance units.

Restrictions: none

Related commands:

LIGGGHTS Users Manual

compute inertia/molecule command 128

http://lammps.sandia.gov

variable inertia() function

Default: none

LIGGGHTS Users Manual

compute inertia/molecule command 129

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ke/atom/eff command

Syntax:

compute ID group-ID ke/atom/eff

ID, group-ID are documented in compute command•
ke/atom/eff = style name of this compute command•

Examples:

compute 1 all ke/atom/eff

Description:

Define a computation that calculates the per-atom translational (nuclei and electrons) and radial kinetic energy
(electron only) in a group. The particles are assumed to be nuclei and electrons modeled with the electronic
force field.

The kinetic energy for each nucleus is computed as 1/2 m v^2, where m corresponds to the corresponding
nuclear mass, and the kinetic energy for each electron is computed as 1/2 (me v^2 + 3/4 me s^2), where me
and v correspond to the mass and translational velocity of each electron, and s to its radial velocity,
respectively.

There is a subtle difference between the quantity calculated by this compute and the kinetic energy calculated
by the ke or etotal keyword used in thermodynamic output, as specified by the thermo_style command. For
this compute, kinetic energy is "translational" plus electronic "radial" kinetic energy, calculated by the simple
formula above. For thermodynamic output, the ke keyword infers kinetic energy from the temperature of the
system with 1/2 Kb T of energy for each (nuclear-only) degree of freedom in eFF.

IMPORTANT NOTE: The temperature in eFF should be monitored via the compute temp/eff command,
which can be printed with thermodynamic output by using the thermo_modify command, as shown in the
following example:

compute effTemp all temp/eff
thermo_style custom step etotal pe ke temp press
thermo_modify temp effTemp

The value of the kinetic energy will be 0.0 for atoms (nuclei or electrons) not in the specified compute group.

Output info:

This compute calculates a scalar quantity for each atom, which can be accessed by any command that uses
per-atom computes as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in energy units.

Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

LIGGGHTS Users Manual

compute ke/atom/eff command 130

http://lammps.sandia.gov

dump custom

Default: none

LIGGGHTS Users Manual

compute ke/atom/eff command 131

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ke/atom command

Syntax:

compute ID group-ID ke/atom

ID, group-ID are documented in compute command•
ke/atom = style name of this compute command•

Examples:

compute 1 all ke/atom

Description:

Define a computation that calculates the per-atom translational kinetic energy for each atom in a group.

The kinetic energy is simply 1/2 m v^2, where m is the mass and v is the velocity of each atom.

The value of the kinetic energy will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in energy units.

Restrictions: none

Related commands:

dump custom

Default: none

LIGGGHTS Users Manual

compute ke/atom command 132

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ke/eff command

Syntax:

compute ID group-ID ke/eff

ID, group-ID are documented in compute command•
ke/eff = style name of this compute command•

Examples:

compute 1 all ke/eff

Description:

Define a computation that calculates the kinetic energy of motion of a group of eFF particles (nuclei and
electrons), as modeled with the electronic force field.

The kinetic energy for each nucleus is computed as 1/2 m v^2 and the kinetic energy for each electron is
computed as 1/2(me v^2 + 3/4 me s^2), where m corresponds to the nuclear mass, me to the electron mass, v
to the translational velocity of each particle, and s to the radial velocity of the electron, respectively.

There is a subtle difference between the quantity calculated by this compute and the kinetic energy calculated
by the ke or etotal keyword used in thermodynamic output, as specified by the thermo_style command. For
this compute, kinetic energy is "translational" and "radial" (only for electrons) kinetic energy, calculated by
the simple formula above. For thermodynamic output, the ke keyword infers kinetic energy from the
temperature of the system with 1/2 Kb T of energy for each degree of freedom. For the eFF temperature
computation via the compute temp_eff command, these are the same. But different computes that calculate
temperature can subtract out different non-thermal components of velocity and/or include other degrees of
freedom.

IMPRORTANT NOTE: The temperature in eFF models should be monitored via the compute temp/eff
command, which can be printed with thermodynamic output by using the thermo_modify command, as shown
in the following example:

compute effTemp all temp/eff
thermo_style custom step etotal pe ke temp press
thermo_modify temp effTemp

See compute temp/eff.

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.

Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

LIGGGHTS Users Manual

compute ke/eff command 133

http://lammps.sandia.gov

Related commands: none

Default: none

LIGGGHTS Users Manual

compute ke/eff command 134

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ke command

Syntax:

compute ID group-ID ke

ID, group-ID are documented in compute command•
ke = style name of this compute command•

Examples:

compute 1 all ke

Description:

Define a computation that calculates the translational kinetic energy of a group of particles.

The kinetic energy of each particle is computed as 1/2 m v^2, where m and v are the mass and velocity of the
particle.

There is a subtle difference between the quantity calculated by this compute and the kinetic energy calculated
by the ke or etotal keyword used in thermodynamic output, as specified by the thermo_style command. For
this compute, kinetic energy is "translational" kinetic energy, calculated by the simple formula above. For
thermodynamic output, the ke keyword infers kinetic energy from the temperature of the system with 1/2 Kb
T of energy for each degree of freedom. For the default temperature computation via the compute temp
command, these are the same. But different computes that calculate temperature can subtract out different
non-thermal components of velocity and/or include different degrees of freedom (translational, rotational,
etc).

Output info:

This compute calculates a global scalar (the summed KE). This value can be used by any command that uses a
global scalar value from a compute as input. See Section_howto 15 for an overview of LAMMPS output
options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.

Restrictions: none

Related commands:

compute erotate/sphere

Default: none

LIGGGHTS Users Manual

compute ke command 135

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute meso_e/atom command

Syntax:

compute ID group-ID meso_e/atom

ID, group-ID are documented in compute command•
meso_e/atom = style name of this compute command•

Examples:

compute 1 all meso_e/atom

Description:

Define a computation that calculates the per-atom internal energy for each atom in a group.

The internal energy is the energy associated with the internal degrees of freedom of a mesoscopic particles,
e.g. a Smooth-Particle Hydrodynamics particle.

See this PDF guide to using SPH in LAMMPS.

The value of the internal energy will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in energy units.

Restrictions:

This compute is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

dump custom

Default: none

LIGGGHTS Users Manual

compute meso_e/atom command 136

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute meso_rho/atom command

Syntax:

compute ID group-ID meso_rho/atom

ID, group-ID are documented in compute command•
meso_rho/atom = style name of this compute command•

Examples:

compute 1 all meso_rho/atom

Description:

Define a computation that calculates the per-atom mesoscopic density for each atom in a group.

The mesoscopic density is the mass density of a mesoscopic particle, calculated by kernel function
interpolation using "pair style sph/rhosum".

See this PDF guide to using SPH in LAMMPS.

The value of the mesoscopic density will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in mass/volume units.

Restrictions:

This compute is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

dump custom

Default: none

LIGGGHTS Users Manual

compute meso_rho/atom command 137

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute meso_t/atom command

Syntax:

compute ID group-ID meso_t/atom

ID, group-ID are documented in compute command•
meso_t/atom = style name of this compute command•

Examples:

compute 1 all meso_t/atom

Description:

Define a computation that calculates the per-atom internal temperature for each atom in a group.

The internal temperature is the ratio of internal energy over the heat capacity associated with the internal
degrees of freedom of a mesoscopic particles, e.g. a Smooth-Particle Hydrodynamics particle.

T_int = E_int / C_V, int

See this PDF guide to using SPH in LAMMPS.

The value of the internal energy will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in temperature units.

Restrictions:

This compute is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

dump custom

Default: none

LIGGGHTS Users Manual

compute meso_t/atom command 138

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute_modify command

Syntax:

compute_modify compute-ID keyword value ...

compute-ID = ID of the compute to modify•
one or more keyword/value pairs may be listed•
keyword = extra or dynamic

extra value = N
 N = # of extra degrees of freedom to subtract

dynamic value = yes or no
 yes/no = do or do not recompute the number of atoms contributing to the temperature

thermo value = yes or no
 yes/no = do or do not add contributions from fixes to the potential energy

•

Examples:

compute_modify myTemp extra 0
compute_modify newtemp dynamic yes extra 600

Description:

Modify one or more parameters of a previously defined compute. Not all compute styles support all
parameters.

The extra keyword refers to how many degrees-of-freedom are subtracted (typically from 3N) as a
normalizing factor in a temperature computation. Only computes that compute a temperature use this option.
The default is 2 or 3 for 2d or 3d systems which is a correction factor for an ensemble of velocities with zero
total linear momentum. You can use a negative number for the extra parameter if you need to add
degrees-of-freedom. See the compute temp/asphere command for an example.

The dynamic keyword determines whether the number of atoms N in the compute group is re-computed each
time a temperature is computed. Only compute styles that compute a temperature use this option. By default,
N is assumed to be constant. If you are adding atoms to the system (see the fix pour or fix deposit commands)
or expect atoms to be lost (e.g. due to evaporation), then this option can be used to insure the temperature is
correctly normalized.

The thermo keyword determines whether the potential energy contribution calculated by some fixes is added
to the potential energy calculated by the compute. Currently, only the compute of style pe uses this option.
See the doc pages for individual fixes for details.

Restrictions: none

Related commands:

compute

Default:

The option defaults are extra = 2 or 3 for 2d or 3d systems and dynamic = no. Thermo is yes if the compute of
style pe was defined with no extra keywords; otherwise it is no.

LIGGGHTS Users Manual

compute_modify command 139

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute msd command

Syntax:

compute ID group-ID msd keyword values ...

ID, group-ID are documented in compute command•
msd = style name of this compute command•
zero or more keyword/value pairs may be appended•
keyword = com

com value = yes or no

•

Examples:

compute 1 all msd
compute 1 upper msd com yes

Description:

Define a computation that calculates the mean-squared displacement (MSD) of the group of atoms, including
all effects due to atoms passing thru periodic boundaries. For computation of the non-Gaussian parameter of
mean-squared displacement, see the compute msd/nongauss command.

A vector of four quantites is calculated by this compute. The first 3 elements of the vector are the squared
dx,dy,dz displacements, summed and averaged over atoms in the group. The 4th element is the total squared
displacement, i.e. (dx*dx + dy*dy + dz*dz), summed and averaged over atoms in the group.

The slope of the mean-squared displacement (MSD) versus time is proportional to the diffusion coefficient of
the diffusing atoms.

The displacement of an atom is from its original position at the time the compute command was issued. The
value of the displacement will be 0.0 for atoms not in the specified compute group.

If the com option is set to yes then the effect of any drift in the center-of-mass of the group of atoms is
subtracted out before the displacment of each atom is calcluated.

IMPORTANT NOTE: Initial coordinates are stored in "unwrapped" form, by using the image flags associated
with each atom. See the dump custom command for a discussion of "unwrapped" coordinates. See the Atoms
section of the read_data command for a discussion of image flags and how they are set for each atom. You
can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the MSD may not reflect its true contribution. See the fix rigid command
for details. Thus, to compute the MSD of rigid bodies as they cross periodic boundaries, you will need to
post-process a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: If you want the quantities calculated by this compute to be continuous when running
from a restart file, then you should use the same ID for this compute, as in the original run. This is so that the
created fix will also have the same ID, and thus be initialized correctly with atom coordinates from the restart
file.

Output info:

LIGGGHTS Users Manual

compute msd command 140

http://lammps.sandia.gov

This compute calculates a global vector of length 4, which can be accessed by indices 1-4 by any command
that uses global vector values from a compute as input. See this section for an overview of LAMMPS output
options.

The vector values are "intensive". The vector values will be in distance^2 units.

Restrictions: none

Related commands:

compute msd/nongauss, compute displace_atom, fix store/state, compute msd/molecule

Default:

The option default is com = no.

LIGGGHTS Users Manual

compute msd command 141

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute msd/molecule command

Syntax:

compute ID group-ID msd/molecule

ID, group-ID are documented in compute command•
msd/molecule = style name of this compute command•

Examples:

compute 1 all msd/molecule

Description:

Define a computation that calculates the mean-squared displacement (MSD) of individual molecules. The
calculation includes all effects due to atoms passing thru periodic boundaries.

Four quantites are calculated by this compute for each molecule. The first 3 quantities are the squared
dx,dy,dz displacements of the center-of-mass. The 4th component is the total squared displacement, i.e.
(dx*dx + dy*dy + dz*dz) of the center-of-mass.

The slope of the mean-squared displacement (MSD) versus time is proportional to the diffusion coefficient of
the diffusing molecules.

The displacement of the center-of-mass of the molecule is from its original center-of-mass position at the time
the compute command was issued.

The MSD for a particular molecule is only computed if one or more of its atoms are in the specified group.
Normally all atoms in the molecule should be in the group, however this is not required. LAMMPS will warn
you if this is not the case. Only atoms in the group contribute to the center-of-mass calculation for the
molecule, which is used to caculate its initial and current position.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The initial coordinates of each molecule are stored in "unwrapped" form, by using the
image flags associated with each atom. See the dump custom command for a discussion of "unwrapped"
coordinates. See the Atoms section of the read_data command for a discussion of image flags and how they
are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set
image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the MSD may not reflect its true contribution. See the fix rigid command
for details. Thus, to compute the MSD of rigid bodies as they cross periodic boundaries, you will need to
post-process a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: Unlike the compute msd command, this compute does not store the initial
center-of-mass coorindates of its molecules in a restart file. Thus you cannot continue the MSD per molecule
calculation of this compute when running from a restart file.

LIGGGHTS Users Manual

compute msd/molecule command 142

http://lammps.sandia.gov

Output info:

This compute calculates a global array where the number of rows = Nmolecules and the number of columns =
4 for dx,dy,dz and the total displacement. These values can be accessed by any command that uses global
array values from a compute as input. See this section for an overview of LAMMPS output options.

The array values are "intensive". The array values will be in distance^2 units.

Restrictions: none

Related commands:

compute msd

Default: none

LIGGGHTS Users Manual

compute msd/molecule command 143

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute msd/nongauss command

Syntax:

compute ID group-ID msd/nongauss keyword values ...

ID, group-ID are documented in compute command•
msd/nongauss = style name of this compute command•
zero or more keyword/value pairs may be appended•
keyword = com

com value = yes or no

•

Examples:

compute 1 all msd/nongauss
compute 1 upper msd/nongauss com yes

Description:

Define a computation that calculates the mean-squared displacement (MSD) and non-Gaussian parameter
(NGP) of the group of atoms, including all effects due to atoms passing thru periodic boundaries.

A vector of three quantites is calculated by this compute. The first element of the vector is the total squared
dx,dy,dz displacements drsquared = (dx*dx + dy*dy + dz*dz) of atoms, and the second is the fourth power of
these displacements drfourth = (dx*dx + dy*dy + dz*dz)*(dx*dx + dy*dy + dz*dz), summed and averaged
over atoms in the group. The 3rd component is the nonGaussian diffusion paramter NGP =
3*drfourth/(5*drsquared*drsquared), i.e.

The NGP is a commonly used quantity in studies of dynamical heterogeneity. Its minimum theoretical value
(-0.4) occurs when all atoms have the same displacement magnitude. NGP=0 for Brownian diffusion, while
NGP > 0 when some mobile atoms move faster than others.

If the com option is set to yes then the effect of any drift in the center-of-mass of the group of atoms is
subtracted out before the displacment of each atom is calcluated.

See the compute msd doc page for further IMPORTANT NOTES, which also apply to this compute.

Output info:

This compute calculates a global vector of length 3, which can be accessed by indices 1-3 by any command
that uses global vector values from a compute as input. See this section for an overview of LAMMPS output
options.

The vector values are "intensive". The first vector value will be in distance^2 units, the second is in distance^4
units, and the 3rd is dimensionless.

Restrictions:

LIGGGHTS Users Manual

compute msd/nongauss command 144

http://lammps.sandia.gov

This compute is part of the MISC package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:

compute msd

Default:

The option default is com = no.

LIGGGHTS Users Manual

compute msd/nongauss command 145

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute nparticles/tracer/region command

Syntax:

compute ID group-ID nparticles/tracer/region

ID, group-ID are documented in compute command•
nparticles/tracer/region = style name of this compute command•
region_count = obligatory keyword•
region-ID = ID of region atoms must be in to be counted•
tracer = obligatory keyword•
tracer-ID = ID of a fix of type fix property/atom/tracer•
zero or more keyword/value pairs may be appended to args•
keyword = periodic or check_mark_every

periodic value = dim image
 dim = x or y or z
 image = image that a particle has to be in to be counted (any integer number or all)

reset_marker value = yes or no
 yes = un-mark particles after counting them
 no = do not un-mark particles after counting them

Examples:

compute nparticles all nparticles/tracer/region region_count count tracer tr periodic z -1

Description:

Define a computation that calculates the number and mass of marked and un-marked particles that are in
the region speficied via the region_count keyword. Particles have to be in the group "group-ID" to be
counted.

Note that only particles marked by a fix property/atom/tracer or fix property/atom/tracer/stream command
are counted - therefore, a valid ID of such a fix has to be provided via the tracer keyword.

The reset_marker keyword controls if particles are un-marked (default) after they have been counted once
by this command.

IMPORTANT NOTE: If multiple compute nparticles/tracer/region commands are operating on the same fix
property/atom/tracer commands, and the first compute resets the marker value, the second compute will not
count them.

With the periodic keyword, you can restrict counting/unmarking to particles which are in a specified image
in a periodic simulation. For example, using

periodic z +2

means that particles are only counted if they are in z-image #2. By default, all particles are
counted/unmarked regardless in which periodic image they are.

IMPORTANT NOTE: Currently, this command only supports one periodic boundary restriction via the
periodic keyword. If keyword periodic is used multiple times, the last setting will be applied.

Output info:

•

LIGGGHTS Users Manual

compute nparticles/tracer/region command 146

http://lammps.sandia.gov

This this compute calculates a global vector containing the following information (the number in brackets
corresponds to the vector id):
(1) total number of (marked + un-marked) particles in region•
(2) number of marked particles in region•
(3) total mass of (marked + un-marked) particles in region•
(4) mass of marked particles in region

See this section for an overview of LAMMPS output options.

Restrictions:

Currently, only one periodic restriction via the periodic keyword can be used.

Related commands:

fix property/atom/tracer

Default: reset_marker = yes, periodic is off per default

•

LIGGGHTS Users Manual

compute nparticles/tracer/region command 147

LIGGGHTS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

compute pair/gran/local command

compute wall/gran/local command

Syntax:

compute ID group-ID pair/gran/local keywords ...
compute ID group-ID wall/gran/local keywords ...

ID, group-ID are documented in compute command•
pair/gran/local or wall/gran/local = style name of this compute command•
zero or more keywords may be appended•
keyword = pos or id or force or torque or history or contactArea

pos = positions of particles in contact (6 values)
id = IDs of particles in contact and a periodicity flag (3 values) or IDs of the mesh, the triangle and the particle (3 values)
force = contact force (3 values)
torque = torque divided by particle diameter (3 values)
history = contact history (# depends on pair style, e.g. 3 shear history values)
contactArea = area of the contact (1 value)
heatFlux = conductive heat flux of the contact (1 value)

•

Examples:

compute 1 all pair/gran/local
compute 1 all pair/gran/local pos force
compute 1 all wall/gran/local

Description:

Define a computation that calculates properties of individual pairwise or particle-wall interactions of a
granular pair style. The number of datums generated, aggregated across all processors, equals the number of
pairwise interactions or particle-wall interactions in the system.

The local data stored by this command is generated by looping over the pairwise neighbor list. Info about an
individual pairwise interaction will only be included if both atoms in the pair are in the specified compute
group, and if the current pairwise distance is less than the force cutoff distance for that interaction, as defined
by the pair_style and pair_coeff commands.

IMPORTANT NOTE: For accessing particle-wall contact data, only mesh walls (see fix mesh) can be used.
For computing particle-wall (compute wall/gran/local), the code will automatically look for a fix wall/gran
command that uses mesh walls. The order of the meshes in the fix wall/gran command is called the mesh id
(starting with 0), and the triangle id reflects the order of the triangles in the STL/VTK file read via the
dedicated fix mesh command. For how to output the trangle id, see "dump mesh/gran/VTK
command"dump.html.

The output pos is the particle positions (6 values) in distance units. For computing pairwise data, the output id
will be the two particle IDs (using this option requires to use an atom map) and a flag that is 1 for interaction
over a periodic boundary and 0 otherwise. For computing particle-wall data, the output id will be the mesh id,
the triangle id and the particle id. The output force and torque are the contact force and the torque divided by
the particle radius, both in force units. Note that the torque does NOT contain any rolling friction torque. The
output history will depend on what this history represents, according to the granular pair style used. The
output contactArea will output the contact area, in distance^2 units. The output heatFlux (available only if a
fix heat/gran is used to compute heat fluxes) will output the per-contact conductive heat flux area, in

LIGGGHTS Users Manual

compute pair/gran/local command 148

http://www.cfdem.com

energy/time units.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, pair output from the compute property/local command can be combined with data
from this command and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of pairs. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns =
the number of keywords. The vector or array can be accessed by any command that uses local values from a
compute as input. See this section for an overview of LAMMPS output options.

For information on the units of the output, see above.

Restrictions:

Can only be used together with a granular pair style. For accessing particle-wall contact data, only mesh walls
can be used.

Related commands:

dump local, compute property/local, compute pair/local

Default:

By default, all of the outputs keywords (except the heat flux) are activated, i.e. when no keyword is used,
positions, ids, forces, torques, history and contact area are output.

LIGGGHTS Users Manual

compute wall/gran/local command 149

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pair command

Syntax:

compute ID group-ID pair pstyle evalue

ID, group-ID are documented in compute command•
pair = style name of this compute command•
pstyle = style name of a pair style that calculates additional values•
evalue = epair or evdwl or ecoul or blank (optional setting)•

Examples:

compute 1 all pair gauss
compute 1 all pair lj/cut/coul/cut ecoul
compute 1 all pair reax

Description:

Define a computation that extracts additional values calculated by a pair style, sums them across processors,
and makes them accessible for output or further processing by other commands. The group specified for this
command is ignored.

The specified pstyle must be a pair style used in your simulation either by itself or as a sub-style in a
pair_style hybrid or hybrid/overlay command.

The evalue setting is optional; it may be left off the command. All pair styles tally a potential energy epair
which may be broken into two parts: evdwl and ecoul such that epair = evdwl + ecoul. If the pair style
calculates Coulombic interactions, their energy will be tallied in ecoul. Everything else (whether it is a
Lennard-Jones style van der Waals interaction or not) is tallied in evdwl. If evalue is specified as epair or left
out, then epair is stored as a global scalar by this compute. This is useful when using pair_style hybrid if you
want to know the portion of the total energy contributed by one sub-style. If evalue is specfied as evdwl or
ecoul, then just that portion of the energy is stored as a global scalar.

Some pair styles tally additional quantities, e.g. a breakdown of potential energy into a dozen or so
components is tallied by the pair_style reax commmand. These values (1 or more) are stored as a global
vector by this compute. See the doc page for individual pair styles for info on these values.

Output info:

This compute calculates a global scalar which is epair or evdwl or ecoul. If the pair style supports it, it also
calculates a global vector of length >= 1, as determined by the pair style. These values can be used by any
command that uses global scalar or vector values from a compute as input. See this section for an overview of
LAMMPS output options.

The scalar and vector values calculated by this compute are "extensive".

The scalar value will be in energy units. The vector values will typically also be in energy units, but see the
doc page for the pair style for details.

Restrictions: none

Related commands:

LIGGGHTS Users Manual

compute pair command 150

http://lammps.sandia.gov

compute pe

Default:

The default for evalue is epair.

LIGGGHTS Users Manual

compute pair command 151

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pair/local command

Syntax:

compute ID group-ID pair/local input1 input2 ...

ID, group-ID are documented in compute command•
pair/local = style name of this compute command•
zero or more keywords may be appended•
keyword = dist or eng or force or fx or fy or fz or pN

dist = pairwise distance
eng = pairwise energy
force = pairwise force
fx,fy,fz = components of pairwise force
pN = pair style specific quantities for allowed N values

•

Examples:

compute 1 all pair/local eng
compute 1 all pair/local dist eng force
compute 1 all pair/local dist eng fx fy fz
compute 1 all pair/local dist fx fy fz p1 p2 p3

Description:

Define a computation that calculates properties of individual pairwise interactions. The number of datums
generated, aggregated across all processors, equals the number of pairwise interactions in the system.

The local data stored by this command is generated by looping over the pairwise neighbor list. Info about an
individual pairwise interaction will only be included if both atoms in the pair are in the specified compute
group, and if the current pairwise distance is less than the force cutoff distance for that interaction, as defined
by the pair_style and pair_coeff commands.

The output dist is the distance bewteen the pair of atoms.

The output eng is the interaction energy for the pair of atoms.

The output force is the force acting between the pair of atoms, which is positive for a repulsive force and
negative for an attractive force. The outputs fx, fy, and fz are the xyz components of force on atom I.

A pair style may define additional pairwise quantities which can be accessed as p1 to pN, where N is defined
by the pair style. Most pair styles do not define any additional quantities, so N = 0. An example of ones that
do are the granular pair styles which calculate the tangential force between two particles and return its
components and magnitude acting on atom I for N = 1,2,3,4. See individual pair styles for detils.

The output dist will be in distance units. The output eng will be in energy units. The outputs force, fx, fy, and
fz will be in force units. The output pN will be in whatever units the pair style defines.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, pair output from the compute property/local command can be combined with data
from this command and output by the dump local command in a consistent way.

LIGGGHTS Users Manual

compute pair/local command 152

http://lammps.sandia.gov

IMPORTANT NOTE: For pairs, if two atoms I,J are involved in 1-2, 1-3, 1-4 interactions within the
molecular topology, their pairwise interaction may be turned off, and thus they may not appear in the neighbor
list, and will not be part of the local data created by this command. More specifically, this may be true of I,J
pairs with a weighting factor of 0.0; pairs with a non-zero weighting factor are included. The weighting
factors for 1-2, 1-3, and 1-4 pairwise interactions are set by the special_bonds command.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of pairs. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns =
the number of keywords. The vector or array can be accessed by any command that uses local values from a
compute as input. See this section for an overview of LAMMPS output options.

The output for dist will be in distance units. The output for eng will be in energy units. The output for force
will be in force units.

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

LIGGGHTS Users Manual

compute pair/local command 153

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pe/atom command

Syntax:

compute ID group-ID pe/atom keyword ...

ID, group-ID are documented in compute command•
pe/atom = style name of this compute command•
zero or more keywords may be appended•
keyword = pair or bond or angle or dihedral or improper or kspace•

Examples:

compute 1 all pe/atom
compute 1 all pe/atom pair
compute 1 all pe/atom pair bond

Description:

Define a computation that computes the per-atom potential energy for each atom in a group. See the compute
pe command if you want the potential energy of the entire system.

The per-atom energy is calculated by the various pair, bond, etc potentials defined for the simulation. If no
extra keywords are listed, then the potential energy is the sum of pair, bond, angle, dihedral,improper, and
kspace energy. If any extra keywords are listed, then only those components are summed to compute the
potential energy.

Note that the energy of each atom is due to its interaction with all other atoms in the simulation, not just with
other atoms in the group.

For an energy contribution produced by a small set of atoms (e.g. 4 atoms in a dihedral or 3 atoms in a Tersoff
3-body interaction), that energy is assigned in equal portions to each atom in the set. E.g. 1/4 of the dihedral
energy to each of the 4 atoms.

The dihedral_style charmm style calculates pairwise interactions between 1-4 atoms. The energy contribution
of these terms is included in the pair energy, not the dihedral energy.

The KSpace contribution is calculated using the method in (Heyes) for the Ewald method and a related
method for PPPM, as specified by the kspace_style pppm command. For PPPM, the calcluation requires 1
extra FFT each timestep that per-atom energy is calculated. Thie document describes how the long-range
per-atom energy calculation is performed.

As an example of per-atom potential energy compared to total potential energy, these lines in an input script
should yield the same result in the last 2 columns of thermo output:

compute peratom all pe/atom
compute pe all reduce sum c_peratom
thermo_style custom step temp etotal press pe c_pe

IMPORTANT NOTE: The per-atom energy does not any Lennard-Jones tail corrections invoked by the
pair_modify tail yes command, since those are global contributions to the system energy.

Output info:

LIGGGHTS Users Manual

compute pe/atom command 154

http://lammps.sandia.gov

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in energy units.

Restrictions:

Related commands:

compute pe, compute stress/atom

Default: none

(Heyes) Heyes, Phys Rev B 49, 755 (1994),

LIGGGHTS Users Manual

compute pe/atom command 155

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pe command

compute pe/cuda command

Syntax:

compute ID group-ID pe keyword ...

ID, group-ID are documented in compute command•
pe = style name of this compute command•
zero or more keywords may be appended•
keyword = pair or bond or angle or dihedral or improper or kspace•

Examples:

compute 1 all pe
compute molPE all pe bond angle dihedral improper

Description:

Define a computation that calculates the potential energy of the entire system of atoms. The specified group
must be "all". See the compute pe/atom command if you want per-atom energies. These per-atom values could
be summed for a group of atoms via the compute reduce command.

The energy is calculated by the various pair, bond, etc potentials defined for the simulation. If no extra
keywords are listed, then the potential energy is the sum of pair, bond, angle, dihedral, improper, and kspace
(long-range) energy. If any extra keywords are listed, then only those components are summed to compute the
potential energy.

The Kspace contribution requires 1 extra FFT each timestep the energy is calculated, if using the PPPM solver
via the kspace_style pppm command. Thus it can increase the cost of the PPPM calculation if it is needed on a
large fraction of the simulation timesteps.

Various fixes can contribute to the total potential energy of the system. See the doc pages for individual fixes
for details. The thermo option of the compute_modify command determines whether these contributions are
added into the computed potential energy. If no keywords are specified the default is yes. If any keywords are
specified, the default is no.

A compute of this style with the ID of "thermo_pe" is created when LAMMPS starts up, as if this command
were in the input script:

compute thermo_pe all pe

See the "thermo_style" command for more details.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

LIGGGHTS Users Manual

compute pe command 156

http://lammps.sandia.gov

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Output info:

This compute calculates a global scalar (the potential energy). This value can be used by any command that
uses a global scalar value from a compute as input. See Section_howto 15 for an overview of LAMMPS
output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.

Restrictions: none

Related commands:

compute pe/atom

Default: none

LIGGGHTS Users Manual

compute pe/cuda command 157

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pressure command

compute pressure/cuda command

Syntax:

compute ID group-ID pressure temp-ID keyword ...

ID, group-ID are documented in compute command•
pressure = style name of this compute command•
temp-ID = ID of compute that calculates temperature•
zero or more keywords may be appended•
keyword = ke or pair or bond or angle or dihedral or improper or kspace or fix or virial•

Examples:

compute 1 all pressure myTemp
compute 1 all pressure thermo_temp pair bond

Description:

Define a computation that calculates the pressure of the entire system of atoms. The specified group must be
"all". See the compute stress/atom command if you want per-atom pressure (stress). These per-atom values
could be summed for a group of atoms via the compute reduce command.

The pressure is computed by the formula

where N is the number of atoms in the system (see discussion of DOF below), Kb is the Boltzmann constant,
T is the temperature, d is the dimensionality of the system (2 or 3 for 2d/3d), V is the system volume (or area
in 2d), and the second term is the virial, computed within LAMMPS for all pairwise as well as 2-body,
3-body, and 4-body, and long-range interactions. Fixes that impose constraints (e.g. the fix shake command)
also contribute to the virial term.

A symmetric pressure tensor, stored as a 6-element vector, is also calculated by this compute. The 6
components of the vector are ordered xx, yy, zz, xy, xz, yz. The equation for the I,J components (where I and
J = x,y,z) is similar to the above formula, except that the first term uses components of the kinetic energy
tensor and the second term uses components of the virial tensor:

LIGGGHTS Users Manual

compute pressure command 158

http://lammps.sandia.gov

If no extra keywords are listed, the entire equations above are calculated which include a kinetic energy
(temperature) term and the virial as the sum of pair, bond, angle, dihedral, improper, kspace (long-range), and
fix contributions to the force on each atom. If any extra keywords are listed, then only those components are
summed to compute temperature or ke and/or the virial. The virial keyword means include all terms except
the kinetic energy ke.

The temperature and kinetic energy tensor is not calculated by this compute, but rather by the temperature
compute specified with the command. Normally this compute should calculate the temperature of all atoms
for consistency with the virial term, but any compute style that calculates temperature can be used, e.g. one
that excludes frozen atoms or other degrees of freedom.

Note that the N in the first formula above is really degrees-of-freedom divided by d = dimensionality, where
the DOF value is calcluated by the temperature compute. See the various compute temperature styles for
details.

A compute of this style with the ID of "thermo_press" is created when LAMMPS starts up, as if this
command were in the input script:

compute thermo_press all pressure thermo_temp

where "thermo_temp" is the ID of a similarly defined compute of style "temp". See the "thermo_style"
command for more details.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Output info:

This compute calculates a global scalar (the pressure) and a global vector of length 6 (pressure tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar and vector values calculated by this compute are "intensive". The scalar and vector values will be
in pressure units.

Restrictions: none

Related commands:

compute temp, compute stress/atom, thermo_style,

Default: none

LIGGGHTS Users Manual

compute pressure/cuda command 159

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute property/atom command

Syntax:

compute ID group-ID property/atom input1 input2 ...

ID, group-ID are documented in compute command•
property/atom = style name of this compute command•
input = one or more atom attributes

 possible attributes = id, mol, type, mass,
 x, y, z, xs, ys, zs, xu, yu, zu, ix, iy, iz,
 vx, vy, vz, fx, fy, fz,
 q, mux, muy, muz, mu,
 radius, diameter, omegax, omegay, omegaz,
 angmomx, angmomy, angmomz,
 shapex,shapey, shapez,
 quatw, quati, quatj, quatk, tqx, tqy, tqz,
 spin, eradius, ervel, erforce
 end1x, end1y, end1z, end2x, end2y, end2z,
 corner1x, corner1y, corner1z,
 corner2x, corner2y, corner2z,
 corner3x, corner3y, corner3z,
 i_name, d_name

 id = atom ID
 mol = molecule ID
 type = atom type
 mass = atom mass
 x,y,z = unscaled atom coordinates
 xs,ys,zs = scaled atom coordinates
 xu,yu,zu = unwrapped atom coordinates
 ix,iy,iz = box image that the atom is in
 vx,vy,vz = atom velocities
 fx,fy,fz = forces on atoms
 q = atom charge
 mux,muy,muz = orientation of dipole moment of atom
 mu = magnitude of dipole moment of atom
 radius,diameter = radius,diameter of spherical particle
 omegax,omegay,omegaz = angular velocity of spherical particle
 angmomx,angmomy,angmomz = angular momentum of aspherical particle
 shapex,shapey,shapez = 3 diameters of aspherical particle
 quatw,quati,quatj,quatk = quaternion components for aspherical or body particles
 tqx,tqy,tqz = torque on finite-size particles
 spin = electron spin
 eradius = electron radius
 ervel = electron radial velocity
 erforce = electron radial force
 end12x, end12y, end12z = end points of line segment
 coner123x, corner123y, corner123z = corner points of triangle
 i_name = custom integer vector with name
 d_name = custom integer vector with name

•

Examples:

compute 1 all property/atom xs vx fx mux
compute 2 all property/atom type
compute 1 all property/atom ix iy iz

Description:

LIGGGHTS Users Manual

compute property/atom command 160

http://lammps.sandia.gov

Define a computation that simply stores atom attributes for each atom in the group. This is useful so that the
values can be used by other output commands that take computes as inputs. See for example, the compute
reduce, fix ave/atom, fix ave/histo, fix ave/spatial, and atom-style variable commands.

The list of possible attributes is the same as that used by the dump custom command, which describes their
meaning, with some additional quantities that are only defined for certain atom styles. Basically, this list gives
your input script access to any per-atom quantity stored by LAMMPS.

The values are stored in a per-atom vector or array as discussed below. Zeroes are stored for atoms not in the
specified group or for quantities that are not defined for a particular particle in the group (e.g. shapex if the
particle is not an ellipsoid).

The additional quantities only accessible via this command, and not directly via the dump custom command,
are as follows.

Shapex, shapey, and shapez are defined for ellipsoidal particles and define the 3d shape of each particle.

Quatw, quati, quatj, and quatk are defined for ellipsoidal particles and body particles and store the 4-vector
quaternion representing the orientation of each particle. See the set command for an explanation of the
quaternion vector.

End1x, end1y, end1z, end2x, end2y, end2z, are defined for line segment particles and define the end points of
each line segment.

Corner1x, corner1y, corner1z, corner2x, corner2y, corner2z, corner3x, corner3y, corner3z, are defined for
triangular particles and define the corner points of each triangle.

The i_name and d_name attributes refer to custom integer and floating-point properties that have been added
to each atom via the fix property/atom command. When that command is used specific names are given to
each attribute which are what is specified as the "name" portion of i_name or d_name.

Output info:

This compute calculates a per-atom vector or per-atom array depending on the number of input values. If a
single input is specified, a per-atom vector is produced. If two or more inputs are specified, a per-atom array is
produced where the number of columns = the number of inputs. The vector or array can be accessed by any
command that uses per-atom values from a compute as input. See this section for an overview of LAMMPS
output options.

The vector or array values will be in whatever units the corresponding attribute is in, e.g. velocity units for vx,
charge units for q, etc.

Restrictions: none

Related commands:

dump custom, compute reduce, fix ave/atom, fix ave/spatial, fix property/atom

Default: none

LIGGGHTS Users Manual

compute property/atom command 161

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute property/local command

Syntax:

compute ID group-ID property/local input1 input2 ...

ID, group-ID are documented in compute command•
property/local = style name of this compute command•
input = one or more attributes

 possible attributes = natom1 natom2 ntype1 ntype2
 patom1 patom2 ptype1 ptype2
 batom1 batom2 btype
 aatom1 aatom2 aatom3 atype
 datom1 datom2 datom3 dtype
 iatom1 iatom2 iatom3 itype

 natom1, natom2 = IDs of 2 atoms in each pair (within neighbor cutoff)
 ntype1, ntype2 = type of 2 atoms in each pair (within neighbor cutoff)
 patom1, patom2 = IDs of 2 atoms in each pair (within force cutoff)
 ptype1, ptype2 = type of 2 atoms in each pair (within force cutoff)
 batom1, batom2 = IDs of 2 atoms in each bond
 btype = bond type of each bond
 aatom1, aatom2, aatom3 = IDs of 3 atoms in each angle
 atype = angle type of each angle
 datom1, datom2, datom3, datom4 = IDs of 4 atoms in each dihedral
 dtype = dihedral type of each dihedral
 iatom1, iatom2, iatom3, iatom4 = IDs of 4 atoms in each improper
 itype = improper type of each improper

•

Examples:

compute 1 all property/local btype batom1 batom2
compute 1 all property/local atype aatom2

Description:

Define a computation that stores the specified attributes as local data so it can be accessed by other output
commands. If the input attributes refer to bond information, then the number of datums generated, aggregated
across all processors, equals the number of bonds in the system. Ditto for pairs, angles, etc.

If multiple input attributes are specified then they must all generate the same amount of information, so that
the resulting local array has the same number of rows for each column. This means that only bond attributes
can be specified together, or angle attributes, etc. Bond and angle attributes can not be mixed in the same
compute property/local command.

If the inputs are pair attributes, the local data is generated by looping over the pairwise neighbor list. Info
about an individual pairwise interaction will only be included if both atoms in the pair are in the specified
compute group. For natom1 and natom2, all atom pairs in the neighbor list are considered (out to the neighbor
cutoff = force cutoff + neighbor skin). For patom1 and patom2, the distance between the atoms must be less
than the force cutoff distance for that pair to be included, as defined by the pair_style and pair_coeff
commands.

If the inputs are bond, angle, etc attributes, the local data is generated by looping over all the atoms owned on
a processor and extracting bond, angle, etc info. For bonds, info about an individual bond will only be
included if both atoms in the bond are in the specified compute group. Likewise for angles, dihedrals, etc.

LIGGGHTS Users Manual

compute property/local command 162

http://lammps.sandia.gov

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, output from the compute bond/local command can be combined with bond atom
indices from this command and output by the dump local command in a consistent way.

The natom1 and natom2, or patom1 and patom2 attributes refer to the atom IDs of the 2 atoms in each
pairwise interaction computed by the pair_style command. The ntype1 and ntype2, or ptype1 and ptype2
attributes refer to the atom types of the 2 atoms in each pairwise interaction.

IMPORTANT NOTE: For pairs, if two atoms I,J are involved in 1-2, 1-3, 1-4 interactions within the
molecular topology, their pairwise interaction may be turned off, and thus they may not appear in the neighbor
list, and will not be part of the local data created by this command. More specifically, this may be true of I,J
pairs with a weighting factor of 0.0; pairs with a non-zero weighting factor are included. The weighting
factors for 1-2, 1-3, and 1-4 pairwise interactions are set by the special_bonds command.

The batom1 and batom2 attributes refer to the atom IDs of the 2 atoms in each bond. The btype attribute refers
to the type of the bond, from 1 to Nbtypes = # of bond types. The number of bond types is defined in the data
file read by the read_data command.

The attributes that start with "a", "d", "i", refer to similar values for angles, dihedrals, and impropers.

Output info:

This compute calculates a local vector or local array depending on the number of input values. The length of
the vector or number of rows in the array is the number of bonds, angles, etc. If a single input is specified, a
local vector is produced. If two or more inputs are specified, a local array is produced where the number of
columns = the number of inputs. The vector or array can be accessed by any command that uses local values
from a compute as input. See this section for an overview of LAMMPS output options.

The vector or array values will be integers that correspond to the specified attribute.

Restrictions: none

Related commands:

dump local, compute reduce

Default: none

LIGGGHTS Users Manual

compute property/local command 163

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute property/molecule command

Syntax:

compute ID group-ID property/molecule input1 input2 ...

ID, group-ID are documented in compute command•
property/molecule = style name of this compute command•
input = one or more attributes

 possible attributes = mol cout
 mol = molecule ID
 count = # of atoms in molecule

•

Examples:

compute 1 all property/molecule mol

Description:

Define a computation that stores the specified attributes as global data so it can be accessed by other output
commands and used in conjunction with other commands that generate per-molecule data, such as compute
com/molecule and compute msd/molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

The mol attribute is the molecule ID. This attribute can be used to produce molecule IDs as labels for
per-molecule datums generated by other computes or fixes when they are output to a file, e.g. by the fix
ave/time command.

The count attribute is the number of atoms in the molecule.

Output info:

This compute calculates a global vector or global array depending on the number of input values. The length
of the vector or number of rows in the array is the number of molecules. If a single input is specified, a global
vector is produced. If two or more inputs are specified, a global array is produced where the number of
columns = the number of inputs. The vector or array can be accessed by any command that uses global values
from a compute as input. See this section for an overview of LAMMPS output options.

The vector or array values will be integers that correspond to the specified attribute.

Restrictions: none

Related commands: none

Default: none

LIGGGHTS Users Manual

compute property/molecule command 164

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute rdf command

Syntax:

compute ID group-ID rdf Nbin itype1 jtype1 itype2 jtype2 ...

ID, group-ID are documented in compute command•
rdf = style name of this compute command•
Nbin = number of RDF bins•
itypeN = central atom type for Nth RDF histogram (see asterisk form below)•
jtypeN = distribution atom type for Nth RDF histogram (see asterisk form below)•

Examples:

compute 1 all rdf 100
compute 1 all rdf 100 1 1
compute 1 all rdf 100 * 3
compute 1 fluid rdf 500 1 1 1 2 2 1 2 2
compute 1 fluid rdf 500 1*3 2 5 *10

Description:

Define a computation that calculates the radial distribution function (RDF), also called g(r), and the
coordination number for a group of particles. Both are calculated in histogram form by binning pairwise
distances into Nbin bins from 0.0 to the maximum force cutoff defined by the pair_style command. The bins
are of uniform size in radial distance. Thus a single bin encompasses a thin shell of distances in 3d and a thin
ring of distances in 2d.

IMPORTANT NOTE: If you have a bonded system, then the settings of special_bonds command can remove
pairwise interactions between atoms in the same bond, angle, or dihedral. This is the default setting for the
special_bonds command, and means those pairwise interactions do not appear in the neighbor list. Because
this fix uses the neighbor list, it also means those pairs will not be included in the RDF. One way to get
around this, is to write a dump file, and use the rerun command to compute the RDF for snapshots in the
dump file. The rerun script can use a special_bonds command that includes all pairs in the neighbor list.

The itypeN and jtypeN arguments are optional. These arguments must come in pairs. If no pairs are listed, then
a single histogram is computed for g(r) between all atom types. If one or more pairs are listed, then a separate
histogram is generated for each itype,jtype pair.

The itypeN and jtypeN settings can be specified in one of two ways. An explicit numeric value can be used, as
in the 4th example above. Or a wild-card asterisk can be used to specify a range of atom types. This takes the
form "*" or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values
means all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk
means all types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

If both itypeN and jtypeN are single values, as in the 4th example above, this means that a g(r) is computed
where atoms of type itypeN are the central atom, and atoms of type jtypeN are the distribution atom. If either
itypeN and jtypeN represent a range of values via the wild-card asterisk, as in the 5th example above, this
means that a g(r) is computed where atoms of any of the range of types represented by itypeN are the central
atom, and atoms of any of the range of types represented by jtypeN are the distribution atom.

Pairwise distances are generated by looping over a pairwise neighbor list, just as they would be in a pair_style
computation. The distance between two atoms I and J is included in a specific histogram if the following

LIGGGHTS Users Manual

compute rdf command 165

http://lammps.sandia.gov

criteria are met:

atoms I,J are both in the specified compute group•
the distance between atoms I,J is less than the maximum force cutoff•
the type of the I atom matches itypeN (one or a range of types)•
the type of the J atom matches jtypeN (one or a range of types)•

It is OK if a particular pairwise distance is included in more than one individual histogram, due to the way the
itypeN and jtypeN arguments are specified.

The g(r) value for a bin is calculated from the histogram count by scaling it by the idealized number of how
many counts there would be if atoms of type jtypeN were uniformly distributed. Thus it involves the count of
itypeN atoms, the count of jtypeN atoms, the volume of the entire simulation box, and the volume of the bin's
thin shell in 3d (or the area of the bin's thin ring in 2d).

A coordination number coord(r) is also calculated, which is the number of atoms of type jtypeN within the
current bin or closer, averaged over atoms of type itypeN. This is calculated as the area- or volume-weighted
sum of g(r) values over all bins up to and including the current bin, multiplied by the global average volume
density of atoms of type jtypeN.

The simplest way to output the results of the compute rdf calculation to a file is to use the fix ave/time
command, for example:

compute myRDF all rdf 50
fix 1 all ave/time 100 1 100 c_myRDF file tmp.rdf mode vector

Output info:

This compute calculates a global array with the number of rows = Nbins, and the number of columns = 1 +
2*Npairs, where Npairs is the number of I,J pairings specified. The first column has the bin coordinate (center
of the bin), Each successive set of 2 columns has the g(r) and coord(r) values for a specific set of itypeN
versus jtypeN interactions, as described above. These values can be used by any command that uses a global
values from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The array values calculated by this compute are all "intensive".

The first column of array values will be in distance units. The g(r) columns of array values are normalized
numbers >= 0.0. The coordination number columns of array values are also numbers >= 0.0.

Restrictions:

The RDF is not computed for distances longer than the force cutoff, since processors (in parallel) don't know
about atom coordinates for atoms further away than that distance. If you want an RDF for larger distances,
you can use the rerun command to post-process a dump file. The definition of g(r) used by LAMMPS is only
appropriate for characterizing atoms that are uniformly distributed throughout the simulation cell. In such
cases, the coordination number is still correct and meaningful. As an example, if a large simulation cell
contains only one atom of type itypeN and one of jtypeN, then g(r) will register an arbitrarily large spike at
whatever distance they happen to be at, and zero everywhere else. coord(r) will show a step change from zero
to one at the location of the spike in g(r).

Related commands:

fix ave/time

Default: none

LIGGGHTS Users Manual

compute rdf command 166

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute reduce command

compute reduce/region command

Syntax:

compute ID group-ID style arg mode input1 input2 ... keyword args ...

ID, group-ID are documented in compute command•
style = reduce or reduce/region

reduce arg = none
reduce/region arg = region-ID

 region-ID = ID of region to use for choosing atoms

•

mode = sum or min or max or ave•
one or more inputs can be listed•
input = x, y, z, vx, vy, vz, fx, fy, fz, c_ID, c_ID[N], f_ID, f_ID[N], v_name

 x,y,z,vx,vy,vz,fx,fy,fz = atom attribute (position, velocity, force component)
 c_ID = per-atom or local vector calculated by a compute with ID
 c_ID[I] = Ith column of per-atom or local array calculated by a compute with ID
 f_ID = per-atom or local vector calculated by a fix with ID
 f_ID[I] = Ith column of per-atom or local array calculated by a fix with ID
 v_name = per-atom vector calculated by an atom-style variable with name

•

zero or more keyword/args pairs may be appended•
keyword = replace

replace args = vec1 vec2
 vec1 = reduced value from this input vector will be replaced
 vec2 = replace it with vec1[N] where N is index of max/min value from vec2

•

Examples:

compute 1 all reduce sum c_force
compute 1 all reduce/region subbox sum c_force
compute 2 all reduce min c_press2 f_ave v_myKE
compute 3 fluid reduce max c_index1 c_index2 c_dist replace 1 3 replace 2 3

Description:

Define a calculation that "reduces" one or more vector inputs into scalar values, one per listed input. The
inputs can be per-atom or local quantities; they cannot be global quantities. Atom attributes are per-atom
quantities, computes and fixes may generate any of the three kinds of quantities, and atom-style variables
generate per-atom quantities. See the variable command and its special functions which can perform the same
operations as the compute reduce command on global vectors.

The reduction operation is specified by the mode setting. The sum option adds the values in the vector into a
global total. The min or max options find the minimum or maximum value across all vector values. The ave
setting adds the vector values into a global total, then divides by the number of values in the vector.

Each listed input is operated on independently. For per-atom inputs, the group specified with this command
means only atoms within the group contribute to the result. For per-atom inputs, if the compute reduce/region
command is used, the atoms must also currently be within the region. Note that an input that produces
per-atom quantities may define its own group which affects the quantities it returns. For example, if a
compute is used as an input which generates a per-atom vector, it will generate values of 0.0 for atoms that are

LIGGGHTS Users Manual

compute reduce command 167

http://lammps.sandia.gov

not in the group specified for that compute.

Each listed input can be an atom attribute (position, velocity, force component) or can be the result of a
compute or fix or the evaluation of an atom-style variable.

The atom attribute values (x,y,z,vx,vy,vz,fx,fy,fz) are self-explanatory. Note that other atom attributes can be
used as inputs to this fix by using the compute property/atom command and then specifying an input value
from that compute.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script.
Computes can generate per-atom or local quantities. See the individual compute doc page for details. If no
bracketed integer is appended, the vector calculated by the compute is used. If a bracketed integer is
appended, the Ith column of the array calculated by the compute is used. Users can also write code for their
own compute styles and add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. Fixes
can generate per-atom or local quantities. See the individual fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with when compute reduce references the
values, else an error results. If no bracketed integer is appended, the vector calculated by the fix is used. If a
bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can also write
code for their own fix style and add them to LAMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input
script. It must be an atom-style variable. Atom-style variables can reference thermodynamic keywords and
various per-atom attributes, or invoke other computes, fixes, or variables when they are evaluated, so this is a
very general means of generating per-atom quantities to reduce.

If the replace keyword is used, two indices vec1 and vec2 are specified, where each index ranges from 1 to the
of input values. The replace keyword can only be used if the mode is min or max. It works as follows. A
min/max is computed as usual on the vec2 input vector. The index N of that value within vec2 is also stored.
Then, instead of performing a min/max on the vec1 input vector, the stored index is used to select the Nth
element of the vec1 vector.

Thus, for example, if you wish to use this compute to find the bond with maximum stretch, you can do it as
follows:

compute 1 all property/local batom1 batom2
compute 2 all bond/local dist
compute 3 all reduce max c_1[1] c_1[2] c_2 replace 1 3 replace 2 3
thermo_style custom step temp c_3[1] c_3[2] c_3[3]

The first two input values in the compute reduce command are vectors with the IDs of the 2 atoms in each
bond, using the compute property/local command. The last input value is bond distance, using the compute
bond/local command. Instead of taking the max of the two atom ID vectors, which does not yield useful
information in this context, the replace keywords will extract the atom IDs for the two atoms in the bond of
maximum stretch. These atom IDs and the bond stretch will be printed with thermodynamic output.

If a single input is specified this compute produces a global scalar value. If multiple inputs are specified, this
compute produces a global vector of values, the length of which is equal to the number of inputs specified.

As discussed below, for sum mode, the value(s) produced by this compute are all "extensive", meaning their
value scales linearly with the number of atoms involved. If normalized values are desired, this compute can be
accessed by the thermo_style custom command with thermo_modify norm yes set as an option. Or it can be
accessed by a variable that divides by the appropriate atom count.

LIGGGHTS Users Manual

compute reduce/region command 168

Output info:

This compute calculates a global scalar if a single input value is specified or a global vector of length N where
N is the number of inputs, and which can be accessed by indices 1 to N. These values can be used by any
command that uses global scalar or vector values from a compute as input. See Section_howto 15 for an
overview of LAMMPS output options.

All the scalar or vector values calculated by this compute are "intensive", except when the sum mode is used
on per-atom or local vectors, in which case the calculated values are "extensive".

The scalar or vector values will be in whatever units the quantities being reduced are in.

Restrictions: none

Related commands:

compute, fix, variable

Default: none

LIGGGHTS Users Manual

compute reduce/region command 169

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute slice command

Syntax:

compute ID group-ID slice Nstart Nstop Nskip input1 input2 ...

ID, group-ID are documented in compute command•
slice = style name of this compute command•
Nstart = starting index within input vector(s)•
Nstop = stopping index within input vector(s)•
Nskip = extract every Nskip elements from input vector(s)•
input = c_ID, c_ID[N], f_ID, f_ID[N]

 c_ID = global vector calculated by a compute with ID
 c_ID[I] = Ith column of global array calculated by a compute with ID
 f_ID = global vector calculated by a fix with ID
 f_ID[I] = Ith column of global array calculated by a fix with ID

•

Examples:

compute 1 all slice 1 100 10 c_msdmol[4]
compute 1 all slice 301 400 1 c_msdmol[4]

Description:

Define a calculation that "slices" one or more vector inputs into smaller vectors, one per listed input. The
inputs can be global quantities; they cannot be per-atom or local quantities. Computes and fixes may generate
any of the three kinds of quantities. Variables do not generate global vectors. The group specified with this
command is ignored.

The values extracted from the input vector(s) are determined by the Nstart, Nstop, and Nskip parameters. The
elements of an input vector of length N are indexed from 1 to N. Starting at element Nstart, every Mth
element is extracted, where M = Nskip, until element Nstop is reached. The extracted quantities are stored as a
vector, which is typically shorter than the input vector.

Each listed input is operated on independently to produce one output vector. Each listed input must be a
global vector or column of a global array calculated by another compute or fix.

If an input value begins with "c_", a compute ID must follow which has been previously defined in the input
script and which generates a global vector or array. See the individual compute doc page for details. If no
bracketed integer is appended, the vector calculated by the compute is used. If a bracketed integer is
appended, the Ith column of the array calculated by the compute is used. Users can also write code for their
own compute styles and add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script and
which generates a global vector or array. See the individual fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with when compute slice references the
values, else an error results. If no bracketed integer is appended, the vector calculated by the fix is used. If a
bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can also write
code for their own fix style and add them to LAMMPS.

If a single input is specified this compute produces a global vector, even if the length of the vector is 1. If
multiple inputs are specified, then a global array of values is produced, with the number of columns equal to

LIGGGHTS Users Manual

compute slice command 170

http://lammps.sandia.gov

the number of inputs specified.

Output info:

This compute calculates a global vector if a single input value is specified or a global array with N columns
where N is the number of inputs. The length of the vector or the number of rows in the array is equal to the
number of values extracted from each input vector. These values can be used by any command that uses
global vector or array values from a compute as input. See this section for an overview of LAMMPS output
options.

The vector or array values calculated by this compute are simply copies of values generated by computes or
fixes that are input vectors to this compute. If there is a single input vector of intensive and/or extensive
values, then each value in the vector of values calculated by this compute will be "intensive" or "extensive",
depending on the corresponding input value. If there are multiple input vectors, and all the values in them are
intensive, then the array values calculated by this compute are "intensive". If there are multiple input vectors,
and any value in them is extensive, then the array values calculated by this compute are "extensive".

The vector or array values will be in whatever units the input quantities are in.

Restrictions: none

Related commands:

compute, fix, compute reduce

Default: none

LIGGGHTS Users Manual

compute slice command 171

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute stress/atom command

Syntax:

compute ID group-ID stress/atom keyword ...

ID, group-ID are documented in compute command•
stress/atom = style name of this compute command•
zero or more keywords may be appended•
keyword = ke or pair or bond or angle or dihedral or improper or kspace or fix or virial•

Examples:

compute 1 mobile stress/atom
compute 1 all stress/atom pair bond

Description:

Define a computation that computes the symmetric per-atom stress tensor for each atom in a group. The tensor
for each atom has 6 components and is stored as a 6-element vector in the following order: xx, yy, zz, xy, xz,
yz. See the compute pressure command if you want the stress tensor (pressure) of the entire system.

The stress tensor for atom I is given by the following formula, where a and b take on values x,y,z to generate
the 6 components of the symmetric tensor:

The first term is a kinetic energy contribution for atom I. The second term is a pairwise energy contribution
where n loops over the Np neighbors of atom I, r1 and r2 are the positions of the 2 atoms in the pairwise
interaction, and F1 and F2 are the forces on the 2 atoms resulting from the pairwise interaction. The third term
is a bond contribution of similar form for the Nb bonds which atom I is part of. There are similar terms for the
Na angle, Nd dihedral, and Ni improper interactions atom I is part of. There is also a term for the KSpace
contribution from long-range Coulombic interactions, if defined. Finally, there is a term for the Nf fixes that
apply internal constraint forces to atom I. Currently, only the fix shake and fix rigid commands contribute to
this term.

IMPORTANT NOTE: For granular systems, this formular neglects the contribution of average velocity in the
kinetic energy contribution. This is corrected in the compute ave/euler command (currently no doc available).

As the coefficients in the formula imply, a virial contribution produced by a small set of atoms (e.g. 4 atoms
in a dihedral or 3 atoms in a Tersoff 3-body interaction) is assigned in equal portions to each atom in the set.

LIGGGHTS Users Manual

compute stress/atom command 172

http://lammps.sandia.gov

E.g. 1/4 of the dihedral virial to each of the 4 atoms, or 1/3 of the fix virial due to SHAKE constraints applied
to atoms in a a water molecule via the fix shake command.

If no extra keywords are listed, all of the terms in this formula are included in the per-atom stress tensor. If
any extra keywords are listed, only those terms are summed to compute the tensor. The virial keyword means
include all terms except the kinetic energy ke.

Note that the stress for each atom is due to its interaction with all other atoms in the simulation, not just with
other atoms in the group.

The dihedral_style charmm style calculates pairwise interactions between 1-4 atoms. The virial contribution
of these terms is included in the pair virial, not the dihedral virial.

The KSpace contribution is calculated using the method in (Heyes) for the Ewald method and by the
methodology described in (Sirk) for PPPM. The choice of KSpace solver is specified by the kspace_style
pppm command. Note that for PPPM, the calcluation requires 6 extra FFTs each timestep that per-atom stress
is calculated. Thus it can significantly increase the cost of the PPPM calculation if it is needed on a large
fraction of the simulation timesteps.

Note that as defined in the formula, per-atom stress is the negative of the per-atom pressure tensor. It is also
really a stress*volume formulation, meaning the computed quantity is in units of pressure*volume. It would
need to be divided by a per-atom volume to have units of stress (pressure), but an individual atom's volume is
not well defined or easy to compute in a deformed solid or a liquid. Thus, if the diagonal components of the
per-atom stress tensor are summed for all atoms in the system and the sum is divided by dV, where d =
dimension and V is the volume of the system, the result should be -P, where P is the total pressure of the
system.

These lines in an input script for a 3d system should yield that result. I.e. the last 2 columns of thermo output
will be the same:

compute peratom all stress/atom
compute p all reduce sum c_peratom[1] c_peratom[2] c_peratom[3]
variable press equal -(c_p[1]+c_p[2]+c_p[3])/(3*vol)
thermo_style custom step temp etotal press v_press

Output info:

This compute calculates a per-atom array with 6 columns, which can be accessed by indices 1-6 by any
command that uses per-atom values from a compute as input. See Section_howto 15 for an overview of
LAMMPS output options.

The per-atom array values will be in pressure*volume units as discussed above.

Restrictions: none

Related commands:

compute pe, compute pressure

Default: none

(Heyes) Heyes, Phys Rev B 49, 755 (1994),

LIGGGHTS Users Manual

compute stress/atom command 173

(Sirk) Sirk, Moore, Brown, J Chem Phys, 138, 064505 (2013).

LIGGGHTS Users Manual

compute stress/atom command 174

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/asphere command

Syntax:

compute ID group-ID temp/asphere keyword value ...

ID, group-ID are documented in compute command•
temp/asphere = style name of this compute command•
zero or more keyword/value pairs may be appended•
keyword = bias or dof

bias value = bias-IDuniform or gaussian
 bias-ID = ID of a temperature compute that removes a velocity bias

dof value = all or rotate
 all = compute temperature of translational and rotational degrees of freedom
 rotate = compute temperature of just rotational degrees of freedom

•

Examples:

compute 1 all temp/asphere
compute myTemp mobile temp/asphere bias tempCOM
compute myTemp mobile temp/asphere dof rotate

Description:

Define a computation that calculates the temperature of a group of aspherical particles, including a
contribution from both their translational and rotational kinetic energy. This differs from the usual compute
temp command, which assumes point particles with only translational kinetic energy.

Only finite-size particles (aspherical or spherical) can be included in the group. For 3d finite-size particles,
each has 6 degrees of freedom (3 translational, 3 rotational). For 2d finite-size particles, each has 3 degrees of
freedom (2 translational, 1 rotational).

IMPORTANT NOTE: This choice for degrees of freedom (dof) assumes that all finite-size aspherical or
spherical particles in your model will freely rotate, sampling all their rotational dof. It is possible to use a
combination of interaction potentials and fixes that induce no torque or otherwise constrain some of all of
your particles so that this is not the case. Then there are less dof and you should use the compute_modify
extra command to adjust the dof accordingly.

For example, an aspherical particle with all three of its shape parameters the same is a sphere. If it does not
rotate, then it should have 3 dof instead of 6 in 3d (or 2 instead of 3 in 2d). A uniaxial aspherical particle has
two of its three shape parameters the same. If it does not rotate around the axis perpendicular to its circular
cross section, then it should have 5 dof instead of 6 in 3d. The latter is the case for uniaxial ellipsoids in a
GayBerne model since there is no induced torque around the optical axis. It will also be the case for biaxial
ellipsoids when exactly two of the semiaxes have the same length and the corresponding relative well depths
are equal.

The translational kinetic energy is computed the same as is described by the compute temp command. The
rotational kinetic energy is computed as 1/2 I w^2, where I is the inertia tensor for the aspherical particle and
w is its angular velocity, which is computed from its angular momentum.

IMPORTANT NOTE: For 2d models, particles are treated as ellipsoids, not ellipses, meaning their moments
of inertia will be the same as in 3d.

LIGGGHTS Users Manual

compute temp/asphere command 175

http://lammps.sandia.gov

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute. The formula for the
components of the tensor is the same as the above formula, except that v^2 and w^2 are replaced by vx*vy
and wx*wy for the xy component, and the appropriate elements of the inertia tensor are used. The 6
components of the vector are ordered xx, yy, zz, xy, xz, yz.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute_modify command if this is not the case.

This compute subtracts out translational degrees-of-freedom due to fixes that constrain molecular motion,
such as fix shake and fix rigid. This means the temperature of groups of atoms that include these constraints
will be computed correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option
of the compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

The keyword/value option pairs are used in the following ways.

For the bias keyword, bias-ID refers to the ID of a temperature compute that removes a "bias" velocity from
each atom. This allows compute temp/sphere to compute its thermal temperature after the translational kinetic
energy components have been altered in a prescribed way, e.g. to remove a velocity profile. Thermostats that
use this compute will work with this bias term. See the doc pages for individual computes that calculate a
temperature and the doc pages for fixes that perform thermostatting for more details.

For the dof keyword, a setting of all calculates a temperature that includes both translational and rotational
degrees of freedom. A setting of rotate calculates a temperature that includes only rotational degrees of
freedom.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This compute is part of the ASPHERE package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

This compute requires that atoms store angular momementum and a quaternion as defined by the atom_style
ellipsoid command.

All particles in the group must be finite-size. They cannot be point particles, but they can be aspherical or
spherical as defined by their shape attribute.

Related commands:

compute temp

Default: none

LIGGGHTS Users Manual

compute temp/asphere command 176

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/com command

Syntax:

compute ID group-ID temp/com

ID, group-ID are documented in compute command•
temp/com = style name of this compute command•

Examples:

compute 1 all temp/com
compute myTemp mobile temp/com

Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out the
center-of-mass velocity of the group. This is useful if the group is expected to have a non-zero net velocity for
some reason. A compute of this style can be used by any command that computes a temperature, e.g.
thermo_modify, fix temp/rescale, fix npt, etc.

After the center-of-mass velocity has been subtracted from each atom, the temperature is calculated by the
formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m v^2), dim =
2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant, and T =
temperature.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v^2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are
ordered xx, yy, zz, xy, xz, yz.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute_modify command if this is not the case.

The removal of the center-of-mass velocity by this fix is essentially computing the temperature after a "bias"
has been removed from the velocity of the atoms. If this compute is used with a fix command that performs
thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining thermal
velocity will be performed, and the bias will be added back in. Thermostatting fixes that work in this way
include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

LIGGGHTS Users Manual

compute temp/com command 177

http://lammps.sandia.gov

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp

Default: none

LIGGGHTS Users Manual

compute temp/com command 178

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/deform/eff command

Syntax:

compute ID group-ID temp/deform/eff

ID, group-ID are documented in compute command•
temp/deform/eff = style name of this compute command•

Examples:

compute myTemp all temp/deform/eff

Description:

Define a computation that calculates the temperature of a group of nuclei and electrons in the electron force
field model, after subtracting out a streaming velocity induced by the simulation box changing size and/or
shape, for example in a non-equilibrium MD (NEMD) simulation. The size/shape change is induced by use of
the fix deform/eff command. A compute of this style is created by the fix nvt/sllod/eff command to compute
the thermal temperature of atoms for thermostatting purposes. A compute of this style can also be used by any
command that computes a temperature, e.g. thermo_modify, fix npt/eff, etc.

The calculation performed by this compute is exactly like that described by the compute temp/deform
command, except that the formula for the temperature includes the radial electron velocity contributions, as
discussed by the compute temp/eff command. Note that only the translational degrees of freedom for each
nuclei or electron are affected by the streaming velocity adjustment. The radial velocity component of the
electrons is not affected.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

compute temp/ramp, fix deform/eff, fix nvt/sllod/eff

Default: none

LIGGGHTS Users Manual

compute temp/deform/eff command 179

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/deform command

Syntax:

compute ID group-ID temp/deform

ID, group-ID are documented in compute command•
temp/deform = style name of this compute command•

Examples:

compute myTemp all temp/deform

Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out a streaming
velocity induced by the simulation box changing size and/or shape, for example in a non-equilibrium MD
(NEMD) simulation. The size/shape change is induced by use of the fix deform command. A compute of this
style is created by the fix nvt/sllod command to compute the thermal temperature of atoms for thermostatting
purposes. A compute of this style can also be used by any command that computes a temperature, e.g.
thermo_modify, fix temp/rescale, fix npt, etc.

The deformation fix changes the box size and/or shape over time, so each atom in the simulation box can be
thought of as having a "streaming" velocity. For example, if the box is being sheared in x, relative to y, then
atoms at the bottom of the box (low y) have a small x velocity, while atoms at the top of the box (hi y) have a
large x velocity. This position-dependent streaming velocity is subtracted from each atom's actual velocity to
yield a thermal velocity which is used to compute the temperature.

IMPORTANT NOTE: Fix deform has an option for remapping either atom coordinates or velocities to the
changing simulation box. When using this compute in conjunction with a deforming box, fix deform should
NOT remap atom positions, but rather should let atoms respond to the changing box by adjusting their own
velocities (or let fix deform remap the atom velocities, see it's remap option). If fix deform does remap atom
positions, then they appear to move with the box but their velocity is not changed, and thus they do NOT have
the streaming velocity assumed by this compute. LAMMPS will warn you if fix deform is defined and its
remap setting is not consistent with this compute.

After the streaming velocity has been subtracted from each atom, the temperature is calculated by the formula
KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m v^2), dim = 2 or 3 =
dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant, and T =
temperature. Note that v in the kinetic energy formula is the atom's thermal velocity.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v^2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are
ordered xx, yy, zz, xy, xz, yz.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute_modify command if this is not the case.

The removal of the box deformation velocity component by this fix is essentially computing the temperature
after a "bias" has been removed from the velocity of the atoms. If this compute is used with a fix command
that performs thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining

LIGGGHTS Users Manual

compute temp/deform command 180

http://lammps.sandia.gov

thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes that work in this
way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

IMPORTANT NOTE: The temperature calculated by this compute is only accurate if the atoms are indeed
moving with a stream velocity profile that matches the box deformation. If not, then the compute will subtract
off an incorrect stream velocity, yielding a bogus thermal temperature. You should NOT assume that your
atoms are streaming at the same rate the box is deforming. Rather, you should monitor their velocity profile,
e.g. via the fix ave/spatial command. And you can compare the results of this compute to compute
temp/profile, which actually calculates the stream profile before subtracting it. If the two computes do not
give roughly the same temperature, then your atoms are not streaming consistent with the box deformation.
See the fix deform command for more details on ways to get atoms to stream consistently with the box
deformation.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp/ramp, compute temp/profile, fix deform, fix nvt/sllod

Default: none

LIGGGHTS Users Manual

compute temp/deform command 181

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/eff command

Syntax:

compute ID group-ID temp/eff

ID, group-ID are documented in compute command•
temp/eff = style name of this compute command•

Examples:

compute 1 all temp/eff
compute myTemp mobile temp/eff

Description:

Define a computation that calculates the temperature of a group of nuclei and electrons in the electron force
field model. A compute of this style can be used by commands that compute a temperature, e.g.
thermo_modify, fix npt/eff, etc.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group
of atoms (sum of 1/2 m v^2 for nuclei and sum of 1/2 (m v^2 + 3/4 m s^2) for electrons, where s includes the
radial electron velocity contributions), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms
(only total number of nuclei in the eFF (see the pair_eff command) in the group, k = Boltzmann constant, and
T = temperature. This expression is summed over all nuclear and electronic degrees of freedom, essentially by
setting the kinetic contribution to the heat capacity to 3/2k (where only nuclei contribute). This subtlety is
valid for temperatures well below the Fermi temperature, which for densities two to five times the density of
liquid H2 ranges from 86,000 to 170,000 K.

IMPORTANT NOTE: For eFF models, in order to override the default temperature reported by LAMMPS in
the thermodynamic quantities reported via the thermo command, the user should apply a thermo_modify
command, as shown in the following example:

compute effTemp all temp/eff
thermo_style custom step etotal pe ke temp press
thermo_modify temp effTemp

A 6-component kinetic energy tensor is also calculated by this compute for use in the computation of a
pressure tensor. The formula for the components of the tensor is the same as the above formula, except that
v^2 is replaced by vx * vy for the xy component, etc. For the eFF, again, the radial electronic velocities are
also considered.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute_modify command if this is not the case.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

LIGGGHTS Users Manual

compute temp/eff command 182

http://lammps.sandia.gov

Output info:

The scalar value calculated by this compute is "intensive", meaning it is independent of the number of atoms
in the simulation. The vector values are "extensive", meaning they scale with the number of atoms in the
simulation.

Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

compute temp/partial, compute temp/region, compute pressure

Default: none

LIGGGHTS Users Manual

compute temp/eff command 183

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp command

compute temp/cuda command

Syntax:

compute ID group-ID temp

ID, group-ID are documented in compute command•
temp = style name of this compute command•

Examples:

compute 1 all temp
compute myTemp mobile temp

Description:

Define a computation that calculates the temperature of a group of atoms. A compute of this style can be used
by any command that computes a temperature, e.g. thermo_modify, fix temp/rescale, fix npt, etc.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group
of atoms (sum of 1/2 m v^2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the
group, k = Boltzmann constant, and T = temperature.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v^2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are
ordered xx, yy, zz, xy, xz, yz.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute_modify command if this is not the case.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the
compute_modify command.

A compute of this style with the ID of "thermo_temp" is created when LAMMPS starts up, as if this command
were in the input script:

compute thermo_temp all temp

See the "thermo_style" command for more details.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

LIGGGHTS Users Manual

compute temp command 184

http://lammps.sandia.gov

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp/partial, compute temp/region, compute pressure

Default: none

LIGGGHTS Users Manual

compute temp/cuda command 185

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/partial command

compute temp/partial/cuda command

Syntax:

compute ID group-ID temp/partial xflag yflag zflag

ID, group-ID are documented in compute command•
temp/partial = style name of this compute command•
xflag,yflag,zflag = 0/1 for whether to exclude/include this dimension•

Examples:

compute newT flow temp/partial 1 1 0

Description:

Define a computation that calculates the temperature of a group of atoms, after excluding one or more velocity
components. A compute of this style can be used by any command that computes a temperature, e.g.
thermo_modify, fix temp/rescale, fix npt, etc.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group
of atoms (sum of 1/2 m v^2), dim = dimensionality of the simulation, N = number of atoms in the group, k =
Boltzmann constant, and T = temperature. The calculation of KE excludes the x, y, or z dimensions if xflag,
yflag, or zflag = 0. The dim parameter is adjusted to give the correct number of degrees of freedom.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
calculation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v^2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are
ordered xx, yy, zz, xy, xz, yz.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute_modify command if this is not the case.

The removal of velocity components by this fix is essentially computing the temperature after a "bias" has
been removed from the velocity of the atoms. If this compute is used with a fix command that performs
thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining thermal
velocity will be performed, and the bias will be added back in. Thermostatting fixes that work in this way
include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for

LIGGGHTS Users Manual

compute temp/partial command 186

http://lammps.sandia.gov

round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp, compute temp/region, compute pressure

Default: none

LIGGGHTS Users Manual

compute temp/partial/cuda command 187

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/profile command

Syntax:

compute ID group-ID temp/profile xflag yflag zflag binstyle args

ID, group-ID are documented in compute command•
temp/profile = style name of this compute command•
xflag,yflag,zflag = 0/1 for whether to exclude/include this dimension•
binstyle = x or y or z or xy or yz or xz or xyz

x arg = Nx
y arg = Ny
z arg = Nz
xy args = Nx Ny
yz args = Ny Nz
xz args = Nx Nz
xyz args = Nx Ny Nz

 Nx,Ny,Nz = number of velocity bins in x,y,z dimensions

•

zero or more keyword/value pairs may be appended•
keyword = out

out value = tensor or bin

•

Examples:

compute myTemp flow temp/profile 1 1 1 x 10
compute myTemp flow temp/profile 1 1 1 x 10 out bin
compute myTemp flow temp/profile 0 1 1 xyz 20 20 20

Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out a
spatially-averaged center-of-mass velocity field, before computing the kinetic energy. This can be useful for
thermostatting a collection of atoms undergoing a complex flow, e.g. via a profile-unbiased thermostat (PUT)
as described in (Evans). A compute of this style can be used by any command that computes a temperature,
e.g. thermo_modify, fix temp/rescale, fix npt, etc.

The xflag, yflag, zflag settings determine which components of average velocity are subtracted out.

The binstyle setting and its Nx, Ny, Nz arguments determine how bins are setup to perform spatial averaging.
"Bins" can be 1d slabs, 2d pencils, or 3d bricks depending on which binstyle is used. The simulation box is
partitioned conceptually into Nx by Ny by Nz bins. Depending on the binstyle, you may only specify one or
two of these values; the others are effectively set to 1 (no binning in that dimension). For non-orthogonal
(triclinic) simulation boxes, the bins are "tilted" slabs or pencils or bricks that are parallel to the tilted faces of
the box. See the region prism command for a discussion of the geometry of tilted boxes in LAMMPS.

When a temperature is computed, the center-of-mass velocity for the set of atoms that are both in the compute
group and in the same spatial bin is calculated. This bias velocity is then subtracted from the velocities of
individual atoms in the bin to yield a thermal velocity for each atom. Note that if there is only one atom in the
bin, its thermal velocity will thus be 0.0.

After the spatially-averaged velocity field has been subtracted from each atom, the temperature is calculated
by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m v^2),

LIGGGHTS Users Manual

compute temp/profile command 188

http://lammps.sandia.gov

dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant,
and T = temperature.

If the out keyword is used with a tensor value, which is the default, a kinetic energy tensor, stored as a
6-element vector, is also calculated by this compute for use in the computation of a pressure tensor. The
formula for the components of the tensor is the same as the above formula, except that v^2 is replaced by
vx*vy for the xy component, etc. The 6 components of the vector are ordered xx, yy, zz, xy, xz, yz.

If the out keyword is used with a bin value, the count of atoms and computed temperature for each bin are
stored for output, as an array of values, as described below. The temperature of each bin is calculated as
described above, where the bias velocity is subtracted and only the remaining thermal velocity of atoms in the
bin contributes to the temperature. See the note below for how the temperature is normalized by the
degrees-of-freedom of atoms in the bin.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute_modify command if this is not the case.

The removal of the spatially-averaged velocity field by this fix is essentially computing the temperature after a
"bias" has been removed from the velocity of the atoms. If this compute is used with a fix command that
performs thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining
thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes that work in this
way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the
compute_modify command.

IMPORTANT NOTE: When using the out keyword with a value of bin, the calculated temperature for each
bin does not include the degrees-of-freedom adjustment described in the preceeding paragraph, for fixes that
constrain molecular motion. It does include the adjustment due to the extra option, which is applied to each
bin.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting. Using this compute in conjunction with a thermostatting fix, as explained there, will
effectively implement a profile-unbiased thermostat (PUT), as described in (Evans).

Output info:

This compute calculates a global scalar (the temperature). Depending on the setting of the out keyword, it also
calculates a global vector or array. For out = tensor, it calculates a vector of length 6 (KE tensor), which can
be accessed by indices 1-6. For out = bin it calculates a global array which has 2 columns and N rows, where
N is the number of bins. The first column contains the number of atoms in that bin. The second contains the
temperature of that bin, calculated as described above. The ordering of rows in the array is as follows. Bins in
x vary fastest, then y, then z. Thus for a 10x10x10 3d array of bins, there will be 1000 rows. The bin with
indices ix,iy,iz = 2,3,4 would map to row M = (iz-1)*10*10 + (iy-1)*10 + ix = 322, where the rows are
numbered from 1 to 1000 and the bin indices are numbered from 1 to 10 in each dimension.

These values can be used by any command that uses global scalar or vector or array values from a compute as
input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive". The array values
are "intensive".

LIGGGHTS Users Manual

compute temp/profile command 189

The scalar value will be in temperature units. The vector values will be in energy units. The first column of
array values are counts; the values in the second column will be in temperature units.

Restrictions:

You should not use too large a velocity-binning grid, especially in 3d. In the current implementation, the
binned velocity averages are summed across all processors, so this will be inefficient if the grid is too large,
and the operation is performed every timestep, as it will be for most thermostats.

Related commands:

compute temp, compute temp/ramp, compute temp/deform, compute pressure

Default:

The option default is out = tensor.

(Evans) Evans and Morriss, Phys Rev Lett, 56, 2172-2175 (1986).

LIGGGHTS Users Manual

compute temp/profile command 190

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/ramp command

Syntax:

compute ID group-ID temp/ramp vdim vlo vhi dim clo chi keyword value ...

ID, group-ID are documented in compute command•
temp/ramp = style name of this compute command•
vdim = vx or vy or vz•
vlo,vhi = subtract velocities between vlo and vhi (velocity units)•
dim = x or y or z•
clo,chi = lower and upper bound of domain to subtract from (distance units)•
zero or more keyword/value pairs may be appended•
keyword = units•

units value = lattice or box

Examples:

compute 2nd middle temp/ramp vx 0 8 y 2 12 units lattice

Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out an ramped
velocity profile before computing the kinetic energy. A compute of this style can be used by any command
that computes a temperature, e.g. thermo_modify, fix temp/rescale, fix npt, etc.

The meaning of the arguments for this command which define the velocity ramp are the same as for the
velocity ramp command which was presumably used to impose the velocity.

After the ramp velocity has been subtracted from the specified dimension for each atom, the temperature is
calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of
1/2 m v^2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k =
Boltzmann constant, and T = temperature.

The units keyword determines the meaning of the distance units used for coordinates (c1,c2) and velocities
(vlo,vhi). A box value selects standard distance units as defined by the units command, e.g. Angstroms for
units = real or metal. A lattice value means the distance units are in lattice spacings; e.g. velocity = lattice
spacings / tau. The lattice command must have been previously used to define the lattice spacing.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v^2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are
ordered xx, yy, zz, xy, xz, yz.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute_modify command if this is not the case.

The removal of the ramped velocity component by this fix is essentially computing the temperature after a
"bias" has been removed from the velocity of the atoms. If this compute is used with a fix command that
performs thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining
thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes that work in this
way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

LIGGGHTS Users Manual

compute temp/ramp command 191

http://lammps.sandia.gov

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp, compute temp/profie, compute temp/deform, compute pressure

Default:

The option default is units = lattice.

LIGGGHTS Users Manual

compute temp/ramp command 192

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/region/eff command

Syntax:

compute ID group-ID temp/region/eff region-ID

ID, group-ID are documented in compute command•
temp/region/eff = style name of this compute command•
region-ID = ID of region to use for choosing atoms•

Examples:

compute mine flow temp/region/eff boundary

Description:

Define a computation that calculates the temperature of a group of nuclei and electrons in the electron force
field model, within a geometric region using the electron force field. A compute of this style can be used by
commands that compute a temperature, e.g. thermo_modify.

The operation of this compute is exactly like that described by the compute temp/region command, except that
the formula for the temperature itself includes the radial electron velocity contributions, as discussed by the
compute temp/eff command.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

compute temp/region, compute temp/eff, compute pressure

Default: none

LIGGGHTS Users Manual

compute temp/region/eff command 193

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/region command

Syntax:

compute ID group-ID temp/region region-ID

ID, group-ID are documented in compute command•
temp/region = style name of this compute command•
region-ID = ID of region to use for choosing atoms•

Examples:

compute mine flow temp/region boundary

Description:

Define a computation that calculates the temperature of a group of atoms in a geometric region. This can be
useful for thermostatting one portion of the simulation box. E.g. a McDLT simulation where one side is
cooled, and the other side is heated. A compute of this style can be used by any command that computes a
temperature, e.g. thermo_modify, fix temp/rescale, etc.

Note that a region-style temperature can be used to thermostat with fix temp/rescale or fix langevin, but
should probably not be used with Nose/Hoover style fixes (fix nvt, fix npt, or fix nph), if the
degrees-of-freedom included in the computed T varies with time.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group
of atoms (sum of 1/2 m v^2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in both
the group and region, k = Boltzmann constant, and T = temperature.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v^2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are
ordered xx, yy, zz, xy, xz, yz.

The number of atoms contributing to the temperature is compute each time the temperature is evaluated since
it is assumed atoms can enter/leave the region. Thus there is no need to use the dynamic option of the
compute_modify command for this compute style.

The removal of atoms outside the region by this fix is essentially computing the temperature after a "bias" has
been removed, which in this case is the velocity of any atoms outside the region. If this compute is used with a
fix command that performs thermostatting then this bias will be subtracted from each atom, thermostatting of
the remaining thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes
that work in this way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin. This means any
of the thermostatting fixes can operate on a geometric region of atoms, as defined by this compute.

Unlike other compute styles that calculate temperature, this compute does not subtract out degrees-of-freedom
due to fixes that constrain molecular motion, such as fix shake and fix rigid. This is because those degrees of
freedom (e.g. a constrained bond) can straddle the region boundary, and hence the concept is somewhat
ill-defined. If needed the number of subtracted degrees-of-freedom can be set explicitly using the extra option
of the compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform

LIGGGHTS Users Manual

compute temp/region command 194

http://lammps.sandia.gov

thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp, compute pressure

Default: none

LIGGGHTS Users Manual

compute temp/region command 195

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/rotate command

Syntax:

compute ID group-ID temp/rotate

ID, group-ID are documented in compute command•
temp/rotate = style name of this compute command•

Examples:

compute Tbead bead temp/rotate

Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out the
center-of-mass velocity and angular velocity of the group. This is useful if the group is expected to have a
non-zero net velocity and/or global rotation motion for some reason. A compute of this style can be used by
any command that computes a temperature, e.g. thermo_modify, fix temp/rescale, fix npt, etc.

After the center-of-mass velocity and angular velocity has been subtracted from each atom, the temperature is
calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of
1/2 m v^2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k =
Boltzmann constant, and T = temperature.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the
computation of a pressure tensor. The formula for the components of the tensor is the same as the above
formula, except that v^2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are
ordered xx, yy, zz, xy, xz, yz.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute_modify command if this is not the case.

The removal of the center-of-mass velocity and angular velocity by this fix is essentially computing the
temperature after a "bias" has been removed from the velocity of the atoms. If this compute is used with a fix
command that performs thermostatting then this bias will be subtracted from each atom, thermostatting of the
remaining thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes that
work in this way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

LIGGGHTS Users Manual

compute temp/rotate command 196

http://lammps.sandia.gov

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This compute is part of the USER-MISC package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

compute temp

Default: none

LIGGGHTS Users Manual

compute temp/rotate command 197

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/sphere command

Syntax:

compute ID group-ID temp/sphere keyword value ...

ID, group-ID are documented in compute command•
temp/sphere = style name of this compute command•
zero or more keyword/value pairs may be appended•
keyword = bias or dof

bias value = bias-IDuniform or gaussian
 bias-ID = ID of a temperature compute that removes a velocity bias

dof value = all or rotate
 all = compute temperature of translational and rotational degrees of freedom
 rotate = compute temperature of just rotational degrees of freedom

•

Examples:

compute 1 all temp/sphere
compute myTemp mobile temp/sphere bias tempCOM
compute myTemp mobile temp/sphere dof rotate

Description:

Define a computation that calculates the temperature of a group of spherical particles, including a contribution
from both their translational and rotational kinetic energy. This differs from the usual compute temp
command, which assumes point particles with only translational kinetic energy.

Both point and finite-size particles can be included in the group. Point particles do not rotate, so they have
only 3 translational degrees of freedom. For 3d spherical particles, each has 6 degrees of freedom (3
translational, 3 rotational). For 2d spherical particles, each has 3 degrees of freedom (2 translational, 1
rotational).

IMPORTANT NOTE: This choice for degrees of freedom (dof) assumes that all finite-size spherical particles
in your model will freely rotate, sampling all their rotational dof. It is possible to use a combination of
interaction potentials and fixes that induce no torque or otherwise constrain some of all of your particles so
that this is not the case. Then there are less dof and you should use the compute_modify extra command to
adjust the dof accordingly.

The translational kinetic energy is computed the same as is described by the compute temp command. The
rotational kinetic energy is computed as 1/2 I w^2, where I is the moment of inertia for a sphere and w is the
particle's angular velocity.

IMPORTANT NOTE: For 2d models, particles are treated as spheres, not disks, meaning their moment of
inertia will be the same as in 3d.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute. The formula for the
components of the tensor is the same as the above formulas, except that v^2 and w^2 are replaced by vx*vy
and wx*wy for the xy component. The 6 components of the vector are ordered xx, yy, zz, xy, xz, yz.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use
the dynamic option of the compute_modify command if this is not the case.

LIGGGHTS Users Manual

compute temp/sphere command 198

http://lammps.sandia.gov

This compute subtracts out translational degrees-of-freedom due to fixes that constrain molecular motion,
such as fix shake and fix rigid. This means the temperature of groups of atoms that include these constraints
will be computed correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option
of the compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

The keyword/value option pairs are used in the following ways.

For the bias keyword, bias-ID refers to the ID of a temperature compute that removes a "bias" velocity from
each atom. This allows compute temp/sphere to compute its thermal temperature after the translational kinetic
energy components have been altered in a prescribed way, e.g. to remove a velocity profile. Thermostats that
use this compute will work with this bias term. See the doc pages for individual computes that calculate a
temperature and the doc pages for fixes that perform thermostatting for more details.

For the dof keyword, a setting of all calculates a temperature that includes both translational and rotational
degrees of freedom. A setting of rotate calculates a temperature that includes only rotational degrees of
freedom.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This fix requires that atoms store torque and angular velocity (omega) and a radius as defined by the
atom_style sphere command.

All particles in the group must be finite-size spheres, or point particles with radius = 0.0.

Related commands:

compute temp, compute temp/asphere

Default:

The option defaults are no bias and dof = all.

LIGGGHTS Users Manual

compute temp/sphere command 199

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ti command

Syntax:

compute ID group ti keyword args ...

ID, group-ID are documented in compute command•
ti = style name of this compute command•
one or more attribute/arg pairs may be appended•
keyword = pair style (lj/cut, gauss, born, etc) or tail or kspace

 pair style args = atype v_name1 v_name2
 atype = atom type (see asterisk form below)
 v_name1 = variable with name1 that is energy scale factor and function of lambda
 v_name2 = variable with name2 that is derivative of v_name1 with respect to lambda

tail args = atype v_name1 v_name2
 atype = atom type (see asterisk form below)
 v_name1 = variable with name1 that is energy tail correction scale factor and function of lambda
 v_name2 = variable with name2 that is derivative of v_name1 with respect to lambda

kspace args = atype v_name1 v_name2
 atype = atom type (see asterisk form below)
 v_name1 = variable with name1 that is K-Space scale factor and function of lambda
 v_name2 = variable with name2 that is derivative of v_name1 with respect to lambda

•

Examples:

compute 1 all ti lj/cut 1 v_lj v_dlj coul/long 2 v_c v_dc kspace 1 v_ks v_dks
compute 1 all ti lj/cut 1*3 v_lj v_dlj coul/long * v_c v_dc kspace * v_ks v_dks

Description:

Define a computation that calculates the derivative of the interaction potential with respect to lambda, the
coupling parameter used in a thermodynamic integration. This derivative can be used to infer a free energy
difference resulting from an alchemical simulation, as described in Eike.

Typically this compute will be used in conjunction with the fix adapt command which can perform alchemical
transformations by adusting the strength of an interaction potential as a simulation runs, as defined by one or
more pair_style or kspace_style commands. This scaling is done via a prefactor on the energy, forces, virial
calculated by the pair or K-Space style. The prefactor is often a function of a lambda parameter which may be
adjusted from 0 to 1 (or vice versa) over the course of a run. The time-dependent adjustment is what the fix
adapt command does.

Assume that the unscaled energy of a pair_style or kspace_style is given by U. Then the scaled energy is

Us = f(lambda) U

where f() is some function of lambda. What this compute calculates is

dUs / d(lambda) = U df(lambda)/dlambda = Us / f(lambda) df(lambda)/dlambda

which is the derivative of the system's scaled potential energy Us with respect to lambda.

To perform this calculation, you provide one or more atom types as atype. Atype can be specified in one of
two ways. An explicit numeric values can be used, as in the 1st example above. Or a wildcard asterisk can be
used in place of or in conjunction with the atype argument to select multiple atom types. This takes the form

LIGGGHTS Users Manual

compute ti command 200

http://lammps.sandia.gov

"*" or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values means
all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all
types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

You also specify two functions, as equal-style variables. The first is specified as v_name1, where name1 is the
name of the variable, and is f(lambda) in the notation above. The second is specified as v_name2, where
name2 is the name of the variable, and is df(lambda) / dlambda in the notation above. I.e. it is the analytic
derivative of f() with respect to lambda. Note that the name1 variable is also typically given as an argument to
the fix adapt command.

An alchemical simulation may use several pair potentials together, invoked via the pair_style hybrid or
hybrid/overlay command. The total dUs/dlambda for the overall system is calculated as the sum of each
contributing term as listed by the keywords in the compute ti command. Individual pair potentials can be
listed, which will be sub-styles in the hybrid case. You can also include a K-space term via the kspace
keyword. You can also include a pairwise long-range tail correction to the energy via the tail keyword.

For each term you can specify a different (or the same) scale factor by the two variables that you list. Again,
these will typically correspond toe the scale factors applied to these various potentials and the K-Space
contribution via the fix_adapt command.

More details about the exact functional forms for the computation of du/dl can be found in the paper by Eike.

Output info:

This compute calculates a global scalar, namely dUs/dlambda. This value can be used by any command that
uses a global scalar value from a compute as input. See Section_howto 15 for an overview of LAMMPS
output options.

The scalar value calculated by this compute is "extensive".

The scalar value will be in energy units.

Restrictions:

This compute is part of the MISC package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:

fix adapt

Default: none

(Eike) Eike and Maginn, Journal of Chemical Physics, 124, 164503 (2006).

LIGGGHTS Users Manual

compute ti command 201

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute voronoi/atom command

Syntax:

compute ID group-ID voronoi/atom keyword arg ...

ID, group-ID are documented in compute command•
voronoi/atom = style name of this compute command•
zero or more keyword/value pairs may be appended•
keyword = only_group or surface or radius or edge_histo or edge_threshold or face_threshold

only_group = no arg
surface arg = sgroup-ID

 sgroup-ID = compute the dividing surface between group-ID and sgroup-ID
 this keyword adds a third column to the compute output

radius arg = v_r
 v_r = radius atom style variable for a poly-disperse voronoi tessellation

edge_histo arg = maxedge
 maxedge = maximum number of voronoi cell edges to be accounted in the histogram

edge_threshold arg = minlength
 minlength = minimum length for an edge to be counted

face_threshold arg = minarea
 minarea = minimum area for a face to be counted

•

Examples:

compute 1 all voronoi/atom
compute 2 precipitate voronoi/atom surface matrix
compute 3b precipitate voronoi/atom radius v_r
compute 4 solute voronoi/atom only_group

Description:

Define a computation that calculates the Voronoi tessellation of the atoms in the simulation box. The
tessellation is calculated using all atoms in the simulation, but non-zero values are only stored for atoms in the
group.

By default two quantities per atom are calculated by this compute. The first is the volume of the Voronoi cell
around each atom. Any point in an atom's Voronoi cell is closer to that atom than any other. The second is the
number of faces of the Voronoi cell, which is also the number of nearest neighbors of the atom in the middle
of the cell.

If the only_group keyword is specified the tessellation is performed only with respect to the atoms contained
in the compute group. This is equivalent to deleting all atoms not contained in the group prior to evaluating
the tessellation.

If the surface keyword is specified a third quantity per atom is computed: the voronoi cell surface of the given
atom. surface takes a group ID as an argument. If a group other than all is specified, only the voronoi cell
facets facing a neighbor atom from the specified group are counted towards the surface area.

In the example above, a precipitate embedded in a matrix, only atoms at the surface of the precipitate will
have non-zero surface area, and only the outward facing facets of the voronoi cells are counted (the hull of the
precipitate). The total surface area of the precipitate can be obtained by running a "reduce sum" compute on
c_2[3]

LIGGGHTS Users Manual

compute voronoi/atom command 202

http://lammps.sandia.gov

If the radius keyword is specified with an atom style variable as the argument, a poly-disperse voronoi
tessellation is performed. Examples for radius variables are

variable r1 atom (type==1)*0.1+(type==2)*0.4
compute radius all property/atom radius
variable r2 atom c_radius

Here v_r1 specifies a per-type radius of 0.1 units for type 1 atoms and 0.4 units for type 2 atoms, and v_r2
accesses the radius property present in atom_style sphere for granular models.

The edge_histo keyword activates the compilation of a histogram of number of edges on the faces of the
voronoi cells in the compute group. The argument maxedge of the this keyword is the largest number of edges
on a single voronoi cell face expected to occur in the sample. This keyword adds the generation of a global
vector with maxedge+1 entries. The last entry in the vector contains the number of faces with with more than
maxedge edges. Since the polygon with the smallest amount of edges is a triangle, entries 1 and 2 of the
vector will always be zero.

The edge_threshold and face_threshold keywords allow the suppression of edges below a given minimum
length and faces below a given minimum area. Ultra short edges and ultra small faces can occur as artifacts of
the voronoi tessellation. These keywords will affect the neighbor count and edge histogram outputs.

The Voronoi calculation is performed by the freely available Voro++ package, written by Chris Rycroft at UC
Berkeley and LBL, which must be installed on your system when building LAMMPS for use with this
compute. See instructions on obtaining and installing the Voro++ software in the src/VORONOI/README
file.

IMPORTANT NOTE: The calculation of Voronoi volumes is performed by each processor for the atoms it
owns, and includes the effect of ghost atoms stored by the processor. This assumes that the Voronoi cells of
owned atoms are not affected by atoms beyond the ghost atom cut-off distance. This is usually a good
assumption for liquid and solid systems, but may lead to underestimation of Voronoi volumes in low density
systems. By default, the set of ghost atoms stored by each processor is determined by the cutoff used for
pair_style interactions. The cutoff can be set explicitly via the communicate cutoff command.

IMPORTANT NOTE: The Voro++ package performs its calculation in 3d. This should still work for a 2d
LAMMPS simulation, to effectively compute Voronoi "areas", so long as the z-dimension of the box is
roughly the same (or smaller) compared to the separation of the atoms. Typical values for the z box
dimensions in a 2d LAMMPS model are -0.5 to 0.5, which satisfies the criterion for most units systems. Note
that you define the z extent of the simulation box for 2d simulations when using the create_box or read_data
commands.

Output info:

This compute calculates a per-atom array with 2 columns. The first column is the Voronoi volume, the second
is the neighbor count, as described above. These values can be accessed by any command that uses per-atom
values from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The Voronoi cell volume will be in distance units cubed.

Restrictions:

This compute is part of the VORONOI package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

LIGGGHTS Users Manual

compute voronoi/atom command 203

http://math.lbl.gov/voro++

dump custom

Default: none

LIGGGHTS Users Manual

compute voronoi/atom command 204

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

create_atoms command

Syntax:

create_atoms type style args keyword values ...

type = atom type (1-Ntypes) of atoms to create•
style = box or region or single or random

box args = none
region args = region-ID

 region-ID = atoms will only be created if contained in the region
single args = x y z

 x,y,z = coordinates of a single atom (distance units)
random args = N seed region-ID

 N = number of atoms to create
 seed = random # seed (positive integer)
 region-ID = create atoms within this region, use NULL for entire simulation box

•

zero or more keyword/value pairs may be appended•
keyword = basis or remap or units

basis values = M itype
 M = which basis atom
 itype = atom type (1-N) to assign to this basis atom

remap value = yes or no
units value = lattice or box

lattice = the geometry is defined in lattice units
box = the geometry is defined in simulation box units

•

Examples:

create_atoms 1 box
create_atoms 3 region regsphere basis 2 3
create_atoms 3 single 0 0 5

Description:

This command creates atoms on a lattice, or a single atom, or a random collection of atoms, as an alternative
to reading in their coordinates explicitly via a read_data or read_restart command. A simulation box must
already exist, which is typically created via the create_box command. Before using this command, a lattice
must also be defined using the lattice command. The only exceptions are for the single style with units = box
or the random style.

For the box style, the create_atoms command fills the entire simulation box with atoms on the lattice. If your
simulation box is periodic, you should insure its size is a multiple of the lattice spacings, to avoid unwanted
atom overlaps at the box boundaries. If your box is periodic and a multiple of the lattice spacing in a particular
dimension, LAMMPS is careful to put exactly one atom at the boundary (on either side of the box), not zero
or two.

For the region style, the geometric volume is filled that is inside the simulation box and is also consistent with
the region volume. See the region command for details. Note that a region can be specified so that its
"volume" is either inside or outside a geometric boundary. Also note that if your region is the same size as a
periodic simulation box (in some dimension), LAMMPS does not implement the same logic as with the box
style, to insure exactly one atom at the boundary. if this is what you desire, you should either use the box
style, or tweak the region size to get precisely the atoms you want.

LIGGGHTS Users Manual

create_atoms command 205

http://lammps.sandia.gov

For the single style, a single atom is added to the system at the specified coordinates. This can be useful for
debugging purposes or to create a tiny system with a handful of atoms at specified positions.

For the random style, N atoms are added to the system at randomly generated coordinates, which can be
useful for generating an amorphous system. The atoms are created one by one using the speficied random
number seed, resulting in the same set of atom coordinates, independent of how many processors are being
used in the simulation. If the region-ID argument is specified as NULL, then the created atoms will be
anywhere in the simulation box. If a region-ID is specified, a geometric volume is filled that is inside the
simulation box and is also consistent with the region volume. See the region command for details. Note that a
region can be specified so that its "volume" is either inside or outside a geometric boundary.

IMPORTANT NOTE: The atoms generated by the random style will typically be highly overlapped which
will cause many interatomic potentials to compute large energies and forces. Thus you should either perform
an energy minimization or run dynamics with fix nve/limit to equilibrate such a system, before running
normal dynamics.

The basis keyword specifies an atom type that will be assigned to specific basis atoms as they are created. See
the lattice command for specifics on how basis atoms are defined for the unit cell of the lattice. By default, all
created atoms are assigned the argument type as their atom type.

The remap keyword only applies to the single style. If it is set to yes, then if the specified position is outside
the simulation box, it will mapped back into the box, assuming the relevant dimensions are periodic. If it is set
to no, no remapping is done and no atom is created if its position is outside the box.

The units keyword determines the meaning of the distance units used to specify the coordinates of the one
atom created by the single style. A box value selects standard distance units as defined by the units command,
e.g. Angstroms for units = real or metal. A lattice value means the distance units are in lattice spacings.

Note that this command adds atoms to those that already exist. By using the create_atoms command multiple
times, multiple sets of atoms can be added to the simulation. For example, interleaving create_atoms with
lattice commands specifying different orientations, grain boundaries can be created. By using the
create_atoms command in conjunction with the delete_atoms command, reasonably complex geometries can
be created. The create_atoms command can also be used to add atoms to a system previously read in from a
data or restart file. In all these cases, care should be taken to insure that new atoms do not overlap existing
atoms inappropriately. The delete_atoms command can be used to handle overlaps.

Atom IDs are assigned to created atoms in the following way. The collection of created atoms are assigned
consecutive IDs that start immediately following the largest atom ID existing before the create_atoms
command was invoked. When a simulation is performed on different numbers of processors, there is no
guarantee a particular created atom will be assigned the same ID.

Aside from their ID, atom type, and xyz position, other properties of created atoms are set to default values,
depending on which quantities are defined by the chosen atom style. See the atom style command for more
details. See the set and velocity commands for info on how to change these values.

charge = 0.0•
dipole moment magnitude = 0.0•
diameter = 1.0•
shape = 0.0 0.0 0.0•
density = 1.0•
volume = 1.0•
velocity = 0.0 0.0 0.0•
angular velocity = 0.0 0.0 0.0•
angular momentum = 0.0 0.0 0.0•

LIGGGHTS Users Manual

create_atoms command 206

quaternion = (1,0,0,0)•
bonds, angles, dihedrals, impropers = none•

Note that the sphere atom style sets the default particle diameter to 1.0 as well as the density. This means the
mass for the particle is not 1.0, but is PI/6 * diameter^3 = 0.5236.

Note that the ellipsoid atom style sets the default particle shape to (0.0 0.0 0.0) and the density to 1.0 which
means it is a point particle, not an ellipsoid, and has a mass of 1.0.

Note that the peri style sets the default volume and density to 1.0 and thus also set the mass for the particle to
1.0.

The set command can be used to override many of these default settings.

Restrictions:

An atom_style must be previously defined to use this command.

Related commands:

lattice, region, create_box, read_data, read_restart

Default:

The default for the basis keyword is that all created atoms are assigned the argument type as their atom type.
The default for remap = no and for units = lattice.

LIGGGHTS Users Manual

create_atoms command 207

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

create_box command

Syntax:

create_box N region-ID

N = # of atom types to use in this simulation•
region-ID = ID of region to use as simulation domain•

Examples:

create_box 2 mybox

Description:

This command creates a simulation box based on the specified region. Thus a region command must first be
used to define a geometric domain.

The argument N is the number of atom types that will be used in the simulation.

If the region is not of style prism, then LAMMPS encloses the region (block, sphere, etc) with an axis-aligned
orthogonal bounding box which becomes the simulation domain.

If the region is of style prism, LAMMPS creates a non-orthogonal simulation domain shaped as a
parallelepiped with triclinic symmetry. As defined by the region prism command, the parallelepiped has its
"origin" at (xlo,ylo,zlo) and is defined by 3 edge vectors starting from the origin given by A = (xhi-xlo,0,0); B
= (xy,yhi-ylo,0); C = (xz,yz,zhi-zlo). Xy,xz,yz can be 0.0 or positive or negative values and are called "tilt
factors" because they are the amount of displacement applied to faces of an originally orthogonal box to
transform it into the parallelipiped.

A prism region used with the create_box command must have tilt factors (xy,xz,yz) that do not skew the box
more than half the distance of the parallel box length. For example, if xlo = 2 and xhi = 12, then the x box
length is 10 and the xy tilt factor must be between -5 and 5. Similarly, both xz and yz must be between
-(xhi-xlo)/2 and +(yhi-ylo)/2. Note that this is not a limitation, since if the maximum tilt factor is 5 (as in this
example), then configurations with tilt = ..., -15, -5, 5, 15, 25, ... are all geometrically equivalent.

See Section_howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by
LAMMPS, and how to transform these parameters to and from other commonly used triclinic representations.

When a prism region is used, the simulation domain must be periodic in any dimensions with a non-zero tilt
factor, as defined by the boundary command. I.e. if the xy tilt factor is non-zero, then both the x and y
dimensions must be periodic. Similarly, x and z must be periodic if xz is non-zero and y and z must be
periodic if yz is non-zero. Also note that if your simulation will tilt the box, e.g. via the fix deform command,
the simulation box must be defined as triclinic, even if the tilt factors are initially 0.0.

IMPORTANT NOTE: If the system is non-periodic (in a dimension), then you should not make the lo/hi box
dimensions (as defined in your region command) radically smaller/larger than the extent of the atoms you
eventually plan to create, e.g. via the create_atoms command. For example, if your atoms extend from 0 to 50,
you should not specify the box bounds as -10000 and 10000. This is because LAMMPS uses the specified box
size to layout the 3d grid of processors. A huge (mostly empty) box will be sub-optimal for performance when
using "fixed" boundary conditions (see the boundary command). When using "shrink-wrap" boundary
conditions (see the boundary command), a huge (mostly empty) box may cause a parallel simulation to lose

LIGGGHTS Users Manual

create_box command 208

http://lammps.sandia.gov

atoms the first time that LAMMPS shrink-wraps the box around the atoms.

Restrictions:

An atom_style and region must have been previously defined to use this command.

Related commands:

create_atoms, region

Default: none

LIGGGHTS Users Manual

create_box command 209

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

delete_atoms command

Syntax:

delete_atoms style args keyword value ...

style = group or region or overlap or porosity

group args = group-ID
region args = region-ID
overlap args = cutoff group1-ID group2-ID

 cutoff = delete one atom from pairs of atoms within the cutoff (distance units)
 group1-ID = one atom in pair must be in this group
 group2-ID = other atom in pair must be in this group

porosity args = region-ID fraction seed
 region-ID = region within which to perform deletions
 fraction = delete this fraction of atoms
 seed = random number seed (positive integer)

•

zero or more keyword/value pairs may be appended•
keyword = compress or mol

compress value = no or yes
mol value = no or yes

•

Examples:

delete_atoms group edge
delete_atoms region sphere compress no
delete_atoms overlap 0.3 all all
delete_atoms overlap 0.5 solvent colloid
delete_atoms porosity cube 0.1 482793

Description:

Delete the specified atoms. This command can be used to carve out voids from a block of material or to delete
created atoms that are too close to each other (e.g. at a grain boundary).

For style group, all atoms belonging to the group are deleted.

For style region, all atoms in the region volume are deleted. Additional atoms can be deleted if they are in a
molecule for which one or more atoms were deleted within the region; see the mol keyword discussion below.

For style overlap pairs of atoms whose distance of separation is within the specified cutoff distance are
searched for, and one of the 2 atoms is deleted. Only pairs where one of the two atoms is in the first group
specified and the other atom is in the second group are considered. The atom that is in the first group is the
one that is deleted.

Note that it is OK for the two group IDs to be the same (e.g. group all), or for some atoms to be members of
both groups. In these cases, either atom in the pair may be deleted. Also note that if there are atoms which are
members of both groups, the only guarantee is that at the end of the deletion operation, enough deletions will
have occurred that no atom pairs within the cutoff will remain (subject to the group restriction). There is no
guarantee that the minimum number of atoms will be deleted, or that the same atoms will be deleted when
running on different numbers of processors.

For style porosity a specified fraction of atoms are deleted within the specified region. For example, if

LIGGGHTS Users Manual

delete_atoms command 210

http://lammps.sandia.gov

fraction is 0.1, then 10% of the atoms will be deleted. The atoms to delete are chosen randomly. There is no
guarantee that the exact fraction of atoms will be deleted, or that the same atoms will be deleted when running
on different numbers of processors.

If the compress keyword is set to yes, then after atoms are deleted, then atom IDs are re-assigned so that they
run from 1 to the number of atoms in the system. This is not done for molecular systems (see the atom_style
command), regardless of the compress setting, since it would foul up the bond connectivity that has already
been assigned.

It the mol keyword is set to yes, then for every atom that is deleted, all other atoms in the same molecule will
also be deleted. This keyword is only used by the region style. It is a way to insure that entire molecules are
deleted instead of only a subset of atoms in a bond or angle or dihedral interaction.

Restrictions:

The overlap styles requires inter-processor communication to acquire ghost atoms and build a neighbor list.
This means that your system must be ready to perform a simulation before using this command (force fields
setup, atom masses set, etc). Since a neighbor list is used to find overlapping atom pairs, it also means that
you must define a pair style with force cutoffs greater than or equal to the desired overlap cutoff between pairs
of relevant atom types, even though the pair potential will not be evaluated.

If the special_bonds command is used with a setting of 0, then a pair of bonded atoms (1-2, 1-3, or 1-4) will
not appear in the neighbor list, and thus will not be considered for deletion by the overlap styles. You
probably don't want to be deleting one atom in a bonded pair anyway.

Related commands:

create_atoms

Default:

The option defaults are compress = yes and mol = no.

LIGGGHTS Users Manual

delete_atoms command 211

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

delete_bonds command

Syntax:

delete_bonds group-ID style args keyword ...

group-ID = group ID•
style = multi or atom or bond or angle or dihedral or improper or stats

multi args = none
atom args = an atom type
bond args = a bond type
angle args = an angle type
dihedral args = a dihedral type
improper args = an improper type
stats args = none

•

zero or more keywords may be appended•
keyword = any or undo or remove or special•

Examples:

delete_bonds frozen multi remove
delete_bonds all atom 4 special
delete_bonds all stats

Description:

Turn off (or on) molecular topology interactions, i.e. bonds, angles, dihedrals, impropers. This command is
useful for deleting interactions that have been previously turned off by bond-breaking potentials. It is also
useful for turning off topology interactions between frozen or rigid atoms. Pairwise interactions can be turned
off via the neigh_modify exclude command. The fix shake command also effectively turns off certain bond
and angle interactions.

For all styles, by default, an interaction is only turned off (or on) if all the atoms involved are in the specified
group. See the any keyword to change the behavior.

For style multi all bond, angle, dihedral, and improper interactions of any type, involving atoms in the group,
are turned off.

Style atom is the same as style multi except that in addition, one or more of the atoms involved in the bond,
angle, dihedral, or improper interaction must also be of the specified atom type.

For style bond, only bonds are candidates for turn-off, and the bond must also be of the specified type. Styles
angle, dihedral, and improper are treated similarly.

For style bond, you can set the type to 0 to delete bonds that have been previously broken by a bond-breaking
potential (which sets the bond type to 0 when a bond is broken); e.g. see the bond_style quartic command.

For style stats no interactions are turned off (or on); the status of all interactions in the specified group is
simply reported. This is useful for diagnostic purposes if bonds have been turned off by a bond-breaking
potential during a previous run.

The default behavior of the delete_bonds command is to turn off interactions by toggling their type to a
negative value, but not to permanently remove the interaction. E.g. a bond_type of 2 is set to -2. The neighbor

LIGGGHTS Users Manual

delete_bonds command 212

http://lammps.sandia.gov

list creation routines will not include such an interaction in their interaction lists. The default is also to not
alter the list of 1-2, 1-3, 1-4 neighbors computed by the special_bonds command and used to weight pairwise
force and energy calculations. This means that pairwise computations will proceed as if the bond (or angle,
etc) were still turned on.

Several keywords can be appended to the argument list to alter the default behaviors.

The any keyword changes the requirement that all atoms in the bond (angle, etc) must be in the specified
group in order to turn-off the interaction. Instead, if any of the atoms in the interaction are in the specified
group, it will be turned off (or on if the undo keyword is used).

The undo keyword inverts the delete_bonds command so that the specified bonds, angles, etc are turned on if
they are currently turned off. This means a negative value is toggled to positive. Note that the fix shake
command also sets bond and angle types negative, so this option should not be used on those interactions.

The remove keyword is invoked at the end of the delete_bonds operation. It causes turned-off bonds (angles,
etc) to be removed from each atom's data structure and then adjusts the global bond (angle, etc) counts
accordingly. Removal is a permanent change; removed bonds cannot be turned back on via the undo keyword.
Removal does not alter the pairwise 1-2, 1-3, 1-4 weighting list.

The special keyword is invoked at the end of the delete_bonds operation, after (optional) removal. It
re-computes the pairwise 1-2, 1-3, 1-4 weighting list. The weighting list computation treats turned-off bonds
the same as turned-on. Thus, turned-off bonds must be removed if you wish to change the weighting list.

Note that the choice of remove and special options affects how 1-2, 1-3, 1-4 pairwise interactions will be
computed across bonds that have been modified by the delete_bonds command.

Restrictions:

This command requires inter-processor communication to coordinate the deleting of bonds. This means that
your system must be ready to perform a simulation before using this command (force fields setup, atom
masses set, etc).

If deleted bonds (angles, etc) are removed but the 1-2, 1-3, 1-4 weighting list is not recomputed, this can cause
a later fix shake command to fail due to an atom's bonds being inconsistent with the weighting list. This
should only happen if the group used in the fix command includes both atoms in the bond, in which case you
probably should be recomputing the weighting list.

Related commands:

neigh_modify exclude, special_bonds, fix shake

Default: none

LIGGGHTS Users Manual

delete_bonds command 213

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dielectric command

Syntax:

dielectric value

value = dielectric constant•

Examples:

dielectric 2.0

Description:

Set the dielectric constant for Coulombic interactions (pairwise and long-range) to this value. The constant is
unitless, since it is used to reduce the strength of the interactions. The value is used in the denominator of the
formulas for Coulombic interactions - e.g. a value of 4.0 reduces the Coulombic interactions to 25% of their
default strength. See the pair_style command for more details.

Restrictions: none

Related commands:

pair_style

Default:

dielectric 1.0

LIGGGHTS Users Manual

dielectric command 214

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style charmm command

dihedral_style charmm/omp command

Syntax:

dihedral_style charmm

Examples:

dihedral_style charmm
dihedral_coeff 1 120.0 1 60 0.5

Description:

The charmm dihedral style uses the potential

See (MacKerell) for a description of the CHARMM force field. This dihedral style can also be used for the
AMBER force field (see comment on weighting factors below). See (Cornell) for a description of the
AMBER force field.

The following coefficients must be defined for each dihedral type via the dihedral_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•
n (integer >= 0)•
d (integer value of degrees)•
weighting factor (0.0 to 1.0)•

The weighting factor is applied to pairwise interaction between the 1st and 4th atoms in the dihedral, which
are computed by a CHARMM pair_style with epsilon and sigma values specified with a pair_coeff command.
Note that this weighting factor is unrelated to the weighting factor specified by the special bonds command
which applies to all 1-4 interactions in the system.

For CHARMM force fields, the special_bonds 1-4 weighting factor should be set to 0.0. This is because the
pair styles that contain "charmm" (e.g. pair_style lj/charmm/coul/long) define extra 1-4 interaction
coefficients that are used by this dihedral style to compute those interactions explicitly. This means that if any
of the weighting factors defined as dihedral coefficients (4th coeff above) are non-zero, then you must use a
charmm pair style. Note that if you do not set the special_bonds 1-4 weighting factor to 0.0 (which is the
default) then 1-4 interactions in dihedrals will be computed twice, once by the pair routine and once by the
dihedral routine, which is probably not what you want.

For AMBER force fields, the special_bonds 1-4 weighting factor should be set to the AMBER defaults (1/2
and 5/6) and all the dihedral weighting factors (4th coeff above) should be set to 0.0. In this case, you can use
any pair style you wish, since the dihedral does not need any 1-4 information.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in

LIGGGHTS Users Manual

dihedral_style charmm command 215

http://lammps.sandia.gov

Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

dihedral_coeff

Default: none

(Cornell) Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman, JACS 117,
5179-5197 (1995).

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem B, 102, 3586 (1998).

LIGGGHTS Users Manual

dihedral_style charmm/omp command 216

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style class2 command

dihedral_style class2/omp command

Syntax:

dihedral_style class2

Examples:

dihedral_style class2
dihedral_coeff 1 100 75 100 70 80 60
dihedral_coeff * mbt 3.5945 0.1704 -0.5490 1.5228
dihedral_coeff * ebt 0.3417 0.3264 -0.9036 0.1368 0.0 -0.8080 1.0119 1.1010
dihedral_coeff 2 at 0.0 -0.1850 -0.7963 -2.0220 0.0 -0.3991 110.2453 105.1270
dihedral_coeff * aat -13.5271 110.2453 105.1270
dihedral_coeff * bb13 0.0 1.0119 1.1010

Description:

The class2 dihedral style uses the potential

where Ed is the dihedral term, Embt is a middle-bond-torsion term, Eebt is an end-bond-torsion term, Eat is an
angle-torsion term, Eaat is an angle-angle-torsion term, and Ebb13 is a bond-bond-13 term.

Theta1 and theta2 are equilibrium angles and r1 r2 r3 are equilibrium bond lengths.

See (Sun) for a description of the COMPASS class2 force field.

Coefficients for the Ed, Embt, Eebt, Eat, Eaat, and Ebb13 formulas must be defined for each dihedral type via
the dihedral_coeff command as in the example above, or in the data file or restart files read by the read_data
or read_restart commands.

LIGGGHTS Users Manual

dihedral_style class2 command 217

http://lammps.sandia.gov

These are the 6 coefficients for the Ed formula:

K1 (energy)•
phi1 (degrees)•
K2 (energy)•
phi2 (degrees)•
K3 (energy)•
phi3 (degrees)•

For the Embt formula, each line in a dihedral_coeff command in the input script lists 5 coefficients, the first of
which is "mbt" to indicate they are MiddleBondTorsion coefficients. In a data file, these coefficients should
be listed under a "MiddleBondTorsion Coeffs" heading and you must leave out the "mbt", i.e. only list 4
coefficients after the dihedral type.

mbt•
A1 (energy/distance)•
A2 (energy/distance)•
A3 (energy/distance)•
r2 (distance)•

For the Eebt formula, each line in a dihedral_coeff command in the input script lists 9 coefficients, the first of
which is "ebt" to indicate they are EndBondTorsion coefficients. In a data file, these coefficients should be
listed under a "EndBondTorsion Coeffs" heading and you must leave out the "ebt", i.e. only list 8 coefficients
after the dihedral type.

ebt•
B1 (energy/distance)•
B2 (energy/distance)•
B3 (energy/distance)•
C1 (energy/distance)•
C2 (energy/distance)•
C3 (energy/distance)•
r1 (distance)•
r3 (distance)•

For the Eat formula, each line in a dihedral_coeff command in the input script lists 9 coefficients, the first of
which is "at" to indicate they are AngleTorsion coefficients. In a data file, these coefficients should be listed
under a "AngleTorsion Coeffs" heading and you must leave out the "at", i.e. only list 8 coefficients after the
dihedral type.

at•
D1 (energy/radian)•
D2 (energy/radian)•
D3 (energy/radian)•
E1 (energy/radian)•
E2 (energy/radian)•
E3 (energy/radian)•
theta1 (degrees)•
theta2 (degrees)•

Theta1 and theta2 are specified in degrees, but LAMMPS converts them to radians internally; hence the units
of D and E are in energy/radian.

For the Eaat formula, each line in a dihedral_coeff command in the input script lists 4 coefficients, the first of

LIGGGHTS Users Manual

dihedral_style class2/omp command 218

which is "aat" to indicate they are AngleAngleTorsion coefficients. In a data file, these coefficients should be
listed under a "AngleAngleTorsion Coeffs" heading and you must leave out the "aat", i.e. only list 3
coefficients after the dihedral type.

aat•
M (energy/radian^2)•
theta1 (degrees)•
theta2 (degrees)•

Theta1 and theta2 are specified in degrees, but LAMMPS converts them to radians internally; hence the units
of M are in energy/radian^2.

For the Ebb13 formula, each line in a dihedral_coeff command in the input script lists 4 coefficients, the first
of which is "bb13" to indicate they are BondBond13 coefficients. In a data file, these coefficients should be
listed under a "BondBond13 Coeffs" heading and you must leave out the "bb13", i.e. only list 3 coefficients
after the dihedral type.

bb13•
N (energy/distance^2)•
r1 (distance)•
r3 (distance)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This dihedral style can only be used if LAMMPS was built with the CLASS2 package. See the Making
LAMMPS section for more info on packages.

Related commands:

dihedral_coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

LIGGGHTS Users Manual

dihedral_style class2/omp command 219

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_coeff command

Syntax:

dihedral_coeff N args

N = dihedral type (see asterisk form below)•
args = coefficients for one or more dihedral types•

Examples:

dihedral_coeff 1 80.0 1 3
dihedral_coeff * 80.0 1 3 0.5
dihedral_coeff 2* 80.0 1 3 0.5

Description:

Specify the dihedral force field coefficients for one or more dihedral types. The number and meaning of the
coefficients depends on the dihedral style. Dihedral coefficients can also be set in the data file read by the
read_data command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild-card asterisk can be used to set the coefficients for multiple dihedral types. This takes the form "*" or
"*n" or "n*" or "m*n". If N = the number of dihedral types, then an asterisk with no numeric values means all
types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all
types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using a dihedral_coeff command can override a previous setting for the same dihedral type. For
example, these commands set the coeffs for all dihedral types, then overwrite the coeffs for just dihedral type
2:

dihedral_coeff * 80.0 1 3
dihedral_coeff 2 200.0 1 3

A line in a data file that specifies dihedral coefficients uses the exact same format as the arguments of the
dihedral_coeff command in an input script, except that wild-card asterisks should not be used since
coefficients for all N types must be listed in the file. For example, under the "Dihedral Coeffs" section of a
data file, the line that corresponds to the 1st example above would be listed as

1 80.0 1 3

The dihedral_style class2 is an exception to this rule, in that an additional argument is used in the input script
to allow specification of the cross-term coefficients. See its doc page for details.

IMPORTANT NOTE: When comparing the formulas and coefficients for various LAMMPS dihedral styles
with dihedral equations defined by other force fields, note that some force field implementations
divide/multiply the energy prefactor K by the multiple number of torsions that contain the J-K bond in an
I-J-K-L torsion. LAMMPS does not do this, i.e. the listed dihedral equation applies to each individual
dihedral. Thus you need to define K appropriately to account for this difference if necessary.

Here is an alphabetic list of dihedral styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated dihedral_coeff command.

LIGGGHTS Users Manual

dihedral_coeff command 220

http://lammps.sandia.gov

Note that there are also additional dihedral styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the dihedral section of this page.

dihedral_style none - turn off dihedral interactions•
dihedral_style hybrid - define multiple styles of dihedral interactions•

dihedral_style charmm - CHARMM dihedral•
dihedral_style class2 - COMPASS (class 2) dihedral•
dihedral_style harmonic - harmonic dihedral•
dihedral_style helix - helix dihedral•
dihedral_style multi/harmonic - multi-harmonic dihedral•
dihedral_style opls - OPLS dihedral•

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

A dihedral style must be defined before any dihedral coefficients are set, either in the input script or in a data
file.

Related commands:

dihedral_style

Default: none

LIGGGHTS Users Manual

dihedral_coeff command 221

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style cosine/shift/exp command

dihedral_style cosine/shift/exp/omp command

Syntax:

dihedral_style cosine/shift/exp

Examples:

dihedral_style cosine/shift/exp
dihedral_coeff 1 10.0 45.0 2.0

Description:

The cosine/shift/exp dihedral style uses the potential

where Umin, theta, and a are defined for each dihedral type.

The potential is bounded between [-Umin:0] and the minimum is located at the angle theta0. The a parameter
can be both positive or negative and is used to control the spring constant at the equilibrium.

The spring constant is given by k=a exp(a) Umin/ [2 (Exp(a)-1)]. For a>3 k/Umin = a/2 to better than 5%
relative error. For negative values of the a parameter, the spring constant is essentially zero, and anharmonic
terms takes over. The potential is furthermore well behaved in the limit a->0, where it has been implemented
to linear order in a for a < 0.001.

The following coefficients must be defined for each dihedral type via the dihedral_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

umin (energy)•
theta (angle)•
A (real number)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

LIGGGHTS Users Manual

dihedral_style cosine/shift/exp command 222

http://lammps.sandia.gov

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This dihedral style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

dihedral_coeff, angle_cosineshiftexp

Default: none

LIGGGHTS Users Manual

dihedral_style cosine/shift/exp/omp command 223

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style fourier command

dihedral_style fourier/omp command

Syntax:

dihedral_style fourier

Examples:

dihedral_style fourier
dihedral_coeff 1 3 -0.846200 3 0.0 7.578800 1 0 0.138000 2 -180.0

Description:

The fourier dihedral style uses the potential:

The following coefficients must be defined for each dihedral type via the dihedral_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

m (integer >=1)•
K1 (energy)•
n1 (integer >= 0)•
d1 (degrees)•
....•
Km (energy)•
nm (integer >= 0)•
dm (degrees)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

LIGGGHTS Users Manual

dihedral_style fourier command 224

http://lammps.sandia.gov

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

dihedral_coeff

Default: none

LIGGGHTS Users Manual

dihedral_style fourier/omp command 225

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style harmonic command

dihedral_style harmonic/omp command

Syntax:

dihedral_style harmonic

Examples:

dihedral_style harmonic
dihedral_coeff 1 80.0 1 2

Description:

The harmonic dihedral style uses the potential

The following coefficients must be defined for each dihedral type via the dihedral_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•
d (+1 or -1)•
n (integer >= 0)•

IMPORTANT NOTE: Here are important points to take note of when defining LAMMPS dihedral
coefficients for the harmonic style, so that they are compatible with how harmonic dihedrals are defined by
other force fields:

The LAMMPS convention is that the trans position = 180 degrees, while in some force fields trans =
0 degrees.

•

Some force fields reverse the sign convention on d.•
Some force fields let n be positive or negative which corresponds to d = 1 or -1 for the harmonic style.•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

LIGGGHTS Users Manual

dihedral_style harmonic command 226

http://lammps.sandia.gov

Restrictions:

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

dihedral_coeff

Default: none

LIGGGHTS Users Manual

dihedral_style harmonic/omp command 227

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style helix command

dihedral_style helix/omp command

Syntax:

dihedral_style helix

Examples:

dihedral_style helix
dihedral_coeff 1 80.0 100.0 40.0

Description:

The helix dihedral style uses the potential

This coarse-grain dihedral potential is described in (Guo). For dihedral angles in the helical region, the energy
function is represented by a standard potential consisting of three minima, one corresponding to the trans (t)
state and the other to gauche states (g+ and g-). The paper describes how the A,B,C parameters are chosen so
as to balance secondary (largely driven by local interactions) and tertiary structure (driven by long-range
interactions).

The following coefficients must be defined for each dihedral type via the dihedral_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

A (energy)•
B (energy)•
C (energy)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

LIGGGHTS Users Manual

dihedral_style helix command 228

http://lammps.sandia.gov

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

dihedral_coeff

Default: none

(Guo) Guo and Thirumalai, Journal of Molecular Biology, 263, 323-43 (1996).

LIGGGHTS Users Manual

dihedral_style helix/omp command 229

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style hybrid command

Syntax:

dihedral_style hybrid style1 style2 ...

style1,style2 = list of one or more dihedral styles•

Examples:

dihedral_style hybrid harmonic helix
dihedral_coeff 1 harmonic 6.0 1 3
dihedral_coeff 2* helix 10 10 10

Description:

The hybrid style enables the use of multiple dihedral styles in one simulation. An dihedral style is assigned to
each dihedral type. For example, dihedrals in a polymer flow (of dihedral type 1) could be computed with a
harmonic potential and dihedrals in the wall boundary (of dihedral type 2) could be computed with a helix
potential. The assignment of dihedral type to style is made via the dihedral_coeff command or in the data file.

In the dihedral_coeff commands, the name of a dihedral style must be added after the dihedral type, with the
remaining coefficients being those appropriate to that style. In the example above, the 2 dihedral_coeff
commands set dihedrals of dihedral type 1 to be computed with a harmonic potential with coefficients 6.0, 1,
3 for K, d, n. All other dihedral types (2-N) are computed with a helix potential with coefficients 10, 10, 10 for
A, B, C.

If dihedral coefficients are specified in the data file read via the read_data command, then the same rule
applies. E.g. "harmonic" or "helix", must be added after the dihedral type, for each line in the "Dihedral
Coeffs" section, e.g.

Dihedral Coeffs

1 harmonic 6.0 1 3
2 helix 10 10 10
...

If class2 is one of the dihedral hybrid styles, the same rule holds for specifying additional AngleTorsion (and
EndBondTorsion, etc) coefficients either via the input script or in the data file. I.e. class2 must be added to
each line after the dihedral type. For lines in the AngleTorsion (or EndBondTorsion, etc) section of the data
file for dihedral types that are not class2, you must use an dihedral style of skip as a placeholder, e.g.

AngleTorsion Coeffs

1 skip
2 class2 1.0 1.0 1.0 3.0 3.0 3.0 30.0 50.0
...

Note that it is not necessary to use the dihedral style skip in the input script, since AngleTorsion (or
EndBondTorsion, etc) coefficients need not be specified at all for dihedral types that are not class2.

A dihedral style of none with no additional coefficients can be used in place of a dihedral style, either in a
input script dihedral_coeff command or in the data file, if you desire to turn off interactions for specific
dihedral types.

LIGGGHTS Users Manual

dihedral_style hybrid command 230

http://lammps.sandia.gov

Restrictions:

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Unlike other dihedral styles, the hybrid dihedral style does not store dihedral coefficient info for individual
sub-styles in a binary restart files. Thus when retarting a simulation from a restart file, you need to re-specify
dihedral_coeff commands.

Related commands:

dihedral_coeff

Default: none

LIGGGHTS Users Manual

dihedral_style hybrid command 231

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style multi/harmonic command

dihedral_style multi/harmonic/omp command

Syntax:

dihedral_style multi/harmonic

Examples:

dihedral_style multi/harmonic
dihedral_coeff 1 20 20 20 20 20

Description:

The multi/harmonic dihedral style uses the potential

The following coefficients must be defined for each dihedral type via the dihedral_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

A1 (energy)•
A2 (energy)•
A3 (energy)•
A4 (energy)•
A5 (energy)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

LIGGGHTS Users Manual

dihedral_style multi/harmonic command 232

http://lammps.sandia.gov

Related commands:

dihedral_coeff

Default: none

LIGGGHTS Users Manual

dihedral_style multi/harmonic/omp command 233

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style nharmonic command

dihedral_style nharmonic/omp command

Syntax:

dihedral_style nharmonic

Examples:

dihedral_style nharmonic
dihedral_coeff 3 10.0 20.0 30.0

Description:

The nharmonic dihedral style uses the potential:

The following coefficients must be defined for each dihedral type via the dihedral_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

n (integer >=1)•
A1 (energy)•
A2 (energy)•
...•
An (energy)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

LIGGGHTS Users Manual

dihedral_style nharmonic command 234

http://lammps.sandia.gov

dihedral_coeff

Default: none

LIGGGHTS Users Manual

dihedral_style nharmonic/omp command 235

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style none command

Syntax:

dihedral_style none

Examples:

dihedral_style none

Description:

Using an dihedral style of none means dihedral forces are not computed, even if quadruplets of dihedral atoms
were listed in the data file read by the read_data command.

Restrictions: none

Related commands: none

Default: none

LIGGGHTS Users Manual

dihedral_style none command 236

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style opls command

dihedral_style opls/omp command

Syntax:

dihedral_style opls

Examples:

dihedral_style opls
dihedral_coeff 1 90.0 90.0 90.0 70.0

Description:

The opls dihedral style uses the potential

Note that the usual 1/2 factor is not included in the K values.

This dihedral potential is used in the OPLS force field and is described in (Watkins).

The following coefficients must be defined for each dihedral type via the dihedral_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K1 (energy)•
K2 (energy)•
K3 (energy)•
K4 (energy)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

LIGGGHTS Users Manual

dihedral_style opls command 237

http://lammps.sandia.gov

This dihedral style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

dihedral_coeff

Default: none

(Watkins) Watkins and Jorgensen, J Phys Chem A, 105, 4118-4125 (2001).

LIGGGHTS Users Manual

dihedral_style opls/omp command 238

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style quadratic command

dihedral_style quadratic/omp command

Syntax:

dihedral_style quadratic

Examples:

dihedral_style quadratic
dihedral_coeff 100.0 80.0

Description:

The quadratic dihedral style uses the potential:

This dihedral potential can be used to keep a dihedral in a predefined value.

The following coefficients must be defined for each dihedral type via the dihedral_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•
phi0 (degrees)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

dihedral_coeff

LIGGGHTS Users Manual

dihedral_style quadratic command 239

http://lammps.sandia.gov

Default: none

LIGGGHTS Users Manual

dihedral_style quadratic/omp command 240

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style command

Syntax:

dihedral_style style

style = none or hybrid or charmm or class2 or harmonic or helix or multi/harmonic or opls•

Examples:

dihedral_style harmonic
dihedral_style multi/harmonic
dihedral_style hybrid harmonic charmm

Description:

Set the formula(s) LAMMPS uses to compute dihedral interactions between quadruplets of atoms, which
remain in force for the duration of the simulation. The list of dihedral quadruplets is read in by a read_data or
read_restart command from a data or restart file.

Hybrid models where dihedrals are computed using different dihedral potentials can be setup using the hybrid
dihedral style.

The coefficients associated with a dihedral style can be specified in a data or restart file or via the
dihedral_coeff command.

All dihedral potentials store their coefficient data in binary restart files which means dihedral_style and
dihedral_coeff commands do not need to be re-specified in an input script that restarts a simulation. See the
read_restart command for details on how to do this. The one exception is that dihedral_style hybrid only
stores the list of sub-styles in the restart file; dihedral coefficients need to be re-specified.

IMPORTANT NOTE: When both a dihedral and pair style is defined, the special_bonds command often
needs to be used to turn off (or weight) the pairwise interaction that would otherwise exist between 4 bonded
atoms.

In the formulas listed for each dihedral style, phi is the torsional angle defined by the quadruplet of atoms.
This angle has a sign convention as shown in this diagram:

where the I,J,K,L ordering of the 4 atoms that define the dihedral is from left to right.

LIGGGHTS Users Manual

dihedral_style command 241

http://lammps.sandia.gov

This sign convention effects several of the dihedral styles listed below (e.g. charmm, helix) in the sense that
the energy formula depends on the sign of phi, which may be reflected in the value of the coefficients you
specify.

IMPORTANT NOTE: When comparing the formulas and coefficients for various LAMMPS dihedral styles
with dihedral equations defined by other force fields, note that some force field implementations
divide/multiply the energy prefactor K by the multiple number of torsions that contain the J-K bond in an
I-J-K-L torsion. LAMMPS does not do this, i.e. the listed dihedral equation applies to each individual
dihedral. Thus you need to define K appropriately via the dihedral_coeff command to account for this
difference if necessary.

Here is an alphabetic list of dihedral styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated dihedral_coeff command.

Note that there are also additional dihedral styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the dihedral section of this page.

dihedral_style none - turn off dihedral interactions•
dihedral_style hybrid - define multiple styles of dihedral interactions•

dihedral_style charmm - CHARMM dihedral•
dihedral_style class2 - COMPASS (class 2) dihedral•
dihedral_style harmonic - harmonic dihedral•
dihedral_style helix - helix dihedral•
dihedral_style multi/harmonic - multi-harmonic dihedral•
dihedral_style opls - OPLS dihedral•

Restrictions:

Dihedral styles can only be set for atom styles that allow dihedrals to be defined.

Most dihedral styles are part of the MOLECULAR package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info on packages. The doc pages for individual
dihedral potentials tell if it is part of a package.

Related commands:

dihedral_coeff

Default:

dihedral_style none

LIGGGHTS Users Manual

dihedral_style command 242

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style table command

dihedral_style table/omp command

Syntax:

dihedral_style table style Ntable

style = linear or spline = method of interpolation•
Ntable = size of the internal lookup table•

Examples:

dihedral_style table spline 400
dihedral_style table linear 1000
dihedral_coeff 1 file.table DIH_TABLE1
dihedral_coeff 2 file.table DIH_TABLE2

Description:

The table dihedral style creates interpolation tables of length Ntable from dihedral potential and derivative
values listed in a file(s) as a function of the dihedral angle "phi". The files are read by the dihedral_coeff
command.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and
derivative values at each of Ntable dihedral angles. During a simulation, these tables are used to interpolate
energy and force values on individual atoms as needed. The interpolation is done in one of 2 styles: linear or
spline.

For the linear style, the dihedral angle (phi) is used to find 2 surrounding table values from which an energy
or its derivative is computed by linear interpolation.

For the spline style, cubic spline coefficients are computed and stored at each of the Ntable evenly-spaced
values in the interpolated table. For a given dihedral angle (phi), the appropriate coefficients are chosen from
this list, and a cubic polynomial is used to compute the energy and the derivative at this angle.

The following coefficients must be defined for each dihedral type via the dihedral_coeff command as in the
example above.

filename•
keyword•

The filename specifies a file containing tabulated energy and derivative values. The keyword specifies a
section of the file. The format of this file is described below.

The format of a tabulated file is as follows (without the parenthesized comments). It can begin with one or
more comment or blank lines.

Table of the potential and its negative derivative

DIH_TABLE1 (keyword is the first text on line)
N 30 DEGREES (N, NOF, DEGREES, RADIANS, CHECKU/F)
 (blank line)
1 -168.0 -1.40351172223 -0.0423346818422

LIGGGHTS Users Manual

dihedral_style table command 243

http://lammps.sandia.gov

2 -156.0 -1.70447981034 -0.00811786522531
3 -144.0 -1.62956100432 0.0184129719987
...
30 180.0 -0.707106781187 -0.0719306095245

Example 2: table of the potential. Forces omitted

DIH_TABLE2
N 30 NOF CHECKU testU.dat CHECKF testF.dat

1 -168.0 -1.40351172223
2 -156.0 -1.70447981034
3 -144.0 -1.62956100432
...
30 180.0 -0.707106781187

A section begins with a non-blank line whose 1st character is not a "#"; blank lines or lines starting with "#"
can be used as comments between sections. The first line begins with a keyword which identifies the section.
The line can contain additional text, but the initial text must match the argument specified in the
dihedral_coeff command. The next line lists (in any order) one or more parameters for the table. Each
parameter is a keyword followed by one or more numeric values.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from
1 to N, the 2nd value is the angle value, the 3rd value is the energy (in energy units), and the 4th is -dE/d(phi)
also in energy units). The 3rd term is the energy of the 4-atom configuration for the specified angle. The 4th
term (when present) is the negative derivative of the energy with respect to the angle (in degrees, or radians
depending on whether the user selected DEGREES or RADIANS). Thus the units of the last term are still
energy, not force. The dihedral angle values must increase from one line to the next.

Dihedral table splines are cyclic. There is no discontinuity at 180 degrees (or at any other angle). Although in
the examples above, the angles range from -180 to 180 degrees, in general, the first angle in the list can have
any value (positive, zero, or negative). However the range of angles represented in the table must be strictly
less than 360 degrees (2pi radians) to avoid angle overlap. (You may not supply entries in the table for both
180 and -180, for example.) If the user's table covers only a narrow range of dihedral angles, strange
numerical behavior can occur in the large remaining gap.

Parameters:

The parameter "N" is required and its value is the number of table entries that follow. Note that this may be
different than the N specified in the dihedral_style table command. Let Ntable is the number of table entries
requested dihedral_style command, and let Nfile be the parameter following "N" in the tabulated file ("30" in
the sparse example above). What LAMMPS does is a preliminary interpolation by creating splines using the
Nfile tabulated values as nodal points. It uses these to interpolate as needed to generate energy and derivative
values at Ntable different points (which are evenly spaced over a 360 degree range, even if the angles in the
file are not). The resulting tables of length Ntable are then used as described above, when computing energy
and force for individual dihedral angles and their atoms. This means that if you want the interpolation tables
of length Ntable to match exactly what is in the tabulated file (with effectively nopreliminary interpolation),
you should set Ntable = Nfile. To insure the nodal points in the user's file are aligned with the interpolated
table entries, the angles in the table should be integer multiples of 360/Ntable degrees, or 2*PI/Ntable radians
(depending on your choice of angle units).

The optional "NOF" keyword allows the user to omit the forces (negative energy derivatives) from the table
file (normally located in the 4th column). In their place, forces will be calculated automatically by
differentiating the potential energy function indicated by the 3rd column of the table (using either linear or
spline interpolation).

The optional "DEGREES" keyword allows the user to specify angles in degrees instead of radians (default).

LIGGGHTS Users Manual

dihedral_style table/omp command 244

The optional "RADIANS" keyword allows the user to specify angles in radians instead of degrees. (Note:
This changes the way the forces are scaled in the 4th column of the data file.)

The optional "CHECKU" keyword is followed by a filename. This allows the user to save all of the the Ntable
different entries in the interpolated energy table to a file to make sure that the interpolated function agrees
with the user's expectations. (Note: You can temporarily increase the Ntable parameter to a high value for this
purpose. "Ntable" is explained above.)

The optional "CHECKF" keyword is analogous to the "CHECKU" keyword. It is followed by a filename, and
it allows the user to check the interpolated force table. This option is available even if the user selected the
"NOF" option.

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section
by section until it finds one that matches the specified keyword.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This dihedral style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

dihedral_coeff

Default: none

LIGGGHTS Users Manual

dihedral_style table/omp command 245

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dimension command

Syntax:

dimension N

N = 2 or 3•

Examples:

dimension 2

Description:

Set the dimensionality of the simulation. By default LAMMPS runs 3d simulations. To run a 2d simulation,
this command should be used prior to setting up a simulation box via the create_box or read_data commands.
Restart files also store this setting.

See the discussion in Section_howto for additional instructions on how to run 2d simulations.

IMPORTANT NOTE: Some models in LAMMPS treat particles as finite-size spheres or ellipsoids, as
opposed to point particles. In 2d, the particles will still be spheres or ellipsoids, not circular disks or ellipses,
meaning their moment of inertia will be the same as in 3d.

Restrictions:

This command must be used before the simulation box is defined by a read_data or create_box command.

Related commands:

fix enforce2d

Default:

dimension 3

LIGGGHTS Users Manual

dimension command 246

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

displace_atoms command

Syntax:

displace_atoms group-ID style args keyword value ...

group-ID = ID of group of atoms to displace•
style = move or ramp or random or rotate

move args = delx dely delz
 delx,dely,delz = distance to displace in each dimension (distance units)

ramp args = ddim dlo dhi dim clo chi
 ddim = x or y or z
 dlo,dhi = displacement distance between dlo and dhi (distance units)
 dim = x or y or z
 clo,chi = lower and upper bound of domain to displace (distance units)

random args = dx dy dz seed
 dx,dy,dz = random displacement magnitude in each dimension (distance units)
 seed = random # seed (positive integer)

rotate args = Px Py Pz Rx Ry Rz theta
 Px,Py,Pz = origin point of axis of rotation (distance units)
 Rx,Ry,Rz = axis of rotation vector
 theta = angle of rotation (degrees)

•

zero or more keyword/value pairs may be appended

 keyword = units
 value = box or lattice

•

Examples:

displace_atoms top move 0 -5 0 units box
displace_atoms flow ramp x 0.0 5.0 y 2.0 20.5

Description:

Displace a group of atoms. This can be used to move atoms a large distance before beginning a simulation or
to randomize atoms initially on a lattice. For example, in a shear simulation, an initial strain can be imposed
on the system. Or two groups of atoms can be brought into closer proximity.

The move style displaces the group of atoms by the specified 3d distance.

The ramp style displaces atoms a variable amount in one dimension depending on the atom's coordinate in a
(possibly) different dimension. For example, the second example command displaces atoms in the x-direction
an amount between 0.0 and 5.0 distance units. Each atom's displacement depends on the fractional distance its
y coordinate is between 2.0 and 20.5. Atoms with y-coordinates outside those bounds will be moved the
minimum (0.0) or maximum (5.0) amount.

The random style independently moves each atom in the group by a random displacement, uniformly sampled
from a value between -dx and +dx in the x dimension, and similarly for y and z. Random numbers are used in
such a way that the displacement of a particular atom is the same, regardless of how many processors are
being used.

The rotate style rotates each atom in the group by the angle theta around a rotation axis R = (Rx,Ry,Rz) that
goes thru a point P = (Px,Py,Pz). The direction of rotation for the atoms around the rotation axis is consistent
with the right-hand rule: if your right-hand's thumb points along R, then your fingers wrap around the axis in
the direction of positive theta.

LIGGGHTS Users Manual

displace_atoms command 247

http://lammps.sandia.gov

Distance units for displacements and the origin point of the rotate style are determined by the setting of box or
lattice for the units keyword. Box means distance units as defined by the units command - e.g. Angstroms for
real units. Lattice means distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing.

IMPORTANT NOTE: Care should be taken not to move atoms on top of other atoms. After the move, atoms
are remapped into the periodic simulation box if needed, and any shrink-wrap boundary conditions (see the
boundary command) are enforced which may change the box size. Other than this effect, this command does
not change the size or shape of the simulation box. See the change_box command if that effect is desired.

IMPORTANT NOTE: Atoms can be moved arbitrarily long distances by this command. If the simulation box
is non-periodic and shrink-wrapped (see the boundary command), this can change its size or shape. This is not
a problem, except that the mapping of processors to the simulation box is not changed by this command from
its initial 3d configuration; see the processors command. Thus, if the box size/shape changes dramatically, the
mapping of processors to the simulation box may not end up as optimal as the initial mapping attempted to be.

Restrictions:

You cannot rotate around any rotation vector except the z-axis for a 2d simulation.

Related commands:

lattice, change_box, fix_move

Default:

The option defaults are units = lattice.

LIGGGHTS Users Manual

displace_atoms command 248

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dump command

dump image command

dump movie command

dump molfile command

Syntax:

dump ID group-ID style N file args

ID = user-assigned name for the dump•
group-ID = ID of the group of atoms to be dumped•
style = atom or atom/vtk or cfg or dcd or xtc or xyz or image or molfile or local or custom or mesh/stl
or mesh/vtk or mesh/vtk or decomposition/vtk or euler/vtk

•

N = dump every this many timesteps•
file = name of file to write dump info to•
args = list of arguments for a particular style

atom args = none
atom/vtk args = none
cfg args = same as custom args, see below
dcd args = none
xtc args = none
xyz args = none

image args = discussed on dump image doc page

molfile args = discussed on dump molfile doc page

mesh/stl args = 'local' or 'ghost' or 'all' or 'region' or any ID of a fix mesh/surface
region values = ID for region threshold

mesh/vtk args = zero or more keyword/ value pairs and one or more dump-identifiers
 keywords = output

output values = face or interpolate
 dump-identifier = 'stress' or 'id' or 'wear' or 'vel' or 'stresscomponents' or 'owner' or 'area' or 'aedges' or 'acorners' or 'nneigs' or any ID of a fix mesh/surface
euler/vtk args = none
decomposition/vtk args = none

local args = list of local attributes
 possible attributes = index, c_ID, c_ID[N], f_ID, f_ID[N]
 index = enumeration of local values
 c_ID = local vector calculated by a compute with ID
 c_ID[N] = Nth column of local array calculated by a compute with ID
 f_ID = local vector calculated by a fix with ID
 f_ID[N] = Nth column of local array calculated by a fix with ID

custom args = list of atom attributes
 possible attributes = id, mol, type, element, mass,
 x, y, z, xs, ys, zs, xu, yu, zu,
 xsu, ysu, zsu, ix, iy, iz,
 vx, vy, vz, fx, fy, fz,
 q, mux, muy, muz, mu,
 radius, diameter, omegax, omegay, omegaz,
 angmomx, angmomy, angmomz, tqx, tqy, tqz,
 spin, eradius, ervel, erforce,
 c_ID, c_ID[N], f_ID, f_ID[N], v_name

•

LIGGGHTS Users Manual

dump command 249

http://lammps.sandia.gov

 id = atom ID
 mol = molecule ID
 type = atom type
 element = name of atom element, as defined by dump_modify command
 mass = atom mass
 x,y,z = unscaled atom coordinates
 xs,ys,zs = scaled atom coordinates
 xu,yu,zu = unwrapped atom coordinates
 xsu,ysu,zsu = scaled unwrapped atom coordinates
 ix,iy,iz = box image that the atom is in
 vx,vy,vz = atom velocities
 fx,fy,fz = forces on atoms
 q = atom charge
 mux,muy,muz = orientation of dipole moment of atom
 mu = magnitude of dipole moment of atom
 radius,diameter = radius,diameter of spherical particle
 omegax,omegay,omegaz = angular velocity of spherical particle
 angmomx,angmomy,angmomz = angular momentum of aspherical particle
 tqx,tqy,tqz = torque on finite-size particles
 spin = electron spin
 eradius = electron radius
 ervel = electron radial velocity
 erforce = electron radial force
 c_ID = per-atom vector calculated by a compute with ID
 c_ID[N] = Nth column of per-atom array calculated by a compute with ID
 f_ID = per-atom vector calculated by a fix with ID
 f_ID[N] = Nth column of per-atom array calculated by a fix with ID
 v_name = per-atom vector calculated by an atom-style variable with name

Examples:

dump myDump all atom 100 dump.atom
dump 2 subgroup atom 50 dump.run.bin
dump 4a all custom 100 dump.myforce.* id type x y vx fx
dump 4b flow custom 100 dump.%.myforce id type c_myF[3] v_ke
dump 2 inner cfg 10 dump.snap.*.cfg mass type xs ys zs vx vy vz
dump snap all cfg 100 dump.config.*.cfg mass type xs ys zs id type c_Stress2
dump 1 all xtc 1000 file.xtc
dump e_data all custom 100 dump.eff id type x y z spin eradius fx fy fz eforce

LIGGGHTS vs. LAMMPS Info:

Two new styles (mesh/stl and mesh/vtk) are available for dumping granular mesh geometry into STL files or
VTK files. The former is used for dumping only the geometry, while the latter command is used to dump the
mesh IDs, stress etc- calculated on a granular mesh using the fix mesh/surface/stress command. Furthermore,
style decomposition/vtk can be used to dump the current parallel domain decomposition to a VTK file. Style
euler/vtk can be used to dump cell-based averages to a VTK file.

Description:

Dump a snapshot of atom quantities to one or more files every N timesteps in one of several styles. The image
style is the exception; it creates a JPG or PPM image file of the atom configuration every N timesteps, as
discussed on the dump image doc page. The timesteps on which dump output is written can also be controlled
by a variable; see the dump_modify every command for details.

Only information for atoms in the specified group is dumped. The dump_modify thresh and region commands
can also alter what atoms are included. Not all styles support all these options; see details below.

As described below, the filename determines the kind of output (text or binary or gzipped, one big file or one
per timestep, one big file or multiple smaller files).

LIGGGHTS Users Manual

dump molfile command 250

IMPORTANT NOTE: Because periodic boundary conditions are enforced only on timesteps when neighbor
lists are rebuilt, the coordinates of an atom written to a dump file may be slightly outside the simulation box.

IMPORTANT NOTE: Unless the dump_modify sort option is invoked, the lines of atom information written
to dump files (typically one line per atom) will be in an indeterminate order for each snapshot. This is even
true when running on a single processor, if the atom_modify sort option is on, which it is by default. In this
case atoms are re-ordered periodically during a simulation, due to spatial sorting. It is also true when running
in parallel, because data for a single snapshot is collected from multiple processors, each of which owns a
subset of the atoms.

For the atom, custom, cfg, and local styles, sorting is off by default. For the dcd, xtc, xyz, and molfile styles,
sorting by atom ID is on by default. See the dump_modify doc page for details.

The style keyword determines what atom quantities are written to the file and in what format. Settings made
via the dump_modify command can also alter the format of individual values and the file itself.

The atom, local, and custom styles create files in a simple text format that is self-explanatory when viewing a
dump file. Many of the LAMMPS post-processing tools, including Pizza.py, work with this format, as does
the rerun command.

For post-processing purposes the atom, local, and custom text files are self-describing in the following sense.

The dimensions of the simulation box are included in each snapshot. For an orthogonal simulation box this
information is is formatted as:

ITEM: BOX BOUNDS xx yy zz
xlo xhi
ylo yhi
zlo zhi

where xlo,xhi are the maximum extents of the simulation box in the x-dimension, and similarly for y and z.
The "xx yy zz" represent 6 characters that encode the style of boundary for each of the 6 simulation box
boundaries (xlo,xhi and ylo,yhi and zlo,zhi). Each of the 6 characters is either p = periodic, f = fixed, s =
shrink wrap, or m = shrink wrapped with a minimum value. See the boundary command for details.

For triclinic simulation boxes (non-orthogonal), an orthogonal bounding box which encloses the triclinic
simulation box is output, along with the 3 tilt factors (xy, xz, yz) of the triclinic box, formatted as follows:

ITEM: BOX BOUNDS xy xz yz xx yy zz
xlo_bound xhi_bound xy
ylo_bound yhi_bound xz
zlo_bound zhi_bound yz

The presence of the text "xy xz yz" in the ITEM line indicates that the 3 tilt factors will be included on each of
the 3 following lines. This bounding box is convenient for many visualization programs. The meaning of the 6
character flags for "xx yy zz" is the same as above.

Note that the first two numbers on each line are now xlo_bound instead of xlo, etc, since they repesent a
bounding box. See this section of the doc pages for a geometric description of triclinic boxes, as defined by
LAMMPS, simple formulas for how the 6 bounding box extents (xlo_bound,xhi_bound,etc) are calculated
from the triclinic parameters, and how to transform those parameters to and from other commonly used
triclinic representations.

The "ITEM: ATOMS" line in each snapshot lists column descriptors for the per-atom lines that follow. For
example, the descriptors would be "id type xs ys zs" for the default atom style, and would be the atom
attributes you specify in the dump command for the custom style.

LIGGGHTS Users Manual

dump molfile command 251

http://www.sandia.gov/~sjplimp/pizza.html

For style atom, atom coordinates are written to the file, along with the atom ID and atom type. By default,
atom coords are written in a scaled format (from 0 to 1). I.e. an x value of 0.25 means the atom is at a location
1/4 of the distance from xlo to xhi of the box boundaries. The format can be changed to unscaled coords via
the dump_modify settings. Image flags can also be added for each atom via dump_modify.

For style atom/vtk, atom coordinates, velocity, rotational velocity, force, atom ID, atom radius and atom type
are written to VTK files. Note that you have to link against VTK libraries to use this functionality.

Style custom allows you to specify a list of atom attributes to be written to the dump file for each atom.
Possible attributes are listed above and will appear in the order specified. You cannot specify a quantity that is
not defined for a particular simulation - such as q for atom style bond, since that atom style doesn't assign
charges. Dumps occur at the very end of a timestep, so atom attributes will include effects due to fixes that are
applied during the timestep. An explanation of the possible dump custom attributes is given below.

For style local, local output generated by computes and fixes is used to generate lines of output that is written
to the dump file. This local data is typically calculated by each processor based on the atoms it owns, but there
may be zero or more entities per atom, e.g. a list of bond distances. An explanation of the possible dump local
attributes is given below. Note that by using input from the compute property/local command with dump
local, it is possible to generate information on bonds, angles, etc that can be cut and pasted directly into a data
file read by the read_data command.

Style cfg has the same command syntax as style custom and writes extended CFG format files, as used by the
AtomEye visualization package. Since the extended CFG format uses a single snapshot of the system per file,
a wildcard "*" must be included in the filename, as discussed below. The list of atom attributes for style cfg
must begin with either "mass type xs ys zs" or "mass type xsu ysu zsu" since these quantities are needed to
write the CFG files in the appropriate format (though the "mass" and "type" fields do not appear explicitly in
the file). Any remaining attributes will be stored as "auxiliary properties" in the CFG files. Note that you will
typically want to use the dump_modify element command with CFG-formatted files, to associate element
names with atom types, so that AtomEye can render atoms appropriately. When unwrapped coordinates xsu,
ysu, and zsu are requested, the nominal AtomEye periodic cell dimensions are expanded by a large factor
UNWRAPEXPAND = 10.0, which ensures atoms that are displayed correctly for up to UNWRAPEXPAND/2
periodic boundary crossings in any direction. Beyond this, AtomEye will rewrap the unwrapped coordinates.
The expansion causes the atoms to be drawn farther away from the viewer, but it is easy to zoom the atoms
closer, and the interatomic distances are unaffected.

The dcd style writes DCD files, a standard atomic trajectory format used by the CHARMM, NAMD, and
XPlor molecular dynamics packages. DCD files are binary and thus may not be portable to different
machines. The number of atoms per snapshot cannot change with the dcd style. The unwrap option of the
dump_modify command allows DCD coordinates to be written "unwrapped" by the image flags for each
atom. Unwrapped means that if the atom has passed through a periodic boundary one or more times, the value
is printed for what the coordinate would be if it had not been wrapped back into the periodic box. Note that
these coordinates may thus be far outside the box size stored with the snapshot.

The xtc style writes XTC files, a compressed trajectory format used by the GROMACS molecular dynamics
package, and described here. The precision used in XTC files can be adjusted via the dump_modify
command. The default value of 1000 means that coordinates are stored to 1/1000 nanometer accuracy. XTC
files are portable binary files written in the NFS XDR data format, so that any machine which supports XDR
should be able to read them. The number of atoms per snapshot cannot change with the xtc style. The unwrap
option of the dump_modify command allows XTC coordinates to be written "unwrapped" by the image flags
for each atom. Unwrapped means that if the atom has passed thru a periodic boundary one or more times, the
value is printed for what the coordinate would be if it had not been wrapped back into the periodic box. Note
that these coordinates may thus be far outside the box size stored with the snapshot.

The xyz style writes XYZ files, which is a simple text-based coordinate format that many codes can read.

LIGGGHTS Users Manual

dump molfile command 252

http://mt.seas.upenn.edu/Archive/Graphics/A
http://manual.gromacs.org/current/online/xtc.html

Specifically it has a line with the number of atoms, then a comment line that is usually ignored followed by
one line per atom with the atom type and the x-, y-, and z-coordinate of that atom. You can use the
dump_modify element option to change the output from using the (numerical) atom type to an element name
(or some other label). This will help many visualization programs to guess bonds and colors.

Note that atom, custom, dcd, xtc, and xyz style dump files can be read directly by VMD, a popular molecular
viewing program. See Section tools of the manual and the tools/lmp2vmd/README.txt file for more
information about support in VMD for reading and visualizing LAMMPS dump files.

The mesh/stl style dumps active STL geometries defined via fix mesh commands into the specified file. If you
do not supply the optional list of mesh IDs, all meshes are dumped, irrespective of whether they are used in a
fix wall/gran command or not. By specifying a list of mesh IDs you can explicitly choose which meshes to
dump. The group-ID is ignored, because the command is not applied to particles, but to mesh geometries.
With keywords 'local', 'owned' or 'ghost' you can decide which parts of the parallel meshes you want to dump
(default is 'local'). If the multiprocessor option is not used (no '%' in filename), data is gathered from all
processors, so using the default will output the whole mesh data across all processors.

Examples:

dump stl1 all mesh/stl 300 post/dump*.stl
dump stl2 all mesh/stl 300 post/dump_proc%_local*.stl local
dump stl3 all mesh/stl 300 post/dump_proc%_ghost*.stl ghost
dump stl4 all mesh/stl 300 post/dump_proc_all_ghost*.stl ghost

The first command will write one file per time-step containing the complete mesh. The second command will
output one file per time-step per processor containing the local (owned) mesh elements of each processor. The
third command will output one file per time-step per processor containing the ghost (corona) mesh elements
of each processor. The third command will output one file per time-step containing the ghost (corona) mesh
elements of all processors.

With the region keyword, just those mesh element where the element center (arithmetic average of all nodes)
is in the specified region, will be dumped.

This dump is especially useful if a fix move/mesh is registered. If the position of the mesh is changed over
time and you want to dump one file for each dump timestep for post-processing together with the particle
data, you should use a filename like 'mydumpfile*.stl'. Note: This series of files can then be post-processed
together with the particle dump file converted to VTK in Paraview , www.paraview.org

By providing any ID (or a list of IDs) of fix mesh/surface commands, you can specify which meshes to dump.
If no meshes are specified, all meshes used in the simulation are dumped.

The mesh/vtk style can be used to dump active mesh geometries defined via fix mesh commands to a series of
VTK files. Different keywords can be used to dump the per-triangle stress, id, velocity, wear, stress
components, area or the process which owns the element (visulatisation of the parallel decomposition) into the
specified file using a VTK file format. The list of mesh IDs is optional. As with the stl style, all active meshes
are dumped if you do not supply the optional list of mesh IDs. By specifying list of mesh IDs you can
explicitly choose which meshes to dump. The group-ID is ignored. Again, a series of files can be
post-processed in Paraview , www.paraview.org Most keywords as used for the mesh/vtk style are
self-explanatory. Keyword output controlls if the data is written in a per-face manner or as interpolated values
to VTK. Keywords aedges and acorners dump the number of active edges/corners per face. Keyword nneighs
dumps the number of face neighbors LIGGGHTS has recognized for each face.

By providing any ID (or a list of IDs) of fix mesh/surface commands, you can specify which meshes to dump.
If no meshes are specified, all meshes used in the simulation are dumped.

LIGGGHTS Users Manual

dump molfile command 253

http://www.ks.uiuc.edu/Research/vmd

The euler/vtk style dumps the output of a fix ave/euler command into a series of VTK files. No further args
are expected.

The decomposition/vtk style dumps the processor grid decomposition into a series of VTK files. No further
args are expected.

Dumps are performed on timesteps that are a multiple of N (including timestep 0) and on the last timestep of a
minimization if the minimization converges. Note that this means a dump will not be performed on the initial
timestep after the dump command is invoked, if the current timestep is not a multiple of N. This behavior can
be changed via the dump_modify first command, which can also be useful if the dump command is invoked
after a minimization ended on an arbitrary timestep. N can be changed between runs by using the
dump_modify every command (not allowed for dcd style). The dump_modify every command also allows a
variable to be used to determine the sequence of timesteps on which dump files are written. In this mode a
dump on the first timestep of a run will also not be written unless the dump_modify first command is used.

The specified filename determines how the dump file(s) is written. The default is to write one large text file,
which is opened when the dump command is invoked and closed when an undump command is used or when
LAMMPS exits. For the dcd and xtc styles, this is a single large binary file.

Dump filenames can contain two wildcard characters. If a "*" character appears in the filename, then one file
per snapshot is written and the "*" character is replaced with the timestep value. For example, tmp.dump.*
becomes tmp.dump.0, tmp.dump.10000, tmp.dump.20000, etc. This option is not available for the dcd and xtc
styles. Note that the dump_modify pad command can be used to insure all timestep numbers are the same
length (e.g. 00010), which can make it easier to read a series of dump files in order with some post-processing
tools.

If a "%" character appears in the filename, then each of P processors writes a portion of the dump file, and the
"%" character is replaced with the processor ID from 0 to P-1. For example, tmp.dump.% becomes
tmp.dump.0, tmp.dump.1, ... tmp.dump.P-1, etc. This creates smaller files and can be a fast mode of output on
parallel machines that support parallel I/O for output. This option is not available for the dcd, xtc, and xyz
styles.

By default, P = the number of processors meaning one file per processor, but P can be set to a smaller value
via the nfile or fileper keywords of the dump_modify command. These options can be the most efficient way
of writing out dump files when running on large numbers of processors.

Note that using the "*" and "%" characters together can produce a large number of small dump files!

If the filename ends with ".bin", the dump file (or files, if "*" or "%" is also used) is written in binary format.
A binary dump file will be about the same size as a text version, but will typically write out much faster. Of
course, when post-processing, you will need to convert it back to text format (see the binary2txt tool) or write
your own code to read the binary file. The format of the binary file can be understood by looking at the
tools/binary2txt.cpp file. This option is only available for the atom and custom styles.

If the filename ends with ".gz", the dump file (or files, if "*" or "%" is also used) is written in gzipped format.
A gzipped dump file will be about 3x smaller than the text version, but will also take longer to write. This
option is not available for the dcd and xtc styles.

This section explains the local attributes that can be specified as part of the local style.

The index attribute can be used to generate an index number from 1 to N for each line written into the dump
file, where N is the total number of local datums from all processors, or lines of output that will appear in the
snapshot. Note that because data from different processors depend on what atoms they currently own, and
atoms migrate between processor, there is no guarantee that the same index will be used for the same info

LIGGGHTS Users Manual

dump molfile command 254

(e.g. a particular bond) in successive snapshots.

The c_ID and c_ID[N] attributes allow local vectors or arrays calculated by a compute to be output. The ID in
the attribute should be replaced by the actual ID of the compute that has been defined previously in the input
script. See the compute command for details. There are computes for calculating local information such as
indices, types, and energies for bonds and angles.

Note that computes which calculate global or per-atom quantities, as opposed to local quantities, cannot be
output in a dump local command. Instead, global quantities can be output by the thermo_style custom
command, and per-atom quantities can be output by the dump custom command.

If c_ID is used as a attribute, then the local vector calculated by the compute is printed. If c_ID[N] is used,
then N must be in the range from 1-M, which will print the Nth column of the M-length local array calculated
by the compute.

The f_ID and f_ID[N] attributes allow local vectors or arrays calculated by a fix to be output. The ID in the
attribute should be replaced by the actual ID of the fix that has been defined previously in the input script.

If f_ID is used as a attribute, then the local vector calculated by the fix is printed. If f_ID[N] is used, then N
must be in the range from 1-M, which will print the Nth column of the M-length local array calculated by the
fix.

Here is an example of how to dump bond info for a system, including the distance and energy of each bond:

compute 1 all property/local batom1 batom2 btype
compute 2 all bond/local dist eng
dump 1 all local 1000 tmp.dump index c_1[1] c_1[2] c_1[3] c_2[1] c_2[2]

This section explains the atom attributes that can be specified as part of the custom and cfg styles.

The id, mol, type, element, mass, vx, vy, vz, fx, fy, fz, q attributes are self-explanatory.

Id is the atom ID. Mol is the molecule ID, included in the data file for molecular systems. Type is the atom
type. Element is typically the chemical name of an element, which you must assign to each type via the
dump_modify element command. More generally, it can be any string you wish to associated with an atom
type. Mass is the atom mass. Vx, vy, vz, fx, fy, fz, and q are components of atom velocity and force and atomic
charge.

There are several options for outputting atom coordinates. The x, y, z attributes write atom coordinates
"unscaled", in the appropriate distance units (Angstroms, sigma, etc). Use xs, ys, zs if you want the
coordinates "scaled" to the box size, so that each value is 0.0 to 1.0. If the simulation box is triclinic (tilted),
then all atom coords will still be between 0.0 and 1.0. Use xu, yu, zu if you want the coordinates "unwrapped"
by the image flags for each atom. Unwrapped means that if the atom has passed thru a periodic boundary one
or more times, the value is printed for what the coordinate would be if it had not been wrapped back into the
periodic box. Note that using xu, yu, zu means that the coordinate values may be far outside the box bounds
printed with the snapshot. Using xsu, ysu, zsu is similar to using xu, yu, zu, except that the unwrapped
coordinates are scaled by the box size. Atoms that have passed through a periodic boundary will have the
corresponding cooordinate increased or decreased by 1.0.

The image flags can be printed directly using the ix, iy, iz attributes. For periodic dimensions, they specify
which image of the simulation box the atom is considered to be in. An image of 0 means it is inside the box as
defined. A value of 2 means add 2 box lengths to get the true value. A value of -1 means subtract 1 box length
to get the true value. LAMMPS updates these flags as atoms cross periodic boundaries during the simulation.

LIGGGHTS Users Manual

dump molfile command 255

The mux, muy, muz attributes are specific to dipolar systems defined with an atom style of dipole. They give
the orientation of the atom's point dipole moment. The mu attribute gives the magnitude of the atom's dipole
moment.

The radius and diameter attributes are specific to spherical particles that have a finite size, such as those
defined with an atom style of sphere.

The omegax, omegay, and omegaz attributes are specific to finite-size spherical particles that have an angular
velocity. Only certain atom styles, such as sphere define this quantity.

The angmomx, angmomy, and angmomz attributes are specific to finite-size aspherical particles that have an
angular momentum. Only the ellipsoid atom style defines this quantity.

The tqx, tqy, tqz attributes are for finite-size particles that can sustain a rotational torque due to interactions
with other particles.

The spin, eradius, ervel, and erforce attributes are for particles that represent nuclei and electrons modeled
with the electronic force field (EFF). See atom_style electron and pair_style eff for more details.

The c_ID and c_ID[N] attributes allow per-atom vectors or arrays calculated by a compute to be output. The
ID in the attribute should be replaced by the actual ID of the compute that has been defined previously in the
input script. See the compute command for details. There are computes for calculating the per-atom energy,
stress, centro-symmetry parameter, and coordination number of individual atoms.

Note that computes which calculate global or local quantities, as opposed to per-atom quantities, cannot be
output in a dump custom command. Instead, global quantities can be output by the thermo_style custom
command, and local quantities can be output by the dump local command.

If c_ID is used as a attribute, then the per-atom vector calculated by the compute is printed. If c_ID[N] is
used, then N must be in the range from 1-M, which will print the Nth column of the M-length per-atom array
calculated by the compute.

The f_ID and f_ID[N] attributes allow vector or array per-atom quantities calculated by a fix to be output. The
ID in the attribute should be replaced by the actual ID of the fix that has been defined previously in the input
script. The fix ave/atom command is one that calculates per-atom quantities. Since it can time-average
per-atom quantities produced by any compute, fix, or atom-style variable, this allows those time-averaged
results to be written to a dump file.

If f_ID is used as a attribute, then the per-atom vector calculated by the fix is printed. If f_ID[N] is used, then
N must be in the range from 1-M, which will print the Nth column of the M-length per-atom array calculated
by the fix.

The v_name attribute allows per-atom vectors calculated by a variable to be output. The name in the attribute
should be replaced by the actual name of the variable that has been defined previously in the input script. Only
an atom-style variable can be referenced, since it is the only style that generates per-atom values. Variables of
style atom can reference individual atom attributes, per-atom atom attributes, thermodynamic keywords, or
invoke other computes, fixes, or variables when they are evaluated, so this is a very general means of creating
quantities to output to a dump file.

See Section_modify of the manual for information on how to add new compute and fix styles to LAMMPS to
calculate per-atom quantities which could then be output into dump files.

Restrictions:

LIGGGHTS Users Manual

dump molfile command 256

To write gzipped dump files, you must compile LAMMPS with the -DLAMMPS_GZIP option - see the
Making LAMMPS section of the documentation.

To be able to use atom/vtk, you have to link to VTK libraries, please adapt your Makefile accordingly.

The xtc style is part of the XTC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info. This is because some machines may not support the low-level XDR
data format that XTC files are written with, which will result in a compile-time error when a low-level include
file is not found. Putting this style in a package makes it easy to exclude from a LAMMPS build for those
machines. However, the XTC package also includes two compatibility header files and associated functions,
which should be a suitable substitute on machines that do not have the appropriate native header files. This
option can be invoked at build time by adding -DLAMMPS_XDR to the CCFLAGS variable in the
appropriate low-level Makefile, e.g. src/MAKE/Makefile.foo. This compatibility mode has been tested
successfully on Cray XT3/XT4/XT5 and IBM BlueGene/L machines and should also work on IBM BG/P, and
Windows XP/Vista/7 machines.

Related commands:

dump image, dump_modify, undump

Default:

The defaults for the image style are listed on the dump image doc page.

LIGGGHTS Users Manual

dump molfile command 257

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dump image command

dump movie command

Syntax:

dump ID group-ID style N file color diameter keyword value ...

ID = user-assigned name for the dump•
group-ID = ID of the group of atoms to be imaged•
style = image or movie = style of dump command (other styles atom or cfg or dcd or xtc or xyz or
local or custom are discussed on the dump doc page)

•

N = dump every this many timesteps•
file = name of file to write image to•
color = atom attribute that determines color of each atom•
diameter = atom attribute that determines size of each atom•
zero or more keyword/value pairs may be appended•
keyword = adiam or atom or bond or size or view or center or up or zoom or persp or box or axes or
shiny or ssao

adiam value = number = numeric value for atom diameter (distance units)
atom = yes/no = do or do not draw atoms
bond values = color width = color and width of bonds

 color = atom or type or none
 width = number or atom or type or none
 number = numeric value for bond width (distance units)

size values = width height = size of images
 width = width of image in # of pixels
 height = height of image in # of pixels

view values = theta phi = view of simulation box
 theta = view angle from +z axis (degrees)
 phi = azimuthal view angle (degrees)
 theta or phi can be a variable (see below)

center values = flag Cx Cy Cz = center point of image
 flag = "s" for static, "d" for dynamic
 Cx,Cy,Cz = center point of image as fraction of box dimension (0.5 = center of box)
 Cx,Cy,Cz can be variables (see below)

up values = Ux Uy Uz = direction that is "up" in image
 Ux,Uy,Uz = components of up vector
 Ux,Uy,Uz can be variables (see below)

zoom value = zfactor = size that simulation box appears in image
 zfactor = scale image size by factor > 1 to enlarge, factor <1 to shrink
 zfactor can be a variable (see below)

persp value = pfactor = amount of "perspective" in image
 pfactor = amount of perspective (0 = none, <1 = some, > 1 = highly skewed)
 pfactor can be a variable (see below)

box values = yes/no diam = draw outline of simulation box
 yes/no = do or do not draw simulation box lines
 diam = diameter of box lines as fraction of shortest box length

axes values = yes/no length diam = draw xyz axes
 yes/no = do or do not draw xyz axes lines next to simulation box
 length = length of axes lines as fraction of respective box lengths
 diam = diameter of axes lines as fraction of shortest box length

shiny value = sfactor = shinyness of spheres and cylinders
 sfactor = shinyness of spheres and cylinders from 0.0 to 1.0

ssao value = yes/no seed dfactor = SSAO depth shading
 yes/no = turn depth shading on/off
 seed = random # seed (positive integer)
 dfactor = strength of shading from 0.0 to 1.0

•

LIGGGHTS Users Manual

dump image command 258

http://lammps.sandia.gov

Examples:

dump d0 all image 100 dump.*.jpg type type
dump d1 mobile image 500 snap.*.png element element ssao yes 4539 0.6
dump d2 all image 200 img-*.ppm type type zoom 2.5 adiam 1.5 size 1280 720
dump m0 all movie 1000 movie.mpg type type size 640 480
dump m1 all movie 1000 movie.avi type type size 640 480
dump m2 all movie 100 movie.m4v type type zoom 1.8 adiam v_value size 1280 720

Description:

Dump a high-quality rendered image of the atom configuration every N timesteps and save the images either
as a sequence of JPG or PNG, or PPM files, or as a single movie file. The options for this command as well as
the dump_modify command control what is included in the image or movie and how it appears. A series of
such images can easily be manually converted into an animated movie of your simulation or the process can
be automated without writing the intermediate files using the dump movie style; see further details below.
Other dump styles store snapshots of numerical data asociated with atoms in various formats, as discussed on
the dump doc page.

Note that a set of images or a movie can be made after a simulation has been run, using the rerun command to
read snapshots from an existing dump file, and using these dump commands in the rerun script to generate the
images/movie.

Here are two sample images, rendered as 1024x1024 JPG files. Click to see the full-size images:

Only atoms in the specified group are rendered in the image. The dump_modify region and thresh commands
can also alter what atoms are included in the image.

The filename suffix determines whether a JPEG, PNG, or PPM file is created with the image dump style. If
the suffix is ".jpg" or ".jpeg", then a JPEG format file is created, if the suffix is ".png", then a PNG format is
created, else a PPM (aka NETPBM) format file is created. The JPG and PNG files are binary; PPM has a text
mode header followed by binary data. JPG images have lossy compression; PNG has lossless compression;
and PPM files are uncompressed but can be compressed with gzip, if LAMMPS has been compiled with
-DLAMMPS_GZIP and a ".gz" suffix is used.

Similarly, the format of the resulting movie is chosen with the movie dump style. This is handled by the
underlying FFmpeg converter and thus details have to be looked up in the FFmpeg documentation. Typical
examples are: .avi, .mpg, .m4v, .mp4, .mkv, .flv, .mov, .gif Additional settings of the movie compression like
bitrate and framerate can be set using the dump_modify command.

To write out JPEG and PNG format files, you must build LAMMPS with support for the corresponding JPEG
or PNG library. To convert images into movies, LAMMPS has to be compiled with the

LIGGGHTS Users Manual

dump movie command 259

-DLAMMPS_FFMPEG flag. See this section of the manual for instructions on how to do this.

IMPORTANT NOTE: Because periodic boundary conditions are enforced only on timesteps when neighbor
lists are rebuilt, the coordinates of an atom in the image may be slightly outside the simulation box.

Dumps are performed on timesteps that are a multiple of N (including timestep 0) and on the last timestep of a
minimization if the minimization converges. Note that this means a dump will not be performed on the initial
timestep after the dump command is invoked, if the current timestep is not a multiple of N. This behavior can
be changed via the dump_modify first command, which can be useful if the dump command is invoked after a
minimization ended on an arbitrary timestep. N can be changed between runs by using the dump_modify
every command.

Dump image filenames must contain a wildcard character "*", so that one image file per snapshot is written.
The "*" character is replaced with the timestep value. For example, tmp.dump.*.jpg becomes tmp.dump.0.jpg,
tmp.dump.10000.jpg, tmp.dump.20000.jpg, etc. Note that the dump_modify pad command can be used to
insure all timestep numbers are the same length (e.g. 00010), which can make it easier to convert a series of
images into a movie in the correct ordering.

Dump movie filenames on the other hand, must not have any wildcard character since only one file combining
all images into a single movie will be written by the movie encoder.

The color and diameter settings determine the color and size of atoms rendered in the image. They can be any
atom attribute defined for the dump custom command, including type and element. This includes per-atom
quantities calculated by a compute, fix, or variable, which are prefixed by "c_", "f_", or "v_" respectively.
Note that the diameter setting can be overridden with a numeric value by the optional adiam keyword, in
which case you can specify the diameter setting with any valid atom attribute.

If type is specified for the color setting, then the color of each atom is determined by its atom type. By default
the mapping of types to colors is as follows:

type 1 = red•
type 2 = green•
type 3 = blue•
type 4 = yellow•
type 5 = aqua•
type 6 = cyan•

and repeats itself for types > 6. This mapping can be changed by the dump_modify acolor command.

If type is specified for the diameter setting then the diameter of each atom is determined by its atom type. By
default all types have diameter 1.0. This mapping can be changed by the dump_modify adiam command.

If element is specified for the color and/or diameter setting, then the color and/or diameter of each atom is
determined by which element it is, which in turn is specified by the element-to-type mapping specified by the
"dump_modify element" command. By default every atom type is C (carbon). Every element has a color and
diameter associated with it, which is the same as the colors and sizes used by the AtomEye visualization
package.

If other atom attributes are used for the color or diameter settings, they are interpreted in the following way.

If "vx", for example, is used as the color setting, then the color of the atom will depend on the x-component of
its velocity. The association of a per-atom value with a specific color is determined by a "color map", which
can be specified via the dump_modify command. The basic idea is that the atom-attribute will be within a
range of values, and every value within the range is mapped to a specific color. Depending on how the color

LIGGGHTS Users Manual

dump movie command 260

http://mt.seas.upenn.edu/Archive/Graphics/A

map is defined, that mapping can take place via interpolation so that a value of -3.2 is halfway between "red"
and "blue", or discretely so that the value of -3.2 is "orange".

If "vx", for example, is used as the diameter setting, then the atom will be rendered using the x-component of
its velocity as the diameter. If the per-atom value <= 0.0, them the atom will not be drawn. Note that
finite-size spherical particles, as defined by atom_style sphere define a per-particle radius or diameter, which
can be used as the diameter setting.

The various kewords listed above control how the image is rendered. As listed below, all of the keywords
have defaults, most of which you will likely not need to change. The dump modify also has options specific to
the dump image style, particularly for assigning colors to atoms, bonds, and other image features.

The adiam keyword allows you to override the diameter setting to a per-atom attribute with a specified
numeric value. All atoms will be drawn with that diameter, e.g. 1.5, which is in whatever distance units the
input script defines, e.g. Angstroms.

The atom keyword allow you to turn off the drawing of all atoms, if the specified value is no.

The bond keyword allows to you to alter how bonds are drawn. A bond is only drawn if both atoms in the
bond are being drawn due to being in the specified group and due to other selection criteria (e.g. region,
threshhold settings of the dump_modify command). By default, bonds are drawn if they are defined in the
input data file as read by the read_data command. Using none for both the bond color and width value will
turn off the drawing of all bonds.

If atom is specified for the bond color value, then each bond is drawn in 2 halves, with the color of each half
being the color of the atom at that end of the bond.

If type is specified for the color value, then the color of each bond is determined by its bond type. By default
the mapping of bond types to colors is as follows:

type 1 = red•
type 2 = green•
type 3 = blue•
type 4 = yellow•
type 5 = aqua•
type 6 = cyan•

and repeats itself for bond types > 6. This mapping can be changed by the dump_modify bcolor command.

The bond width value can be a numeric value or atom or type (or none as indicated above).

If a numeric value is specified, then all bonds will be drawn as cylinders with that diameter, e.g. 1.0, which is
in whatever distance units the input script defines, e.g. Angstroms.

If atom is specified for the width value, then each bond will be drawn with a width corresponding to the
minimum diameter of the 2 atoms in the bond.

If type is specified for the width value then the diameter of each bond is determined by its bond type. By
default all types have diameter 0.5. This mapping can be changed by the dump_modify bdiam command.

The size keyword sets the width and height of the created images, i.e. the number of pixels in each direction.

The view, center, up, zoom, and persp values determine how 3d simulation space is mapped to the 2d plane of
the image. Basically they control how the simulation box appears in the image.

LIGGGHTS Users Manual

dump movie command 261

All of the view, center, up, zoom, and persp values can be specified as numeric quantities, whose meaning is
explained below. Any of them can also be specified as an equal-style variable, by using v_name as the value,
where "name" is the variable name. In this case the variable will be evaluated on the timestep each image is
created to create a new value. If the equal-style variable is time-dependent, this is a means of changing the
way the simulation box appears from image to image, effectively doing a pan or fly-by view of your
simulation.

The view keyword determines the viewpoint from which the simulation box is viewed, looking towards the
center point. The theta value is the vertical angle from the +z axis, and must be an angle from 0 to 180
degrees. The phi value is an azimuthal angle around the z axis and can be positive or negative. A value of 0.0
is a view along the +x axis, towards the center point. If theta or phi are specified via variables, then the
variable values should be in degrees.

The center keyword determines the point in simulation space that will be at the center of the image. Cx, Cy,
and Cz are speficied as fractions of the box dimensions, so that (0.5,0.5,0.5) is the center of the simulation
box. These values do not have to be between 0.0 and 1.0, if you want the simulation box to be offset from the
center of the image. Note, however, that if you choose strange values for Cx, Cy, or Cz you may get a blank
image. Internally, Cx, Cy, and Cz are converted into a point in simulation space. If flag is set to "s" for static,
then this conversion is done once, at the time the dump command is issued. If flag is set to "d" for dynamic
then the conversion is performed every time a new image is created. If the box size or shape is changing, this
will adjust the center point in simulation space.

The up keyword determines what direction in simulation space will be "up" in the image. Internally it is stored
as a vector that is in the plane perpendicular to the view vector implied by the theta and pni values, and which
is also in the plane defined by the view vector and user-specified up vector. Thus this internal vector is
computed from the user-specified up vector as

up_internal = view cross (up cross view)

This means the only restriction on the specified up vector is that it cannot be parallel to the view vector,
implied by the theta and phi values.

The zoom keyword scales the size of the simulation box as it appears in the image. The default zfactor value
of 1 should display an image mostly filled by the atoms in the simulation box. A zfactor > 1 will make the
simulation box larger; a zfactor < 1 will make it smaller. Zfactor must be a value > 0.0.

The persp keyword determines how much depth perspective is present in the image. Depth perspective makes
lines that are parallel in simulation space appear non-parallel in the image. A pfactor value of 0.0 means that
parallel lines will meet at infininty (1.0/pfactor), which is an orthographic rendering with no persepctive. A
pfactor value between 0.0 and 1.0 will introduce more perspective. A pfactor value > 1 will create a highly
skewed image with a large amount of perspective.

IMPORTANT NOTE: The persp keyword is not yet supported as an option.

The box keyword determines how the simulation box boundaries are rendered as thin cylinders in the image.
If no is set, then the box boundaries are not drawn and the diam setting is ignored. If yes is set, the 12 edges of
the box are drawn, with a diameter that is a fraction of the shortest box length in x,y,z (for 3d) or x,y (for 2d).
The color of the box boundaries can be set with the dump_modify boxcolor command.

The axes keyword determines how the coordinate axes are rendered as thin cylinders in the image. If no is set,
then the axes are not drawn and the length and diam settings are ignored. If yes is set, 3 thin cylinders are
drawn to represent the x,y,z axes in colors red,green,blue. The origin of these cylinders will be offset from the
lower left corner of the box by 10%. The length setting determines how long the cylinders will be as a fraction
of the respective box lengths. The diam setting determines their thickness as a fraction of the shortest box
length in x,y,z (for 3d) or x,y (for 2d).

LIGGGHTS Users Manual

dump movie command 262

The shiny keyword determines how shiny the objects rendered in the image will appear. The sfactor value
must be a value 0.0 <= sfactor <= 1.0, where sfactor = 1 is a highly reflective surface and sfactor = 0 is a
rough non-shiny surface.

The ssao keyword turns on/off a screen space ambient occlusion (SSAO) model for depth shading. If yes is
set, then atoms further away from the viewer are darkened via a randomized process, which is perceived as
depth. The calculation of this effect can increase the cost of computing the image by roughly 2x. The strength
of the effect can be scaled by the dfactor parameter. If no is set, no depth shading is performed.

A series of JPG, PNG, or PPM images can be converted into a movie file and then played as a movie using
commonly available tools. Using dump style movie automates this step and avoids the intermediate step of
writing (many) image snapshot file. But LAMMPS has to be compiled with -DLAMMPS_FFMPEG and an
FFmpeg executable have to be installed.

To manually convert JPG, PNG or PPM files into an animated GIF or MPEG or other movie file you can use:

a) Use the ImageMagick convert program.

% convert *.jpg foo.gif
% convert -loop 1 *.ppm foo.mpg

Animated GIF files from ImageMagick are unoptimized. You can use a program like gifsicle to
optimize and massively shrink them. MPEG files created by ImageMagick are in MPEG-1 format
with rather inefficient compression and low quality.

•

b) Use QuickTime.

Select "Open Image Sequence" under the File menu Load the images into QuickTime to animate them
Select "Export" under the File menu Save the movie as a QuickTime movie (*.mov) or in another
format. QuickTime can generate very high quality and efficiently compressed movie files. Some of
the supported formats require to buy a license and some are not readable on all platforms until
specific runtime libraries are installed.

•

c) Use FFmpeg•

FFmpeg is a command line tool that is available on many platforms and allows extremely flexible encoding
and decoding of movies.

cat snap.*.jpg | ffmpeg -y -f image2pipe -c:v mjpeg -i - -b:v 2000k movie.m4v
cat snap.*.ppm | ffmpeg -y -f image2pipe -c:v ppm -i - -b:v 2400k movie.avi

Frontends for FFmpeg exist for multiple platforms. For more information see the FFmpeg homepage

Play the movie:

a) Use your browser to view an animated GIF movie.

Select "Open File" under the File menu Load the animated GIF file

•

b) Use the freely available mplayer or ffplay tool to view a movie. Both are available for multiple
OSes and support a large variety of file formats and decoders.

% mplayer foo.mpg
% ffplay bar.avi

•

c) Use the Pizza.py animate tool, which works directly on a series of image files.

a = animate("foo*.jpg")

•

LIGGGHTS Users Manual

dump movie command 263

http://www.ffmpeg.org/
http://www.sandia.gov/~sjplimp/pizza.html
http://www.sandia.gov/~sjplimp/pizza/doc/animate.html

d) QuickTime and other Windows- or MacOS-based media players can obviously play movie files
directly. Similarly the corresponding tools bundled with Linux desktop environments, however, due
to licensing issues of some of the file formats, some formats may require installing additional
libraries, purchasing a license, or are not supported.

•

See Section_modify of the manual for information on how to add new compute and fix styles to LAMMPS to
calculate per-atom quantities which could then be output into dump files.

Restrictions:

To write JPG images, you must use the -DLAMMPS_JPEG switch when building LAMMPS and link with a
JPEG library. To write PNG images, you must use the -DLAMMPS_PNG switch when building LAMMPS
and link with a PNG library.

To write movie dumps, you must use the -DLAMMPS_FFMPEG switch when building LAMMPS and have
the FFmpeg executable available on the machine where LAMMPS is being run.

See the Making LAMMPS section of the documentation for details on how to configure and compile optional
in LAMMPS.

Related commands:

dump, dump_modify, undump

Default:

The defaults for the keywords are as follows:

adiam = not specified (use diameter setting)•
atom = yes•
bond = none none (if no bonds in system)•
bond = atom 0.5 (if bonds in system)•
size = 512 512•
view = 60 30 (for 3d)•
view = 0 0 (for 2d)•
center = s 0.5 0.5 0.5•
up = 0 0 1 (for 3d)•
up = 0 1 0 (for 2d)•
zoom = 1.0•
persp = 0.0•
box = yes 0.02•
axes = no 0.0 0.0•
shiny = 1.0•
ssao = no•

LIGGGHTS Users Manual

dump movie command 264

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dump_modify command

Syntax:

dump_modify dump-ID keyword values ...

dump-ID = ID of dump to modify•
one or more keyword/value pairs may be appended•
these keywords apply to various dump styles•
keyword = append or buffer or element or every or fileper or first or flush or format or image or label
or nfile or pad or precision or region or scale or sort or thresh or unwrap

append arg = yes or no
buffer arg = yes or no
element args = E1 E2 ... EN, where N = # of atom types

 E1,...,EN = element name, e.g. C or Fe or Ga
every arg = N

 N = dump every this many timesteps
 N can be a variable (see below)

fileper arg = Np
 Np = write one file for every this many processors

first arg = yes or no
format arg = C-style format string for one line of output
flush arg = yes or no
image arg = yes or no
label arg = string

 string = character string (e.g. BONDS) to use in header of dump local file
nfile arg = Nf

 Nf = write this many files, one from each of Nf processors
pad arg = Nchar = # of characters to convert timestep to
precision arg = power-of-10 value from 10 to 1000000
region arg = region-ID or "none"
scale arg = yes or no
sort arg = off or id or N or -N

 off = no sorting of per-atom lines within a snapshot
 id = sort per-atom lines by atom ID
 N = sort per-atom lines in ascending order by the Nth column
 -N = sort per-atom lines in descending order by the Nth column

thresh args = attribute operation value
 attribute = same attributes (x,fy,etotal,sxx,etc) used by dump custom style
 operation = "" or ">=" or "==" or "!="
 value = numeric value to compare to
 these 3 args can be replaced by the word "none" to turn off thresholding

unwrap arg = yes or no

•

these keywords apply only to the image and movie styles•
keyword = acolor or adiam or amap or bcolor or bdiam or backcolor or boxcolor or color or bitrate
or framerate

acolor args = type color
 type = atom type or range of types (see below)
 color = name of color or color1/color2/...

adiam args = type diam
 type = atom type or range of types (see below)
 diam = diameter of atoms of that type (distance units)

amap args = lo hi style delta N entry1 entry2 ... entryN
 lo = number or min = lower bound of range of color map
 hi = number or max = upper bound of range of color map
 style = 2 letters = "c" or "d" or "s" plus "a" or "f"
 "c" for continuous
 "d" for discrete
 "s" for sequential

•

LIGGGHTS Users Manual

dump_modify command 265

http://lammps.sandia.gov

 "a" for absolute
 "f" for fractional
 delta = binsize (only used for style "s", otherwise ignored)
 binsize = range is divided into bins of this width
 N = # of subsequent entries
 entry = value color (for continuous style)
 value = number or min or max = single value within range
 color = name of color used for that value
 entry = lo hi color (for discrete style)
 lo/hi = number or min or max = lower/upper bound of subset of range
 color = name of color used for that subset of values
 entry = color (for sequential style)
 color = name of color used for a bin of values

backcolor arg = color
 color = name of color for background

bcolor args = type color
 type = bond type or range of types (see below)
 color = name of color or color1/color2/...

bdiam args = type diam
 type = bond type or range of types (see below)
 diam = diameter of bonds of that type (distance units)

bitrate arg = rate
 rate = target bitrate for movie in kbps

boxcolor arg = color
 color = name of color for box lines

color args = name R G B
 name = name of color
 R,G,B = red/green/blue numeric values from 0.0 to 1.0

framerate arg = fps
 fps = frames per second for movie

Examples:

dump_modify 1 format "%d %d %20.15g %g %g" scale yes
dump_modify myDump image yes scale no flush yes
dump_modify 1 region mySphere thresh x <0.0 thresh epair >= 3.2
dump_modify xtcdump precision 10000
dump_modify 1 every 1000 nfile 20
dump_modify 1 every v_myVar
dump_modify 1 amap min max cf 0.0 3 min green 0.5 yellow max blue boxcolor red

Description:

Modify the parameters of a previously defined dump command. Not all parameters are relevant to all dump
styles.

These keywords apply to various dump styles, including the dump image and dump movie styles. The
description gives details.

The append keyword applies to all dump styles except cfg and xtc and dcd. It also applies only to text output
files, not to binary or gzipped or image/movie files. If specified as yes, then dump snapshots are appended to
the end of an existing dump file. If specified as no, then a new dump file will be created which will overwrite
an existing file with the same name. This keyword can only take effect if the dump_modify command is used
after the dump command, but before the first command that causes dump snapshots to be output, e.g. a run or
minimize command. Once the dump file has been opened, this keyword has no further effect.

The buffer keyword applies only to dump styles atom, custom, local, and xyz. It also applies only to text
output files, not to binary or gzipped files. If specified as yes, which is the default, then each processor writes
its output into an internal text buffer, which is then sent to the processor(s) which perform file writes, and
written by those processors(s) as one large chunk of text. If specified as no, each processor sends its per-atom

LIGGGHTS Users Manual

dump_modify command 266

data in binary format to the processor(s) which perform file wirtes, and those processor(s) format and write it
line by line into the output file.

The buffering mode is typically faster since each processor does the relatively expensive task of formatting
the output for its own atoms. However it requires about twice the memory (per processor) for the extra
buffering.

The element keyword applies only to the the dump cfg, xyz, and image styles. It associates element names
(e.g. H, C, Fe) with LAMMPS atom types. See the list of element names at the bottom of this page.

In the case of dump cfg, this allows the AtomEye visualization package to read the dump file and render
atoms with the appropriate size and color.

In the case of dump image, the output images will follow the same AtomEye convention. An element name is
specified for each atom type (1 to Ntype) in the simulation. The same element name can be given to multiple
atom types.

In the case of xyz format dumps, there are no restrictions to what label can be used as an element name. Any
whitespace separated text will be accepted.

The every keyword changes the dump frequency originally specified by the dump command to a new value.
The every keyword can be specified in one of two ways. It can be a numeric value in which case it must be >
0. Or it can be an equal-style variable, which should be specified as v_name, where name is the variable
name.

In this case, the variable is evaluated at the beginning of a run to determine the next timestep at which a dump
snapshot will be written out. On that timestep the variable will be evaluated again to determine the next
timestep, etc. Thus the variable should return timestep values. See the stagger() and logfreq() and stride()
math functions for equal-style variables, as examples of useful functions to use in this context. Other similar
math functions could easily be added as options for equal-style variables. Also see the next() function, which
allows use of a file-style variable which reads successive values from a file, each time the variable is
evaluated. Used with the every keyword, if the file contains a list of ascending timesteps, you can output
snapshots whenever you wish.

Note that when using the variable option with the every keyword, you need to use the first option if you want
an initial snapshot written to the dump file. The every keyword cannot be used with the dump dcd style.

For example, the following commands will write snapshots at timesteps
0,10,20,30,100,200,300,1000,2000,etc:

variable s equal logfreq(10,3,10)
dump 1 all atom 100 tmp.dump
dump_modify 1 every v_s first yes

The following commands would write snapshots at the timesteps listed in file tmp.times:

variable f file tmp.times
variable s equal next(f)
dump 1 all atom 100 tmp.dump
dump_modify 1 every v_s

IMPORTANT NOTE: When using a file-style variable with the every keyword, the file of timesteps must list
a first timestep that is beyond the current timestep (e.g. it cannot be 0). And it must list one or more timesteps
beyond the length of the run you perform. This is because the dump command will generate an error if the
next timestep it reads from the file is not a value greater than the current timestep. Thus if you wanted output

LIGGGHTS Users Manual

dump_modify command 267

http://mt.seas.upenn.edu/Archive/Graphics/A
http://mt.seas.upenn.edu/Archive/Graphics/A

on steps 0,15,100 of a 100-timestep run, the file should contain the values 15,100,101 and you should also use
the dump_modify first command. Any final value > 100 could be used in place of 101.

The first keyword determines whether a dump snapshot is written on the very first timestep after the dump
command is invoked. This will always occur if the current timestep is a multiple of N, the frequency specified
in the dump command, including timestep 0. But if this is not the case, a dump snapshot will only be written if
the setting of this keyword is yes. If it is no, which is the default, then it will not be written.

The flush keyword determines whether a flush operation is invoked after a dump snapshot is written to the
dump file. A flush insures the output in that file is current (no buffering by the OS), even if LAMMPS halts
before the simulation completes. Flushes cannot be performed with dump style xtc.

The text-based dump styles have a default C-style format string which simply specifies %d for integers and
%g for real values. The format keyword can be used to override the default with a new C-style format string.
Do not include a trailing "\n" newline character in the format string. This option has no effect on the dcd and
xtc dump styles since they write binary files. Note that for the cfg style, the first two fields (atom id and type)
are not actually written into the CFG file, though you must include formats for them in the format string.

The fileper keyword is documented below with the nfile keyword.

The image keyword applies only to the dump atom style. If the image value is yes, 3 flags are appended to
each atom's coords which are the absolute box image of the atom in each dimension. For example, an x image
flag of -2 with a normalized coord of 0.5 means the atom is in the center of the box, but has passed thru the
box boundary 2 times and is really 2 box lengths to the left of its current coordinate. Note that for dump style
custom these various values can be printed in the dump file by using the appropriate atom attributes in the
dump command itself.

The label keyword applies only to the dump local style. When it writes local information, such as bond or
angle topology to a dump file, it will use the specified label to format the header. By default this includes 2
lines:

ITEM: NUMBER OF ENTRIES
ITEM: ENTRIES ...

The word "ENTRIES" will be replaced with the string specified, e.g. BONDS or ANGLES.

The nfile or fileper keywords can be used in conjunction with the "%" wildcard character in the specified
dump file name, for all dump styles except the dcd, image, movie, xtc, and xyz styles (for which "%" is not
allowed). As explained on the dump command doc page, the "%" character causes the dump file to be written
in pieces, one piece for each of P processors. By default P = the number of processors the simulation is
running on. The nfile or fileper keyword can be used to set P to a smaller value, which can be more efficient
when running on a large number of processors.

The nfile keyword sets P to the specified Nf value. For example, if Nf = 4, and the simulation is running on
100 processors, 4 files will be written, by processors 0,25,50,75. Each will collect information from itself and
the next 24 processors and write it to a dump file.

For the fileper keyword, the specified value of Np means write one file for every Np processors. For example,
if Np = 4, every 4th processor (0,4,8,12,etc) will collect information from itself and the next 3 processors and
write it to a dump file.

The pad keyword only applies when the dump filename is specified with a wildcard "*" character which
becomes the timestep. If pad is 0, which is the default, the timestep is converted into a string of unpadded
length, e.g. 100 or 12000 or 2000000. When pad is specified with Nchar > 0, the string is padded with leading

LIGGGHTS Users Manual

dump_modify command 268

zeroes so they are all the same length = Nchar. For example, pad 7 would yield 0000100, 0012000, 2000000.
This can be useful so that post-processing programs can easily read the files in ascending timestep order.

The precision keyword only applies to the dump xtc style. A specified value of N means that coordinates are
stored to 1/N nanometer accuracy, e.g. for N = 1000, the coordinates are written to 1/1000 nanometer
accuracy.

The region keyword only applies to the dump custom, cfg, image, and movie styles. If specified, only atoms in
the region will be written to the dump file or included in the image/movie. Only one region can be applied as a
filter (the last one specified). See the region command for more details. Note that a region can be defined as
the "inside" or "outside" of a geometric shape, and it can be the "union" or "intersection" of a series of simpler
regions.

The scale keyword applies only to the dump atom style. A scale value of yes means atom coords are written in
normalized units from 0.0 to 1.0 in each box dimension. If the simluation box is triclinic (tilted), then all atom
coords will still be between 0.0 and 1.0. A value of no means they are written in absolute distance units (e.g.
Angstroms or sigma).

The sort keyword determines whether lines of per-atom output in a snapshot are sorted or not. A sort value of
off means they will typically be written in indeterminate order, either in serial or parallel. This is the case even
in serial if the atom_modify sort option is turned on, which it is by default, to improve performance. A sort
value of id means sort the output by atom ID. A sort value of N or -N means sort the output by the value in the
Nth column of per-atom info in either ascending or descending order.

The dump local style cannot be sorted by atom ID, since there are typically multiple lines of output per atom.
Some dump styles, such as dcd and xtc, require sorting by atom ID to format the output file correctly. If
multiple processors are writing the dump file, via the "%" wildcard in the dump filename, then sorting cannot
be performed.

IMPORTANT NOTE: Unless it is required by the dump style, sorting dump file output requires extra
overhead in terms of CPU and communication cost, as well as memory, versus unsorted output.

The thresh keyword only applies to the dump custom, cfg, image, and movie styles. Multiple thresholds can be
specified. Specifying "none" turns off all threshold criteria. If thresholds are specified, only atoms whose
attributes meet all the threshold criteria are written to the dump file or included in the image. The possible
attributes that can be tested for are the same as those that can be specified in the dump custom command, with
the exception of the element attribute, since it is not a numeric value. Note that different attributes can be
output by the dump custom command than are used as threshold criteria by the dump_modify command. E.g.
you can output the coordinates and stress of atoms whose energy is above some threshold.

The unwrap keyword only applies to the dump dcd and xtc styles. If set to yes, coordinates will be written
"unwrapped" by the image flags for each atom. Unwrapped means that if the atom has passed thru a periodic
boundary one or more times, the value is printed for what the coordinate would be if it had not been wrapped
back into the periodic box. Note that these coordinates may thus be far outside the box size stored with the
snapshot.

These keywords apply only to the dump image and dump movie styles. Any keyword that affects an image,
also affects a movie, since the movie is simply a collection of images. Some of the keywords only affect the
dump movie style. The description gives details.

The acolor keyword can be used with the dump image command, when its atom color setting is type, to set
the color that atoms of each type will be drawn in the image.

LIGGGHTS Users Manual

dump_modify command 269

The specified type should be an integer from 1 to Ntypes = the number of atom types. A wildcard asterisk can
be used in place of or in conjunction with the type argument to specify a range of atom types. This takes the
form "*" or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values
means all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk
means all types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

The specified color can be a single color which is any of the 140 pre-defined colors (see below) or a color
name defined by the dump_modify color option. Or it can be two or more colors separated by a "/" character,
e.g. red/green/blue. In the former case, that color is assigned to all the specified atom types. In the latter case,
the list of colors are assigned in a round-robin fashion to each of the specified atom types.

The adiam keyword can be used with the dump image command, when its atom diameter setting is type, to set
the size that atoms of each type will be drawn in the image. The specified type should be an integer from 1 to
Ntypes. As with the acolor keyword, a wildcard asterisk can be used as part of the type argument to specify a
range of atomt types. The specified diam is the size in whatever distance units the input script is using, e.g.
Angstroms.

The amap keyword can be used with the dump image command, with its atom keyword, when its atom setting
is an atom-attribute, to setup a color map. The color map is used to assign a specific RGB (red/green/blue)
color value to an individual atom when it is drawn, based on the atom's attribute, which is a numeric value,
e.g. its x-component of velocity if the atom-attribute "vx" was specified.

The basic idea of a color map is that the atom-attribute will be within a range of values, and that range is
associated with a a series of colors (e.g. red, blue, green). An atom's specific value (vx = -3.2) can then
mapped to the series of colors (e.g. halfway between red and blue), and a specific color is determined via an
interpolation procedure.

There are many possible options for the color map, enabled by the amap keyword. Here are the details.

The lo and hi settings determine the range of values allowed for the atom attribute. If numeric values are used
for lo and/or hi, then values that are lower/higher than that value are set to the value. I.e. the range is static. If
lo is specified as min or hi as max then the range is dynamic, and the lower and/or upper bound will be
calculated each time an image is drawn, based on the set of atoms being visualized.

The style setting is two letters, such as "ca". The first letter is either "c" for continuous, "d" for discrete, or "s"
for sequential. The second letter is either "a" for absolute, or "f" for fractional.

A continuous color map is one in which the color changes continuously from value to value within the range.
A discrete color map is one in which discrete colors are assigned to sub-ranges of values within the range. A
sequential color map is one in which discrete colors are assigned to a sequence of sub-ranges of values
covering the entire range.

An absolute color map is one in which the values to which colors are assigned are specified explicitly as
values within the range. A fractional color map is one in which the values to which colors are assigned are
specified as a fractional portion of the range. For example if the range is from -10.0 to 10.0, and the color red
is to be assigned to atoms with a value of 5.0, then for an absolute color map the number 5.0 would be used.
But for a fractional map, the number 0.75 would be used since 5.0 is 3/4 of the way from -10.0 to 10.0.

The delta setting must be specified for all styles, but is only used for the sequential style; otherwise the value
is ignored. It specifies the bin size to use within the range for assigning consecutive colors to. For example, if
the range is from -10.0 to 10.0 and a delta of 1.0 is used, then 20 colors will be assigned to the range. The first
will be from -10.0 <= color1 < -9.0, then 2nd from -9.0 <= color2 < -8.0, etc.

LIGGGHTS Users Manual

dump_modify command 270

The N setting is how many entries follow. The format of the entries depends on whether the color map style is
continuous, discrete or sequential. In all cases the color setting can be any of the 140 pre-defined colors (see
below) or a color name defined by the dump_modify color option.

For continuous color maps, each entry has a value and a color. The value is either a number within the range
of values or min or max. The value of the first entry must be min and the value of the last entry must be max.
Any entries in between must have increasing values. Note that numeric values can be specified either as
absolute numbers or as fractions (0.0 to 1.0) of the range, depending on the "a" or "f" in the style setting for
the color map.

Here is how the entries are used to determine the color of an individual atom, given the value X of its atom
attribute. X will fall between 2 of the entry values. The color of the atom is linearly interpolated (in each of
the RGB values) between the 2 colors associated with those entries. For example, if X = -5.0 and the 2
surrounding entries are "red" at -10.0 and "blue" at 0.0, then the atom's color will be halfway between "red"
and "blue", which happens to be "purple".

For discrete color maps, each entry has a lo and hi value and a color. The lo and hi settings are either numbers
within the range of values or lo can be min or hi can be max. The lo and hi settings of the last entry must be
min and max. Other entries can have any lo and hi values and the sub-ranges of different values can overlap.
Note that numeric lo and hi values can be specified either as absolute numbers or as fractions (0.0 to 1.0) of
the range, depending on the "a" or "f" in the style setting for the color map.

Here is how the entries are used to determine the color of an individual atom, given the value X of its atom
attribute. The entries are scanned from first to last. The first time that lo <= X <= hi, X is assigned the color
associated with that entry. You can think of the last entry as assigning a default color (since it will always be
matched by X), and the earlier entries as colors that override the default. Also note that no interpolation of a
color RGB is done. All atoms will be drawn with one of the colors in the list of entries.

For sequential color maps, each entry has only a color. Here is how the entries are used to determine the color
of an individual atom, given the value X of its atom attribute. The range is partitioned into N bins of width
binsize. Thus X will fall in a specific bin from 1 to N, say the Mth bin. If it falls on a boundary between 2
bins, it is considered to be in the higher of the 2 bins. Each bin is assigned a color from the E entries. If E < N,
then the colors are repeated. For example if 2 entries with colors red and green are specified, then the odd
numbered bins will be red and the even bins green. The color of the atom is the color of its bin. Note that the
sequential color map is really a shorthand way of defining a discrete color map without having to specify
where all the bin boundaries are.

The backcolor sets the background color of the images. The color name can be any of the 140 pre-defined
colors (see below) or a color name defined by the dump_modify color option.

The bcolor keyword can be used with the dump image command, with its bond keyword, when its color
setting is type, to set the color that bonds of each type will be drawn in the image.

The specified type should be an integer from 1 to Nbondtypes = the number of bond types. A wildcard
asterisk can be used in place of or in conjunction with the type argument to specify a range of bond types. This
takes the form "*" or "*n" or "n*" or "m*n". If N = the number of bond types, then an asterisk with no
numeric values means all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A
trailing asterisk means all types from n to N (inclusive). A middle asterisk means all types from m to n
(inclusive).

The specified color can be a single color which is any of the 140 pre-defined colors (see below) or a color
name defined by the dump_modify color option. Or it can be two or more colors separated by a "/" character,
e.g. red/green/blue. In the former case, that color is assigned to all the specified bond types. In the latter case,
the list of colors are assigned in a round-robin fashion to each of the specified bond types.

LIGGGHTS Users Manual

dump_modify command 271

The bdiam keyword can be used with the dump image command, with its bond keyword, when its diam
setting is type, to set the diameter that bonds of each type will be drawn in the image. The specified type
should be an integer from 1 to Nbondtypes. As with the bcolor keyword, a wildcard asterisk can be used as
part of the type argument to specify a range of bond types. The specified diam is the size in whatever distance
units you are using, e.g. Angstroms.

The bitrate keyword can be used with the dump movie command to define the size of the resulting movie file
and its quality via setting how many kbits per second are to be used for the movie file. Higher bitrates require
less compression and will result in higher quality movies. The quality is also determined by the compression
format and encoder. The default setting is 2000 kbit/s, which will result in average quality with older
compression formats.

IMPORTANT NOTE: Not all movie file formats supported by dump movie allow the bitrate to be set. If not,
the setting is silently ignored.

The boxcolor keyword sets the color of the simulation box drawn around the atoms in each image. See the
"dump image box" command for how to specify that a box be drawn. The color name can be any of the 140
pre-defined colors (see below) or a color name defined by the dump_modify color option.

The color keyword allows definition of a new color name, in addition to the 140-predefined colors (see
below), and associates 3 red/green/blue RGB values with that color name. The color name can then be used
with any other dump_modify keyword that takes a color name as a value. The RGB values should each be
floating point values between 0.0 and 1.0 inclusive.

When a color name is converted to RGB values, the user-defined color names are searched first, then the 140
pre-defined color names. This means you can also use the color keyword to overwrite one of the pre-defined
color names with new RBG values.

The framerate keyword can be used with the dump movie command to define the duration of the resulting
movie file. Movie files written by the dump movie command have a default frame rate of 24 frames per
second and the images generated will be converted at that rate. Thus a sequence of 1000 dump images will
result in a movie of about 42 seconds. To make a movie run longer you can either generate images more
frequently or lower the frame rate. To speed a movie up, you can do the inverse. Using a frame rate higher
than 24 is not recommended, as it will result in simply dropping the rendered images. It is more efficient to
dump images less frequently.

Restrictions: none

Related commands:

dump, dump image, undump

Default:

The option defaults are

append = no•
buffer = yes for dump styles atom, custom, loca, and xyz•
element = "C" for every atom type•
every = whatever it was set to via the dump command•
fileper = # of processors•

LIGGGHTS Users Manual

dump_modify command 272

first = no•
flush = yes•
format = %d and %g for each integer or floating point value•
image = no•
label = ENTRIES•
nfile = 1•
pad = 0•
precision = 1000•
region = none•
scale = yes•
sort = off for dump styles atom, custom, cfg, and local•
sort = id for dump styles dcd, xtc, and xyz•
thresh = none•
unwrap = no•

acolor = * red/green/blue/yellow/aqua/cyan•
adiam = * 1.0•
amap = min max cf 0.0 2 min blue max red•
backcolor = black•
bcolor = * red/green/blue/yellow/aqua/cyan•
bdiam = * 0.5•
bitrate = 2000•
boxcolor = yellow•
color = 140 color names are pre-defined as listed below•
framerate = 24•

These are the standard 109 element names that LAMMPS pre-defines for use with the dump image and
dump_modify commands.

1-10 = "H", "He", "Li", "Be", "B", "C", "N", "O", "F", "Ne"•
11-20 = "Na", "Mg", "Al", "Si", "P", "S", "Cl", "Ar", "K", "Ca"•
21-30 = "Sc", "Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Zn"•
31-40 = "Ga", "Ge", "As", "Se", "Br", "Kr", "Rb", "Sr", "Y", "Zr"•
41-50 = "Nb", "Mo", "Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "In", "Sn"•
51-60 = "Sb", "Te", "I", "Xe", "Cs", "Ba", "La", "Ce", "Pr", "Nd"•
61-70 = "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm", "Yb"•
71-80 = "Lu", "Hf", "Ta", "W", "Re", "Os", "Ir", "Pt", "Au", "Hg"•
81-90 = "Tl", "Pb", "Bi", "Po", "At", "Rn", "Fr", "Ra", "Ac", "Th"•
91-100 = "Pa", "U", "Np", "Pu", "Am", "Cm", "Bk", "Cf", "Es", "Fm"•
101-109 = "Md", "No", "Lr", "Rf", "Db", "Sg", "Bh", "Hs", "Mt"•

These are the 140 colors that LAMMPS pre-defines for use with the dump image and dump_modify
commands. Additional colors can be defined with the dump_modify color command. The 3 numbers listed for
each name are the RGB (red/green/blue) values. Divide each value by 255 to get the equivalent 0.0 to 1.0
value.

aliceblue = 240,
248, 255

antiquewhite = 250, 235,
215 aqua = 0, 255, 255 aquamarine = 127,

255, 212
azure = 240, 255,
255

beige = 245, 245,
220 bisque = 255, 228, 196 black = 0, 0, 0 blanchedalmond =

255, 255, 205 blue = 0, 0, 255

blueviolet = 138,
43, 226 brown = 165, 42, 42 burlywood = 222, 184,

135
cadetblue = 95, 158,
160

chartreuse = 127,
255, 0

coral = 255, 127, 80

LIGGGHTS Users Manual

dump_modify command 273

chocolate = 210,
105, 30

cornflowerblue = 100,
149, 237

cornsilk = 255, 248,
220

crimson = 220,
20, 60

cyan = 0, 255, 255 darkblue = 0, 0, 139 darkcyan = 0, 139, 139 darkgoldenrod =184, 134, 11
darkgray = 169,
169, 169

darkgreen = 0, 100,
0

darkkhaki = 189, 183,
107

darkmagenta = 139, 0,
139

darkolivegreen = 85,
107, 47

darkorange =
255, 140, 0

darkorchid = 153,
50, 204 darkred = 139, 0, 0 darksalmon = 233,

150, 122
darkseagreen = 143,
188, 143

darkslateblue =
72, 61, 139

darkslategray = 47,
79, 79

darkturquoise = 0, 206,
209

darkviolet = 148, 0,
211

deeppink = 255, 20,
147

deepskyblue = 0,
191, 255

dimgray = 105, 105,
105

dodgerblue = 30, 144,
255 firebrick = 178, 34, 34 floralwhite = 255,

250, 240
forestgreen = 34,
139, 34

fuchsia = 255, 0,
255

gainsboro = 220, 220,
220

ghostwhite = 248, 248,
255 gold = 255, 215, 0 goldenrod = 218,

165, 32
gray = 128, 128,
128 green = 0, 128, 0 greenyellow = 173,

255, 47
honeydew = 240,
255, 240

hotpink = 255,
105, 180

indianred = 205, 92,
92 indigo = 75, 0, 130 ivory = 255, 240, 240 khaki = 240, 230,

140
lavender = 230,
230, 250

lavenderblush =
255, 240, 245 lawngreen = 124, 252, 0 lemonchiffon = 255,

250, 205
lightblue = 173, 216,
230

lightcoral = 240,
128, 128

lightcyan = 224,
255, 255

lightgoldenrodyellow =
250, 250, 210

lightgreen = 144, 238,
144

lightgrey = 211,
211, 211

lightpink = 255,
182, 193

lightsalmon = 255,
160, 122

lightseagreen = 32, 178,
170

lightskyblue = 135,
206, 250

lightslategray = 119,
136, 153

lightsteelblue =
176, 196, 222

lightyellow = 255,
255, 224 lime = 0, 255, 0 limegreen = 50, 205,

50
linen = 250, 240,
230

magenta = 255,
0, 255

maroon = 128, 0, 0 mediumaquamarine =
102, 205, 170

mediumblue = 0, 0,
205

mediumorchid =
186, 85, 211

mediumpurple =
147, 112, 219

mediumseagreen =
60, 179, 113

mediumslateblue = 123,
104, 238

mediumspringgreen =
0, 250, 154

mediumturquoise =
72, 209, 204

mediumvioletred
= 199, 21, 133

midnightblue = 25,
25, 112

mintcream = 245, 255,
250

mistyrose = 255, 228,
225

moccasin = 255,
228, 181

navajowhite =
255, 222, 173

navy = 0, 0, 128 oldlace = 253, 245, 230 olive = 128, 128, 0 olivedrab = 107,
142, 35

orange = 255,
165, 0

orangered = 255,
69, 0 orchid = 218, 112, 214 palegoldenrod = 238,

232, 170
palegreen = 152,
251, 152

paleturquoise =
175, 238, 238

palevioletred = 219,
112, 147

papayawhip = 255, 239,
213

peachpuff = 255, 239,
213 peru = 205, 133, 63 pink = 255, 192,

203
plum = 221, 160,
221

powderblue = 176, 224,
230 purple = 128, 0, 128 red = 255, 0, 0 rosybrown =

188, 143, 143
royalblue = 65, 105,
225

saddlebrown = 139, 69,
19

salmon = 250, 128,
114

sandybrown = 244,
164, 96

seagreen = 46,
139, 87

seashell = 255, 245,
238 sienna = 160, 82, 45 silver = 192, 192, 192 skyblue = 135, 206,

235
slateblue = 106,
90, 205

slategray = 112,
128, 144 snow = 255, 250, 250 springgreen = 0, 255,

127
steelblue = 70, 130,
180

tan = 210, 180,
140

teal = 0, 128, 128 thistle = 216, 191, 216 tomato = 253, 99, 71 turquoise = 64, 224,
208

violet = 238,
130, 238

white = 255, 255, 255 yellow = 255, 255, 0

LIGGGHTS Users Manual

dump_modify command 274

wheat = 245, 222,
179

whitesmoke = 245,
245, 245

yellowgreen =
154, 205, 50

LIGGGHTS Users Manual

dump_modify command 275

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dump molfile command

Syntax:

dump ID group-ID molfile N file format path

ID = user-assigned name for the dump•
group-ID = ID of the group of atoms to be imaged•
molfile = style of dump command (other styles atom or cfg or dcd or xtc or xyz or local or custom are
discussed on the dump doc page)

•

N = dump every this many timesteps•
file = name of file to write to•
format = file format to be used•
path = file path with plugins (optional)•

Examples:

dump mf1 all molfile 10 melt1.xml hoomd
dump mf2 all molfile 10 melt2-*.pdb pdb .
dump mf3 all molfile 50 melt3.xyz xyz .:/home/akohlmey/vmd/plugins/LINUX/molfile

Description:

Dump a snapshot of atom coordinates and selected additional quantities to one or more files every N timesteps
in one of several formats. Only information for atoms in the specified group is dumped. This specific dump
style uses molfile plugins that are bundled with the VMD molecular visualization and analysis program. See
Section tools of the manual and the tools/lmp2vmd/README.txt file for more information about support in
VMD for reading and visualizing native LAMMPS dump files.

Unless the filename contains a * character, the output will be written to one single file with the specified
format. Otherwise there will be one file per snapshot and the * will be replaced by the time step number when
the snapshot is written.

IMPORTANT NOTE: Because periodic boundary conditions are enforced only on timesteps when neighbor
lists are rebuilt, the coordinates of an atom written to a dump file may be slightly outside the simulation box.

The molfile plugin API has a few restrictions that have to be honored by this dump style: the number of atoms
must not change, the atoms must be sorted, outside of the coordinates no change in atom properties (like type,
mass, charge) will be recorded.

The format keyword determines what format is used to write out the dump. For this to work, LAMMPS must
be able to find and load a compatible molfile plugin that supports this format. Settings made via the
dump_modify command can alter per atom properties like element names.

The path keyword determines which in directories. This is a "path" like other search paths, i.e. it can contain
multiple directories separated by a colon (or semi-colon on windows). This keyword is optional and default to
".", the current directory.

The unwrap option of the dump_modify command allows coordinates to be written "unwrapped" by the
image flags for each atom. Unwrapped means that if the atom has passed through a periodic boundary one or
more times, the value is printed for what the coordinate would be if it had not been wrapped back into the
periodic box. Note that these coordinates may thus be far outside the box size stored with the snapshot.

LIGGGHTS Users Manual

dump molfile command 276

http://lammps.sandia.gov
http://www.ks.uiuc.edu/Research/vmd

Dumps are performed on timesteps that are a multiple of N (including timestep 0) and on the last timestep of a
minimization if the minimization converges. Note that this means a dump will not be performed on the initial
timestep after the dump command is invoked, if the current timestep is not a multiple of N. This behavior can
be changed via the dump_modify first command, which can be useful if the dump command is invoked after a
minimization ended on an arbitrary timestep. N can be changed between runs by using the dump_modify
every command. The dump_modify every command also allows a variable to be used to determine the
sequence of timesteps on which dump files are written.

Restrictions:

The molfile dump style is part of the USER-MOLFILE package. It is only enabled if LAMMPS was built with
that package. See the Making LAMMPS section for more info.

Molfile plugins provide a consistent programming interface to read and write file formats commonly used in
molecular simulations. The USER-MOLFILE package only provides the interface code, not the plugins.
These can be obtained from a VMD installation which has to match the platform that you are using to compile
LAMMPS for. By adding plugins to VMD, support for new file formats can be added to LAMMPS (or VMD
or other programs that use them) without having to recompile the application itself. The plugins are installed
in the directory: /plugins//molfile

NOTE: while the programming interface (API) to the plugins is backward compatible, the binary interface
(ABI) has been changing over time, so it is necessary to compile this package with the plugin header files
from VMD that match the binary plugins. These header files in the directory: /plugins/include For
convenience, the package ships with a set of header files that are compatible with VMD 1.9 and 1.9.1 (June
2012)

Related commands:

dump, dump_modify, undump

Default:

The default path is ".". All other properties have to be specified.

LIGGGHTS Users Manual

dump molfile command 277

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

echo command

Syntax:

echo style

style = none or screen or log or both•

Examples:

echo both
echo log

Description:

This command determines whether LAMMPS echoes each input script command to the screen and/or log file
as it is read and processed. If an input script has errors, it can be useful to look at echoed output to see the last
command processed.

The command-line switch -echo can be used in place of this command.

Restrictions: none

Related commands: none

Default:

echo log

LIGGGHTS Users Manual

echo command 278

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix adapt command

Syntax:

fix ID group-ID adapt N attribute args ... keyword value ...

ID, group-ID are documented in fix command•
adapt = style name of this fix command•
N = adapt simulation settings every this many timesteps•
one or more attribute/arg pairs may be appended•
attribute = pair or kspace or atom

pair args = pstyle pparam I J v_name
 pstyle = pair style name, e.g. lj/cut
 pparam = parameter to adapt over time
 I,J = type pair(s) to set parameter for
 v_name = variable with name that calculates value of pparam

kspace arg = v_name
 v_name = variable with name that calculates scale factor on K-space terms

atom args = aparam v_name
 aparam = parameter to adapt over time
 v_name = variable with name that calculates value of aparam

•

zero or more keyword/value pairs may be appended•
keyword = scale or reset

scale value = no or yes
no = the variable value is the new setting
yes = the variable value multiplies the original setting

reset value = no or yes
no = values will remain altered at the end of a run
yes = reset altered values to their original values at the end of a run

•

Examples:

fix 1 all adapt 1 pair soft a 1 1 v_prefactor
fix 1 all adapt 1 pair soft a 2* 3 v_prefactor
fix 1 all adapt 1 pair lj/cut epsilon * * v_scale1 coul/cut scale 3 3 v_scale2 scale yes reset yes
fix 1 all adapt 10 atom diameter v_size

Description:

Change or adapt one or more specific simulation attributes or settings over time as a simulation runs. Pair
potential and K-space and atom attributes which can be varied by this fix are discussed below. Many other
fixes can also be used to time-vary simulation parameters, e.g. the "fix deform" command will change the
simulation box size/shape and the "fix move" command will change atom positions and velocities in a
prescribed manner. Also note that many commands allow variables as arguments for specific parameters, if
described in that manner on their doc pages. An equal-style variable can calculate a time-dependent quantity,
so this is another way to vary a simulation parameter over time.

If N is specified as 0, the specified attributes are only changed once, before the simulation begins. This is all
that is needed if the associated variables are not time-dependent. If N > 0, then changes are made every N
steps during the simulation, presumably with a variable that is time-dependent.

Depending on the value of the reset keyword, attributes changed by this fix will or will not be reset back to
their original values at the end of a simulation. Even if reset is specified as yes, a restart file written during a
simulation will contain the modified settings.

LIGGGHTS Users Manual

fix adapt command 279

http://lammps.sandia.gov

If the scale keyword is set to no, then the value the parameter is set to will be whatever the variable generates.
If the scale keyword is set to yes, then the value of the altered parameter will be the initial value of that
parameter multiplied by whatever the variable generates. I.e. the variable is now a "scale factor" applied in
(presumably) a time-varying fashion to the parameter. Internally, the parameters themselves are actually
altered; make sure you use the reset yes option if you want the parameters to be restored to their initial values
after the run.

The pair keyword enables various parameters of potentials defined by the pair_style command to be changed,
if the pair style supports it. Note that the pair_style and pair_coeff commands must be used in the usual
manner to specify these parameters initially; the fix adapt command simply overrides the parameters.

The pstyle argument is the name of the pair style. If pair_style hybrid or hybrid/overlay is used, pstyle should
be a sub-style name. For example, pstyle could be specified as "soft" or "lubricate". The pparam argument is
the name of the parameter to change. This is the current list of pair styles and parameters that can be varied by
this fix. See the doc pages for individual pair styles and their energy formulas for the meaning of these
parameters:

born a,b,c type pairs
buck a,c type pairs
coul/cut scale type pairs
coul/debye scale type pairs
coul/long scale type pairs
lj/cut epsilon,sigma type pairs
lj/expand epsilon,sigma,delta type pairs
lubricate mu global
gauss a type pairs
soft a type pairs

IMPORTANT NOTE: It is easy to add new potentials and their parameters to this list. All it typically takes is
adding an extract() method to the pair_*.cpp file associated with the potential.

Some parameters are global settings for the pair style, e.g. the viscosity setting "mu" for pair_style lubricate.
Other parameters apply to atom type pairs within the pair style, e.g. the prefactor "a" for pair_style soft.

Note that for many of the potentials, the parameter that can be varied is effectively a prefactor on the entire
energy expression for the potential, e.g. the lj/cut epsilon. The parameters listed as "scale" are exactly that,
since the energy expression for the coul/cut potential (for example) has no labeled prefactor in its formula. To
apply an effective prefactor to some potentials, multiple parameters need to be altered. For example, the
Buckingham potential needs both the A and C terms altered together. To scale the Buckingham potential, you
should thus list the pair style twice, once for A and once for C.

If a type pair parameter is specified, the I and J settings should be specified to indicate which type pairs to
apply it to. If a global parameter is specified, the I and J settings still need to be specified, but are ignored.

Similar to the pair_coeff command, I and J can be specified in one of two ways. Explicit numeric values can
be used for each, as in the 1st example above. I <= J is required. LAMMPS sets the coefficients for the
symmetric J,I interaction to the same values.

A wild-card asterisk can be used in place of or in conjunction with the I,J arguments to set the coefficients for
multiple pairs of atom types. This takes the form "*" or "*n" or "n*" or "m*n". If N = the number of atom
types, then an asterisk with no numeric values means all types from 1 to N. A leading asterisk means all types
from 1 to n (inclusive). A trailing asterisk means all types from n to N (inclusive). A middle asterisk means all
types from m to n (inclusive). Note that only type pairs with I <= J are considered; if asterisks imply type

LIGGGHTS Users Manual

fix adapt command 280

pairs where J < I, they are ignored.

IMPROTANT NOTE: If pair_style hybrid or hybrid/overlay is being used, then the pstyle will be a sub-style
name. You must specify I,J arguments that correspond to type pair values defined (via the pair_coeff
command) for that sub-style.

The v_name argument for keyword pair is the name of an equal-style variable which will be evaluated each
time this fix is invoked to set the parameter to a new value. It should be specified as v_name, where name is
the variable name. Equal-style variables can specify formulas with various mathematical functions, and
include thermo_style command keywords for the simulation box parameters and timestep and elapsed time.
Thus it is easy to specify parameters that change as a function of time or span consecutive runs in a
continuous fashion. For the latter, see the start and stop keywords of the run command and the elaplong
keyword of thermo_style custom for details.

For example, these commands would change the prefactor coefficient of the pair_style soft potential from
10.0 to 30.0 in a linear fashion over the course of a simulation:

variable prefactor equal ramp(10,30)
fix 1 all adapt 1 pair soft a * * v_prefactor

The kspace keyword used the specified variable as a scale factor on the energy, forces, virial calculated by
whatever K-Space solver is defined by the kspace_style command. If the variable has a value of 1.0, then the
solver is unaltered.

The kspace keyword works this way whether the scale keyword is set to no or yes.

The atom keyword enables various atom properties to be changed. The aparam argument is the name of the
parameter to change. This is the current list of atom parameters that can be varied by this fix:

charge = charge on particle•
diameter = diameter of particle•

The v_name argument of the atom keyword is the name of an equal-style variable which will be evaluated
each time this fix is invoked to set the parameter to a new value. It should be specified as v_name, where
name is the variable name. See the discussion above describing the formulas associated with equal-style
variables. The new value is assigned to the corresponding attribute for all atoms in the fix group.

If the atom parameter is diameter and per-atom density and per-atom mass are defined for particles (e.g.
atom_style granular), then the mass of each particle is also changed when the diameter changes (density is
assumed to stay constant).

For example, these commands would shrink the diameter of all granular particles in the "center" group from
1.0 to 0.1 in a linear fashion over the course of a 1000-step simulation:

variable size equal ramp(1.0,0.1)
fix 1 center adapt 10 atom diameter v_size

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

LIGGGHTS Users Manual

fix adapt command 281

Related commands:

compute ti

Default:

The option defaults are scale = no, reset = no.

LIGGGHTS Users Manual

fix adapt command 282

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix addforce command

fix addforce/cuda command

Syntax:

fix ID group-ID addforce fx fy fz keyword value ...

ID, group-ID are documented in fix command•
addforce = style name of this fix command•
fx,fy,fz = force component values (force units)

 any of fx,fy,fz can be a variable (see below)

•

zero or more keyword/value pairs may be appended to args•
keyword = region or energy

region value = region-ID
 region-ID = ID of region atoms must be in to have added force

energy value = v_name
 v_name = variable with name that calculates the potential energy of each atom in the added force field

•

Examples:

fix kick flow addforce 1.0 0.0 0.0
fix kick flow addforce 1.0 0.0 v_oscillate
fix ff boundary addforce 0.0 0.0 v_push energy v_espace

Description:

Add fx,fy,fz to the corresponding component of force for each atom in the group. This command can be used
to give an additional push to atoms in a simulation, such as for a simulation of Poiseuille flow in a channel.

Any of the 3 quantities defining the force components can be specified as an equal-style or atom-style
variable, namely fx, fy, fz. If the value is a variable, it should be specified as v_name, where name is the
variable name. In this case, the variable will be evaluated each timestep, and its value(s) used to determine the
force component.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent force field.

Atom-style variables can specify the same formulas as equal-style variables but can also include per-atom
values, such as atom coordinates. Thus it is easy to specify a spatially-dependent force field with optional
time-dependence as well.

If the region keyword is used, the atom must also be in the specified geometric region in order to have force
added to it.

Adding a force to atoms implies a change in their potential energy as they move due to the applied force field.
For dynamics via the "run" command, this energy can be optionally added to the system's potential energy for
thermodynamic output (see below). For energy minimization via the "minimize" command, this energy must
be added to the system's potential energy to formulate a self-consistent minimization problem (see below).

LIGGGHTS Users Manual

fix addforce command 283

http://lammps.sandia.gov

The energy keyword is not allowed if the added force is a constant vector F = (fx,fy,fz), with all components
defined as numeric constants and not as variables. This is because LAMMPS can compute the energy for each
atom directly as E = -x dot F = -(x*fx + y*fy + z*fz), so that -Grad(E) = F.

The energy keyword is optional if the added force is defined with one or more variables, and if you are
performing dynamics via the run command. If the keyword is not used, LAMMPS will set the energy to 0.0,
which is typically fine for dynamics.

The energy keyword is required if the added force is defined with one or more variables, and you are
performing energy minimization via the "minimize" command. The keyword specifies the name of an
atom-style variable which is used to compute the energy of each atom as function of its position. Like
variables used for fx, fy, fz, the energy variable is specified as v_name, where name is the variable name.

Note that when the energy keyword is used during an energy minimization, you must insure that the formula
defined for the atom-style variable is consistent with the force variable formulas, i.e. that -Grad(E) = F. For
example, if the force were a spring-like F = kx, then the energy formula should be E = -0.5kx^2. If you don't
do this correctly, the minimization will not converge properly.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential "energy" inferred by the added
force to the system's potential energy as part of thermodynamic output. This is a fictitious quantity but is
needed so that the minimize command can include the forces added by this fix in a consistent manner. I.e.
there is a decrease in potential energy when atoms move in the direction of the added force.

This fix computes a global scalar and a global 3-vector of forces, which can be accessed by various output
commands. The scalar is the potential energy discussed above. The vector is the total force on the group of
atoms before the forces on individual atoms are changed by the fix. The scalar and vector values calculated by
this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
You should not specify force components with a variable that has time-dependence for use with a minimizer,
since the minimizer increments the timestep as the iteration count during the minimization.

IMPORTANT NOTE: If you want the fictitious potential energy associated with the added forces to be
included in the total potential energy of the system (the quantity being minimized), you MUST enable the

LIGGGHTS Users Manual

fix addforce/cuda command 284

fix_modify energy option for this fix.

Restrictions: none

Related commands:

fix setforce, fix aveforce

Default: none

LIGGGHTS Users Manual

fix addforce/cuda command 285

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix addtorque command

Syntax:

fix ID group-ID addtorque Tx Ty Tz

ID, group-ID are documented in fix command•
addtorque = style name of this fix command•
Tx,Ty,Tz = torque component values (torque units)•
any of Tx,Ty,Tz can be a variable (see below)•

Examples:

fix kick bead addtorque 2.0 3.0 5.0
fix kick bead addtorque 0.0 0.0 v_oscillate

Description:

Add a set of forces to each atom in the group such that:

the components of the total torque applied on the group (around its center of mass) are Tx,Ty,Tz•
the group would move as a rigid body in the absence of other forces.•

This command can be used to drive a group of atoms into rotation.

Any of the 3 quantities defining the torque components can be specified as an equal-style variable, namely Tx,
Ty, Tz. If the value is a variable, it should be specified as v_name, where name is the variable name. In this
case, the variable will be evaluated each timestep, and its value used to determine the torque component.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent torque.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential "energy" inferred by the added
forces to the system's potential energy as part of thermodynamic output. This is a fictitious quantity but is
needed so that the minimize command can include the forces added by this fix in a consistent manner. I.e.
there is a decrease in potential energy when atoms move in the direction of the added forces.

This fix computes a global scalar and a global 3-vector, which can be accessed by various output commands.
The scalar is the potential energy discussed above. The vector is the total torque on the group of atoms before
the forces on individual atoms are changed by the fix. The scalar and vector values calculated by this fix are
"extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
You should not specify force components with a variable that has time-dependence for use with a minimizer,
since the minimizer increments the timestep as the iteration count during the minimization.

LIGGGHTS Users Manual

fix addtorque command 286

http://lammps.sandia.gov

Restrictions:

This fix is part of the USER-MISC package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:

fix addforce

Default: none

LIGGGHTS Users Manual

fix addtorque command 287

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix append/atoms command

Syntax:

fix ID group-ID append/atoms face ... keyword value ...

ID, group-ID are documented in fix command•
append/atoms = style name of this fix command•
face = zhi•
zero or more keyword/value pairs may be appended•
keyword = basis or size or freq or temp or random or units

basis values = M itype
 M = which basis atom
 itype = atom type (1-N) to assign to this basis atom

size args = Lz
 Lz = z size of lattice region appended in a single event(distance units)

freq args = freq
 freq = the number of timesteps between append events

temp args = target damp seed extent
 target = target temperature for the region between zhi-extent and zhi (temperature units)
 damp = damping parameter (time units)
 seed = random number seed for langevin kicks
 extent = extent of thermostated region (distance units)

random args = xmax ymax zmax seed
xmax, ymax, zmax = maximum displacement in particular direction (distance units)
seed = random number seed for random displacement

units value = lattice or box
lattice = the wall position is defined in lattice units
box = the wall position is defined in simulation box units

•

Examples:

fix 1 all append/atoms zhi size 5.0 freq 295 units lattice
fix 4 all append/atoms zhi size 15.0 freq 5 units box
fix A all append/atoms zhi size 1.0 freq 1000 units lattice

Description:

This fix creates atoms on a lattice, appended on the zhi edge of the system box. This can be useful when a
shock or wave is propagating from zlo. This allows the system to grow with time to accommodate an
expanding wave. A simulation box must already exist, which is typically created via the create_box command.
Before using this command, a lattice must also be defined using the lattice command.

This fix will automatically freeze atoms on the zhi edge of the system, so that overlaps are avoided when new
atoms are appended.

The basis keyword specifies an atom type that will be assigned to specific basis atoms as they are created. See
the lattice command for specifics on how basis atoms are defined for the unit cell of the lattice. By default, all
created atoms are assigned type = 1 unless this keyword specifies differently.

The size keyword defines the size in z of the chunk of material to be added.

The random keyword will give the atoms random displacements around their lattice points to simulate some
initial temperature.

LIGGGHTS Users Manual

fix append/atoms command 288

http://lammps.sandia.gov

The temp keyword will cause a region to be thermostated with a Langevin thermostat on the zhi boundary.
The size of the region is measured from zhi and is set with the extent argument.

The units keyword determines the meaning of the distance units used to define a wall position, but only when
a numeric constant is used. A box value selects standard distance units as defined by the units command, e.g.
Angstroms for units = real or metal. A lattice value means the distance units are in lattice spacings. The lattice
command must have been previously used to define the lattice spacings.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix style is part of the SHOCK package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

The boundary on which atoms are added with append/atoms must be shrink/minimum. The opposite boundary
may be any boundary type other than periodic.

Related commands:

fix wall/piston command

Default:

The keyword defaults are size = 0.0, freq = 0, units = lattice. All added atoms are of type 1 unless the basis
keyword is used.

LIGGGHTS Users Manual

fix append/atoms command 289

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix atc command

Syntax:

fix atc

fixID = name of fix•
group = name of group fix is to be applied•
type = thermal or two_temperature or hardy or field

thermal = thermal coupling with fields: temperature
two_temperature = electron-phonon coupling with field: temperature and electron_temperature
hardy = on-the-fly post-processing using kernel localization functions (see "related" section for possible fields)
field = on-the-fly post-processing using mesh-based localization functions (see "related" section for possible fields)

•

parameter_file = name of the file with material parameters. Note: Neither hardy nor field requires a
parameter file

Examples:

fix AtC internal atc thermal Ar_thermal.dat
fix AtC internal atc two_temperature Ar_ttm.mat
fix AtC internal atc hardy
fix AtC internal atc field

Description:

This fix is the beginning to creating a coupled FE/MD simulation and/or an on-the-fly estimation of
continuum fields. The coupled versions of this fix do Verlet integration and the post-processing does not.
After instantiating this fix, several other fix_modify commands will be needed to set up the problem, e.g.
define the finite element mesh and prescribe initial and boundary conditions.

The following coupling example is typical, but non-exhaustive:
 # ... commands to create and initialize the MD system

 # initial fix to designate coupling type and group to apply it to
 # tag group physics material_file
 fix AtC internal atc thermal Ar_thermal.mat

 # create a uniform 12 x 2 x 2 mesh that covers region contain the group
 # nx ny nz region periodicity
 fix_modify AtC mesh create 12 2 2 mdRegion f p p

 # specify the control method for the type of coupling

•

LIGGGHTS Users Manual

fix atc command 290

http://lammps.sandia.gov

 # physics control_type
 fix_modify AtC thermal control flux

 # specify the initial values for the empirical field "temperature"
 # field node_group value
 fix_modify AtC initial temperature all 30

 # create an output stream for nodal fields
 # filename output_frequency
 fix_modify AtC output atc_fe_output 100

 run 1000

likewise for this post-processing example:

 # ... commands to create and initialize the MD system

 # initial fix to designate post-processing and the group to apply it to
 # no material file is allowed nor required
 fix AtC internal atc hardy

 # for hardy fix, specific kernel function (function type and range) to # be used as a localization function
 fix AtC kernel quartic_sphere 10.0

 # create a uniform 1 x 1 x 1 mesh that covers region contain the group
 # with periodicity this effectively creats a system average
 fix_modify AtC mesh create 1 1 1 box p p p

 # change from default lagrangian map to eulerian
 # refreshed every 100 steps
 fix_modify AtC atom_element_map eulerian 100

 # start with no field defined
 # add mass density, potential energy density, stress and temperature
 fix_modify AtC fields add density energy stress temperature

 # create an output stream for nodal fields
 # filename output_frequency
 fix_modify AtC output nvtFE 100 text

 run 1000

the mesh's linear interpolation functions can be used as the localization function by using the field option:

fix AtC internal atc field

fix_modify AtC mesh create 1 1 1 box p p p

...

Note coupling and post-processing can be combined in the same simulations using separate fixes.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. The fix_modify options relevant to this fix
are listed below. No global scalar or vector or per-atom quantities are stored by this fix for access by
various output commands. No parameter of this fix can be used with the start/stop keywords of the run
command. This fix is not invoked during energy minimization.

LIGGGHTS Users Manual

fix atc command 291

Restrictions:

Thermal and two_temperature (coupling) types use a Verlet time-integration algorithm. The hardy type
does not contain its own time-integrator and must be used with a separate fix that does contain one, e.g.
nve, nvt, etc.

Currently,•
- the coupling is restricted to thermal physics•
- the FE computations are done in serial on each processor.•

Related commands:

After specifying this fix in your input script, several other fix_modify commands are used to setup the
problem, e.g. define the finite element mesh and prescribe initial and boundary conditions.

fix_modify commands for setup:

fix_modify AtC mesh create•
fix_modify AtC mesh quadrature•
fix_modify AtC mesh read•
fix_modify AtC mesh write•
fix_modify AtC mesh create_nodeset•
fix_modify AtC mesh add_to_nodeset•
fix_modify AtC mesh create_faceset box•
fix_modify AtC mesh create_faceset plane•
fix_modify AtC mesh create_elementset•
fix_modify AtC mesh delete_elements•
fix_modify AtC mesh nodeset_to_elementset•
fix_modify AtC boundary•
fix_modify AtC internal_quadrature•
fix_modify AtC time_integration (thermal)•
fix_modify AtC time_integration (momentum)•
fix_modify AtC extrinsic electron_integration•
fix_modify AtC internal_element_set•
fix_modify AtC decomposition•

fix_modify commands for boundary and initial conditions:

fix_modify AtC initial•
fix_modify AtC fix•
fix_modify AtC unfix•
fix_modify AtC fix_flux•
fix_modify AtC unfix_flux•
fix_modify AtC source•
fix_modify AtC remove_source•

fix_modify commands for control and filtering:

fix_modify AtC control•
fix_modify AtC control thermal•
fix_modify AtC control thermal correction_max_iterations•
fix_modify AtC control momentum•
fix_modify AtC control localized_lambda•
fix_modify AtC control lumped_lambda_solve•

LIGGGHTS Users Manual

fix atc command 292

fix_modify AtC control mask_direction control•
fix_modify AtC filter•
fix_modify AtC filter scale•
fix_modify AtC filter type•
fix_modify AtC equilibrium_start•
fix_modify AtC extrinsic exchange•
fix_modify AtC poisson_solver•

fix_modify commands for output:

fix_modify AtC output•
fix_modify AtC output nodeset•
fix_modify AtC output elementset•
fix_modify AtC output boundary_integral•
fix_modify AtC output contour_integral•
fix_modify AtC mesh output•
fix_modify AtC write_restart•
fix_modify AtC read_restart•

fix_modify commands for post-processing:

fix_modify AtC kernel•
fix_modify AtC fields•
fix_modify AtC grdients•
fix_modify AtC rates•
fix_modify AtC computes•
fix_modify AtC on_the_fly•
fix_modify AtC pair_interactions/bond_interactions•
fix_modify AtC sample_frequency•
fix_modify AtC set•

miscellaneous fix_modify commands:

fix_modify AtC atom_element_map•
fix_modify AtC atom_weight•
fix_modify AtC write_atom_weights•
fix_modify AtC reset_time•
fix_modify AtC reset_atomic_reference_positions•
fix_modify AtC fe_md_boundary•
fix_modify AtC boundary_faceset•
fix_modify AtC consistent_fe_initialization•
fix_modify AtC mass_matrix•
fix_modify AtC material•
fix_modify AtC atomic_charge•
fix_modify AtC source_integration•
fix_modify AtC temperature_definition•
fix_modify AtC track_displacement•
fix_modify AtC boundary_dynamics•
fix_modify AtC add_species•
fix_modify AtC add_molecule•
fix_modify AtC remove_species•
fix_modify AtC remove_molecule•

Note: a set of example input files with the attendant material files are included with this package

LIGGGHTS Users Manual

fix atc command 293

Default: None

For detailed exposition of the theory and algorithms please see:

(Wagner) Wagner, GJ; Jones, RE; Templeton, JA; Parks, MA, "An atomistic-to-continuum coupling
method for heat transfer in solids." Special Issue of Computer Methods and Applied Mechanics (2008)
197:3351.

(Zimmerman2004) Zimmerman, JA; Webb, EB; Hoyt, JJ;. Jones, RE; Klein, PA; Bammann, DJ,
"Calculation of stress in atomistic simulation." Special Issue of Modelling and Simulation in Materials
Science and Engineering (2004), 12:S319.

(Zimmerman2010) Zimmerman, JA; Jones, RE; Templeton, JA, "A material frame approach for
evaluating continuum variables in atomistic simulations." Journal of Computational Physics (2010),
229:2364.

(Templeton2010) Templeton, JA; Jones, RE; Wagner, GJ, "Application of a field-based method to
spatially varying thermal transport problems in molecular dynamics." Modelling and Simulation in
Materials Science and Engineering (2010), 18:085007.

(Jones) Jones, RE; Templeton, JA; Wagner, GJ; Olmsted, D; Modine, JA, "Electron transport enhanced
molecular dynamics for metals and semi-metals." International Journal for Numerical Methods in
Engineering (2010), 83:940.

(Templeton2011) Templeton, JA; Jones, RE; Lee, JW; Zimmerman, JA; Wong, BM, "A long-range
electric field solver for molecular dynamics based on atomistic-to-continuum modeling." Journal of
Chemical Theory and Computation (2011), 7:1736.

(Mandadapu) Mandadapu, KK; Templeton, JA; Lee, JW, "Polarization as a field variable from molecular
dynamics simulations." Journal of Chemical Physics (2013), 139:054115.

Please refer to the standard finite element (FE) texts, e.g. T.J.R Hughes " The finite element method ",
Dover 2003, for the basics of FE simulation.

LIGGGHTS Users Manual

fix atc command 294

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix ave/atom command

Syntax:

fix ID group-ID ave/atom Nevery Nrepeat Nfreq value1 value2 ...

ID, group-ID are documented in fix command•
ave/atom = style name of this fix command•
Nevery = use input values every this many timesteps•
Nrepeat = # of times to use input values for calculating averages•
Nfreq = calculate averages every this many timesteps one or more input values can be listed•
value = x, y, z, vx, vy, vz, fx, fy, fz, c_ID, c_ID[i], f_ID, f_ID[i], v_name

 x,y,z,vx,vy,vz,fx,fy,fz = atom attribute (position, velocity, force component)
 c_ID = per-atom vector calculated by a compute with ID
 c_ID[I] = Ith column of per-atom array calculated by a compute with ID
 f_ID = per-atom vector calculated by a fix with ID
 f_ID[I] = Ith column of per-atom array calculated by a fix with ID
 v_name = per-atom vector calculated by an atom-style variable with name

•

Examples:

fix 1 all ave/atom 1 100 100 vx vy vz
fix 1 all ave/atom 10 20 1000 c_my_stress[1]

Description:

Use one or more per-atom vectors as inputs every few timesteps, and average them atom by atom over longer
timescales. The resulting per-atom averages can be used by other output commands such as the fix ave/spatial
or dump custom commands.

The group specified with the command means only atoms within the group have their averages computed.
Results are set to 0.0 for atoms not in the group.

Each input value can be an atom attribute (position, velocity, force component) or can be the result of a
compute or fix or the evaluation of an atom-style variable. In the latter cases, the compute, fix, or variable
must produce a per-atom vector, not a global quantity or local quantity. If you wish to time-average global
quantities from a compute, fix, or variable, then see the fix ave/time command.

Computes that produce per-atom vectors or arrays are those which have the word atom in their style name.
See the doc pages for individual fixes to determine which ones produce per-atom vectors or arrays. Variables
of style atom are the only ones that can be used with this fix since they produce per-atom vectors.

Each per-atom value of each input vector is averaged independently.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the average. The final averaged quantities are generated on timesteps that are a multiple of
Nfreq. The average is over Nrepeat quantities, computed in the preceding portion of the simulation every
Nevery timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if Nrepeat is 1. Also,
the timesteps contributing to the average value cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be
used to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc.

LIGGGHTS Users Manual

fix ave/atom command 295

http://lammps.sandia.gov

The atom attribute values (x,y,z,vx,vy,vz,fx,fy,fz) are self-explanatory. Note that other atom attributes can be
used as inputs to this fix by using the compute property/atom command and then specifying an input value
from that compute.

IMPORTANT NOTE: The x,y,z attributes are values that are re-wrapped inside the periodic box whenever an
atom crosses a periodic boundary. Thus if you time average an atom that spends half its time on either side of
the periodic box, you will get a value in the middle of the box. If this is not what you want, consider averaging
unwrapped coordinates, which can be provided by the compute property/atom command via its xu,yu,zu
attributes.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
no bracketed term is appended, the per-atom vector calculated by the compute is used. If a bracketed term
containing an index I is appended, the Ith column of the per-atom array calculated by the compute is used.
Users can also write code for their own compute styles and add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If no
bracketed term is appended, the per-atom vector calculated by the fix is used. If a bracketed term containing
an index I is appended, the Ith column of the per-atom array calculated by the fix is used. Note that some fixes
only produce their values on certain timesteps, which must be compatible with Nevery, else an error will
result. Users can also write code for their own fix styles and add them to LAMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script
as an atom-style variable Variables of style atom can reference thermodynamic keywords, or invoke other
computes, fixes, or variables when they are evaluated, so this is a very general means of generating per-atom
quantities to time average.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global scalar or vector quantities are stored by this fix for access by various output commands.

This fix produces a per-atom vector or array which can be accessed by various output commands. A vector is
produced if only a single quantity is averaged by this fix. If two or more quantities are averaged, then an array
of values is produced. The per-atom values can only be accessed on timesteps that are multiples of Nfreq since
that is when averaging is performed.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

compute, fix ave/histo, fix ave/spatial, fix ave/time, variable,

Default: none

LIGGGHTS Users Manual

fix ave/atom command 296

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix ave/correlate command

Syntax:

fix ID group-ID ave/correlate Nevery Nrepeat Nfreq value1 value2 ... keyword args ...

ID, group-ID are documented in fix command•
ave/correlate = style name of this fix command•
Nevery = use input values every this many timesteps•
Nrepeat = # of correlation time windows to accumulate•
Nfreq = calculate tine window averages every this many timesteps•
one or more input values can be listed•
value = c_ID, c_ID[N], f_ID, f_ID[N], v_name

 c_ID = global scalar calculated by a compute with ID
 c_ID[I] = Ith component of global vector calculated by a compute with ID
 f_ID = global scalar calculated by a fix with ID
 f_ID[I] = Ith component of global vector calculated by a fix with ID
 v_name = global value calculated by an equal-style variable with name

•

zero or more keyword/arg pairs may be appended•
keyword = type or ave or start or prefactor or file or overwrite or title1 or title2 or title3

type arg = auto or upper or lower or auto/upper or auto/lower or full
 auto = correlate each value with itself
 upper = correlate each value with each succeeding value
 lower = correlate each value with each preceding value
 auto/upper = auto + upper
 auto/lower = auto + lower
 full = correlate each value with every other value, including itself = auto + upper + lower

ave args = one or running
 one = zero the correlation accumulation every Nfreq steps
 running = accumulate correlations continuously

start args = Nstart
 Nstart = start accumulating correlations on this timestep

prefactor args = value
 value = prefactor to scale all the correlation data by

file arg = filename
 filename = name of file to output correlation data to

overwrite arg = none = overwrite output file with only latest output
title1 arg = string

 string = text to print as 1st line of output file
title2 arg = string

 string = text to print as 2nd line of output file
title3 arg = string

 string = text to print as 3rd line of output file

•

Examples:

fix 1 all ave/correlate 5 100 1000 c_myTemp file temp.correlate
fix 1 all ave/correlate 1 50 10000 &
 c_thermo_press[1] c_thermo_press[2] c_thermo_press[3] &
 type upper ave running title1 "My correlation data"

Description:

Use one or more global scalar values as inputs every few timesteps, calculate time correlations bewteen them
at varying time intervals, and average the correlation data over longer timescales. The resulting correlation
values can be time integrated by variables or used by other output commands such as thermo_style custom,

LIGGGHTS Users Manual

fix ave/correlate command 297

http://lammps.sandia.gov

and can also be written to a file.

The group specified with this command is ignored. However, note that specified values may represent
calculations performed by computes and fixes which store their own "group" definitions.

Each listed value can be the result of a compute or fix or the evaluation of an equal-style variable. In each
case, the compute, fix, or variable must produce a global quantity, not a per-atom or local quantity. If you
wish to spatial- or time-average or histogram per-atom quantities from a compute, fix, or variable, then see the
fix ave/spatial, fix ave/atom, or fix ave/histo commands. If you wish to sum a per-atom quantity into a single
global quantity, see the compute reduce command.

Computes that produce global quantities are those which do not have the word atom in their style name. Only
a few fixes produce global quantities. See the doc pages for individual fixes for info on which ones produce
such values. Variables of style equal are the only ones that can be used with this fix. Variables of style atom
cannot be used, since they produce per-atom values.

The input values must either be all scalars. What kinds of correlations between input values are calculated is
determined by the type keyword as discussed below.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used to
calculate correlation data. The input values are sampled every Nevery timesteps. The correlation data for the
preceding samples is computed on timesteps that are a multiple of Nfreq. Consider a set of samples from some
initial time up to an output timestep. The initial time could be the beginning of the simulation or the last
output time; see the ave keyword for options. For the set of samples, the correlation value Cij is calculated as:

Cij(delta) = ave(Vi(t)*Vj(t+delta))

which is the correlation value between input values Vi and Vj, separated by time delta. Note that the second
value Vj in the pair is always the one sampled at the later time. The ave() represents an average over every
pair of samples in the set that are separated by time delta. The maximum delta used is of size
(Nrepeat-1)*Nevery. Thus the correlation between a pair of input values yields Nrepeat correlation datums:

Cij(0), Cij(Nevery), Cij(2*Nevery), ..., Cij((Nrepeat-1)*Nevery)

For example, if Nevery=5, Nrepeat=6, and Nfreq=100, then values on timesteps 0,5,10,15,...,100 will be used
to compute the final averages on timestep 100. Six averages will be computed: Cij(0), Cij(5), Cij(10), Cij(15),
Cij(20), and Cij(25). Cij(10) on timestep 100 will be the average of 19 samples, namely Vi(0)*Vj(10),
Vi(5)*Vj(15), Vi(10)*V j20), Vi(15)*Vj(25), ..., Vi(85)*Vj(95), Vi(90)*Vj(100).

Nfreq must be a multiple of Nevery; Nevery and Nrepeat must be non-zero. Also, if the ave keyword is set to
one which is the default, then Nfreq >= (Nrepeat-1)*Nevery is required.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
no bracketed term is appended, the global scalar calculated by the compute is used. If a bracketed term is
appended, the Ith element of the global vector calculated by the compute is used.

Note that there is a compute reduce command which can sum per-atom quantities into a global scalar or vector
which can thus be accessed by fix ave/correlate. Or it can be a compute defined not in your input script, but by
thermodynamic output or other fixes such as fix nvt or fix temp/rescale. See the doc pages for these
commands which give the IDs of these computes. Users can also write code for their own compute styles and
add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If no
bracketed term is appended, the global scalar calculated by the fix is used. If a bracketed term is appended, the
Ith element of the global vector calculated by the fix is used.

LIGGGHTS Users Manual

fix ave/correlate command 298

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery,
else an error will result. Users can also write code for their own fix styles and add them to LAMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input
script. Only equal-style variables can be referenced. See the variable command for details. Note that variables
of style equal define a formula which can reference individual atom properties or thermodynamic keywords,
or they can invoke other computes, fixes, or variables when they are evaluated, so this is a very general means
of specifying quantities to time correlate.

Additional optional keywords also affect the operation of this fix.

The type keyword determines which pairs of input values are correlated with each other. For N input values
Vi, for i = 1 to N, let the number of pairs = Npair. Note that the second value in the pair Vi(t)*Vj(t+delta) is
always the one sampled at the later time.

If type is set to auto then each input value is correlated with itself. I.e. Cii = Vi*Vi, for i = 1 to N, so
Npair = N.

•

If type is set to upper then each input value is correlated with every succeeding value. I.e. Cij =
Vi*Vj, for i < j, so Npair = N*(N-1)/2.

•

If type is set to lower then each input value is correlated with every preceeding value. I.e. Cij = Vi*Vj,
for i > j, so Npair = N*(N-1)/2.

•

If type is set to auto/upper then each input value is correlated with itself and every succeeding value.
I.e. Cij = Vi*Vj, for i >= j, so Npair = N*(N+1)/2.

•

If type is set to auto/lower then each input value is correlated with itself and every preceding value.
I.e. Cij = Vi*Vj, for i <= j, so Npair = N*(N+1)/2.

•

If type is set to full then each input value is correlated with itself and every other value. I.e. Cij =
Vi*Vj, for i,j = 1,N so Npair = N^2.

•

The ave keyword determines what happens to the accumulation of correlation samples every Nfreq timesteps.
If the ave setting is one, then the accumulation is restarted or zeroed every Nfreq timesteps. Thus the outputs
on successive Nfreq timesteps are essentially independent of each other. The exception is that the Cij(0) =
Vi(T)*Vj(T) value at a timestep T, where T is a multiple of Nfreq, contributes to the correlation output both at
time T and at time T+Nfreq.

If the ave setting is running, then the accumulation is never zeroed. Thus the output of correlation data at any
timestep is the average over samples accumulated every Nevery steps since the fix was defined. it can only be
restarted by deleting the fix via the unfix command, or by re-defining the fix by re-specifying it.

The start keyword specifies what timestep the accumulation of correlation samples will begin on. The default
is step 0. Setting it to a larger value can avoid adding non-equilibrated data to the correlation averages.

The prefactor keyword specifies a constant which will be used as a multiplier on the correlation data after it is
averaged. It is effectively a scale factor on Vi*Vj, which can be used to account for the size of the time
window or other unit conversions.

The file keyword allows a filename to be specified. Every Nfreq steps, an array of correlation data is written to
the file. The number of rows is Nrepeat, as described above. The number of columns is the Npair+2, also as
described above. Thus the file ends up to be a series of these array sections.

The overwrite keyword will continuously overwrite the output file with the latest output, so that it only
contains one timestep worth of output. This option can only be used with the ave running setting.

The title1 and title2 and title3 keywords allow specification of the strings that will be printed as the first 3
lines of the output file, assuming the file keyword was used. LAMMPS uses default values for each of these,

LIGGGHTS Users Manual

fix ave/correlate command 299

so they do not need to be specified.

By default, these header lines are as follows:

Time-correlated data for fix ID
TimeStep Number-of-time-windows
Index TimeDelta Ncount valueI*valueJ valueI*valueJ ...

In the first line, ID is replaced with the fix-ID. The second line describes the two values that are printed at the
first of each section of output. In the third line the value pairs are replaced with the appropriate fields from the
fix ave/correlate command.

Let Sij = a set of time correlation data for input values I and J, namely the Nrepeat values:

Sij = Cij(0), Cij(Nevery), Cij(2*Nevery), ..., Cij(*Nrepeat-1)*Nevery)

As explained below, these datums are output as one column of a global array, which is effectively the
correlation matrix.

The trap function defined for equal-style variables can be used to perform a time integration of this vector of
datums, using a trapezoidal rule. This is useful for calculating various quantities which can be derived from
time correlation data. If a normalization factor is needed for the time integration, it can be included in the
variable formula or via the prefactor keyword.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global array of values which can be accessed by various output commands. The values
can only be accessed on timesteps that are multiples of Nfreq since that is when averaging is performed. The
global array has # of rows = Nrepeat and # of columns = Npair+2. The first column has the time delta (in
timesteps) between the pairs of input values used to calculate the correlation, as described above. The 2nd
column has the number of samples contributing to the correlation average, as described above. The remaining
Npair columns are for I,J pairs of the N input values, as determined by the type keyword, as described above.

For type = auto, the Npair = N columns are ordered: C11, C22, ..., CNN.•
For type = upper, the Npair = N*(N-1)/2 columns are ordered: C12, C13, ..., C1N, C23, ..., C2N, C34,
..., CN-1N.

•

For type = lower, the Npair = N*(N-1)/2 columns are ordered: C21, C31, C32, C41, C42, C43, ...,
CN1, CN2, ..., CNN-1.

•

For type = auto/upper, the Npair = N*(N+1)/2 columns are ordered: C11, C12, C13, ..., C1N, C22,
C23, ..., C2N, C33, C34, ..., CN-1N, CNN.

•

For type = auto/lower, the Npair = N*(N+1)/2 columns are ordered: C11, C21, C22, C31, C32, C33,
C41, ..., C44, CN1, CN2, ..., CNN-1, CNN.

•

For type = full, the Npair = N^2 columns are ordered: C11, C12, ..., C1N, C21, C22, ..., C2N, C31, ...,
C3N, ..., CN1, ..., CNN-1, CNN.

•

The array values calculated by this fix are treated as "intensive". If you need to divide them by the number of
atoms, you must do this in a later processing step, e.g. when using them in a variable.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

LIGGGHTS Users Manual

fix ave/correlate command 300

Related commands:

compute, fix ave/time, fix ave/atom, fix ave/spatial, fix ave/histo, variable

Default: none

The option defaults are ave = one, type = auto, start = 0, no file output, title 1,2,3 = strings as described above,
and prefactor = 1.0.

LIGGGHTS Users Manual

fix ave/correlate command 301

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix ave/euler command

Syntax:

fix ID group-ID ave/euler nevery N cell_size_relative c

ID, group-ID are documented in fix command•
ave/euler = style name of this fix command•
nevery = obligatory keyword•
n = calculate average values every this many timesteps•
cell_size_relative = obligatory keyword•
c = cell size in multiples of max cutoff•

Examples:

fix 1 all ave/euler nevery 100 cell_size_relative 4.5

Description:

Calculate cell-based averages of velocity, radius, volume fraction, and pressure (-1/3 * trace of the stress
tensor) every few timesteps, as specified by the nevery keyword. The size of the cells is calculated as multiple
of the maximum cutoff, via the cell_size_relative. Note that at least a relative cell size of 3 is required.

Note that velocity is favre (mass) averaged, whereas radius is arithmetically averaged. To calculate the stress,
this command internally uses a compute stress/atom . It includes the convective term correctly for granular
particles with non-zero average velocity (which is not included in compute stress/atom). However, it does not
include bond, angle, diahedral or kspace contributions so that the stress tensor finally reads

where vave is the (cell-based) average velocity. The first term is a kinetic energy contribution for atom I. The
second term is a pairwise energy contribution where n loops over the Np neighbors of atom I, r1 and r2 are the
positions of the 2 atoms in the pairwise interaction, and F1 and F2 are the forces on the 2 atoms resulting from
the pairwise interaction.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes the above-mentioned quantities for output via a dump euler/vtk command. The values can
only be accessed on timesteps that are multiples of nevery since that is when calculations are performed.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

Volume fractions and stresses are calculated based on the assumption of a structured (equidistant regular)
grid, so volume fractions and stresses near walls that are not alligned with the grid will be incorrect.

LIGGGHTS Users Manual

fix ave/euler command 302

http://www.cfdem.com
http://lammps.sandia.gov

Related commands:

compute, compute stress/atom, fix ave/atom, fix ave/histo, fix ave/time, fix ave/spatial,

Default: none

LIGGGHTS Users Manual

fix ave/euler command 303

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix aveforce command

fix aveforce/cuda command

Syntax:

fix ID group-ID aveforce fx fy fz keyword value ...

ID, group-ID are documented in fix command•
aveforce = style name of this fix command•
fx,fy,fz = force component values (force units)

 any of fx,fy,fz can be a variable (see below)

•

zero or more keyword/value pairs may be appended to args•
keyword = region

region value = region-ID
 region-ID = ID of region atoms must be in to have added force

•

Examples:

fix pressdown topwall aveforce 0.0 -1.0 0.0
fix 2 bottomwall aveforce NULL -1.0 0.0 region top
fix 2 bottomwall aveforce NULL -1.0 v_oscillate region top

Description:

Apply an additional external force to a group of atoms in such a way that every atom experiences the same
force. This is useful for pushing on wall or boundary atoms so that the structure of the wall does not change
over time.

The existing force is averaged for the group of atoms, component by component. The actual force on each
atom is then set to the average value plus the component specified in this command. This means each atom in
the group receives the same force.

Any of the fx,fy,fz values can be specified as NULL which means the force in that dimension is not changed.
Note that this is not the same as specifying a 0.0 value, since that sets all forces to the same average value
without adding in any additional force.

Any of the 3 quantities defining the force components can be specified as an equal-style variable, namely fx,
fy, fz. If the value is a variable, it should be specified as v_name, where name is the variable name. In this
case, the variable will be evaluated each timestep, and its value used to determine the average force.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent average force.

If the region keyword is used, the atom must also be in the specified geometric region in order to have force
added to it.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for

LIGGGHTS Users Manual

fix aveforce command 304

http://lammps.sandia.gov

round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global 3-vector of forces, which can be accessed by various output commands. This is the
total force on the group of atoms before the forces on individual atoms are changed by the fix. The vector
values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
You should not specify force components with a variable that has time-dependence for use with a minimizer,
since the minimizer increments the timestep as the iteration count during the minimization.

Restrictions: none

Related commands:

fix setforce, fix addforce

Default: none

LIGGGHTS Users Manual

fix aveforce/cuda command 305

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix ave/histo command

Syntax:

fix ID group-ID ave/histo Nevery Nrepeat Nfreq lo hi Nbin value1 value2 ... keyword args ...

ID, group-ID are documented in fix command•
ave/histo = style name of this fix command•
Nevery = use input values every this many timesteps•
Nrepeat = # of times to use input values for calculating histogram•
Nfreq = calculate histogram every this many timesteps•
lo,hi = lo/hi bounds within which to histogram•
Nbin = # of histogram bins•
one or more input values can be listed•
value = x, y, z, vx, vy, vz, fx, fy, fz, c_ID, c_ID[N], f_ID, f_ID[N], v_name

 x,y,z,vx,vy,vz,fx,fy,fz = atom attribute (position, velocity, force component)
 c_ID = scalar or vector calculated by a compute with ID
 c_ID[I] = Ith component of vector or Ith column of array calculated by a compute with ID
 f_ID = scalar or vector calculated by a fix with ID
 f_ID[I] = Ith component of vector or Ith column of array calculated by a fix with ID
 v_name = value(s) calculated by an equal-style or atom-style variable with name

•

zero or more keyword/arg pairs may be appended•
keyword = mode or file or ave or start or beyond or overwrite or title1 or title2 or title3

mode arg = scalar or vector
 scalar = all input values are scalars
 vector = all input values are vectors

file arg = filename
 filename = name of file to output histogram(s) to

ave args = one or running or window
 one = output a new average value every Nfreq steps
 running = output cumulative average of all previous Nfreq steps
 window M = output average of M most recent Nfreq steps

start args = Nstart
 Nstart = start averaging on this timestep

beyond arg = ignore or end or extra
 ignore = ignore values outside histogram lo/hi bounds
 end = count values outside histogram lo/hi bounds in end bins
 extra = create 2 extra bins for value outside histogram lo/hi bounds

overwrite arg = none = overwrite output file with only latest output
title1 arg = string

 string = text to print as 1st line of output file
title2 arg = string

 string = text to print as 2nd line of output file
title3 arg = string

 string = text to print as 3rd line of output file, only for vector mode

•

Examples:

fix 1 all ave/histo 100 5 1000 0.5 1.5 50 c_myTemp file temp.histo ave running
fix 1 all ave/histo 100 5 1000 -5 5 100 c_thermo_press[2] c_thermo_press[3] title1 "My output values"
fix 1 all ave/histo 1 100 1000 -2.0 2.0 18 vx vy vz mode vector ave running beyond extra

Description:

Use one or more values as inputs every few timesteps, histogram them, and average the histogram over longer
timescales. The resulting histogram can be used by other output commands, and can also be written to a file.

LIGGGHTS Users Manual

fix ave/histo command 306

http://lammps.sandia.gov

The group specified with this command is ignored for global and local input values. For per-atom input
values, only atoms in the group contribute to the histogram. Note that regardless of the specified group,
specified values may represent calculations performed by computes and fixes which store their own "group"
definition.

A histogram is simply a count of the number of values that fall within a histogram bin. Nbins are defined, with
even spacing between lo and hi. Values that fall outside the lo/hi bounds can be treated in different ways; see
the discussion of the beyond keyword below.

Each input value can be an atom attribute (position, velocity, force component) or can be the result of a
compute or fix or the evaluation of an equal-style or atom-style variable. The set of input values can be either
all global, all per-atom, or all local quantities. Inputs of different kinds (e.g. global and per-atom) cannot be
mixed. Atom attributes are per-atom vector values. See the doc page for individual "compute" and "fix"
commands to see what kinds of quantities they generate.

The input values must either be all scalars or all vectors (or arrays), depending on the setting of the mode
keyword.

If mode = vector, then the input values may either be vectors or arrays. If a global array is listed, then it is the
same as if the individual columns of the array had been listed one by one. E.g. these 2 fix ave/histo commands
are equivalent, since the compute com/molecule command creates a global array with 3 columns:

compute myCOM all com/molecule
fix 1 all ave/histo 100 1 100 c_myCOM file tmp1.com mode vector
fix 2 all ave/histo 100 1 100 c_myCOM[1] c_myCOM[2] c_myCOM[3] file tmp2.com mode vector

The output of this command is a single histogram for all input values combined together, not one histogram
per input value. See below for details on the format of the output of this fix.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the histogram. The final histogram is generated on timesteps that are multiple of Nfreq. It is
averaged over Nrepeat histograms, computed in the preceding portion of the simulation every Nevery
timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if Nrepeat is 1. Also, the
timesteps contributing to the histogram cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then input values on timesteps 90,92,94,96,98,100 will
be used to compute the final histogram on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc. If Nrepeat=1 and Nfreq = 100, then no time averaging of the histogram is done; a histogram
is simply generated on timesteps 100,200,etc.

The atom attribute values (x,y,z,vx,vy,vz,fx,fy,fz) are self-explanatory. Note that other atom attributes can be
used as inputs to this fix by using the compute property/atom command and then specifying an input value
from that compute.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
mode = scalar, then if no bracketed term is appended, the global scalar calculated by the compute is used. If a
bracketed term is appended, the Ith element of the global vector calculated by the compute is used. If mode =
vector, then if no bracketed term is appended, the global or per-atom or local vector calculated by the compute
is used. Or if the compute calculates an array, all of the columns of the array are used as if they had been
specified as individual vectors (see description above). If a bracketed term is appended, the Ith column of the
global or per-atom or local array calculated by the compute is used.

Note that there is a compute reduce command which can sum per-atom quantities into a global scalar or vector
which can thus be accessed by fix ave/histo. Or it can be a compute defined not in your input script, but by
thermodynamic output or other fixes such as fix nvt or fix temp/rescale. See the doc pages for these

LIGGGHTS Users Manual

fix ave/histo command 307

commands which give the IDs of these computes. Users can also write code for their own compute styles and
add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If mode
= scalar, then if no bracketed term is appended, the global scalar calculated by the fix is used. If a bracketed
term is appended, the Ith element of the global vector calculated by the fix is used. If mode = vector, then if no
bracketed term is appended, the global or per-atom or local vector calculated by the fix is used. Or if the fix
calculates an array, all of the columns of the array are used as if they had been specified as individual vectors
(see description above). If a bracketed term is appended, the Ith column of the global or per-atom or local
array calculated by the fix is used.

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery,
else an error will result. Users can also write code for their own fix styles and add them to LAMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input
script. If mode = scalar, then only equal-style variables can be used, which produce a global value. If mode =
vector, then only atom-style variables can be used, which produce a per-atom vector. See the variable
command for details. Note that variables of style equal and atom define a formula which can reference
individual atom properties or thermodynamic keywords, or they can invoke other computes, fixes, or variables
when they are evaluated, so this is a very general means of specifying quantities to histogram.

Additional optional keywords also affect the operation of this fix.

If the mode keyword is set to scalar, then all input values must be global scalars, or elements of global
vectors. If the mode keyword is set to vector, then all input values must be global or per-atom or local vectors,
or columns of global or per-atom or local arrays.

The beyond keyword determines how input values that fall outside the lo to hi bounds are treated. Values such
that lo <= value <= hi are assigned to one bin. Values on a bin boundary are assigned to the lower of the 2
bins. If beyond is set to ignore then values < lo and values > hi are ignored, i.e. they are not binned. If beyond
is set to end then values < lo are counted in the first bin and values > hi are counted in the last bin. If beyond is
set to extend then two extra bins are created, so that there are Nbins+2 total bins. Values < lo are counted in
the first bin and values > hi are counted in the last bin (Nbins+1). Values between lo and hi (inclusive) are
counted in bins 2 thru Nbins+1. The "coordinate" stored and printed for these two extra bins is lo and hi.

The ave keyword determines how the histogram produced every Nfreq steps are averaged with histograms
produced on previous steps that were multiples of Nfreq, before they are accessed by another output command
or written to a file.

If the ave setting is one, then the histograms produced on timesteps that are multiples of Nfreq are
independent of each other; they are output as-is without further averaging.

If the ave setting is running, then the histograms produced on timesteps that are multiples of Nfreq are
summed and averaged in a cumulative sense before being output. Each bin value in the histogram is thus the
average of the bin value produced on that timestep with all preceding values for the same bin. This running
average begins when the fix is defined; it can only be restarted by deleting the fix via the unfix command, or
by re-defining the fix by re-specifying it.

If the ave setting is window, then the histograms produced on timesteps that are multiples of Nfreq are
summed within a moving "window" of time, so that the last M histograms are used to produce the output. E.g.
if M = 3 and Nfreq = 1000, then the output on step 10000 will be the combined histogram of the individual
histograms on steps 8000,9000,10000. Outputs on early steps will be sums over less than M histograms if they
are not available.

LIGGGHTS Users Manual

fix ave/histo command 308

The start keyword specifies what timestep histogramming will begin on. The default is step 0. Often input
values can be 0.0 at time 0, so setting start to a larger value can avoid including a 0.0 in a running or
windowed histogram.

The file keyword allows a filename to be specified. Every Nfreq steps, one histogram is written to the file.
This includes a leading line that contains the timestep, number of bins, the total count of values contributing
to the histogram, the count of values that were not histogrammed (see the beyond keyword), the minimum
value encountered, and the maximum value encountered. The min/max values include values that were not
histogrammed. Following the leading line, one line per bin is written into the file. Each line contains the bin #,
the coordinate for the center of the bin (between lo and hi), the count of values in the bin, and the normalized
count. The normalized count is the bin count divided by the total count (not including values not
histogrammed), so that the normalized values sum to 1.0 across all bins.

The overwrite keyword will continuously overwrite the output file with the latest output, so that it only
contains one timestep worth of output. This option can only be used with the ave running setting.

The title1 and title2 and title3 keywords allow specification of the strings that will be printed as the first 3
lines of the output file, assuming the file keyword was used. LAMMPS uses default values for each of these,
so they do not need to be specified.

By default, these header lines are as follows:

Histogram for fix ID
TimeStep Number-of-bins Total-counts Missing-counts Min-value Max-value
Bin Coord Count Count/Total

In the first line, ID is replaced with the fix-ID. The second line describes the six values that are printed at the
first of each section of output. The third describes the 4 values printed for each bin in the histogram.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix produces a global vector and global array which can be accessed by various output commands. The
values can only be accessed on timesteps that are multiples of Nfreq since that is when a histogram is
generated. The global vector has 4 values:

1 = total counts in the histogram•
2 = values that were not histogrammed (see beyond keyword)•
3 = min value of all input values, including ones not histogrammed•
4 = max value of all input values, including ones not histogrammed•

The global array has # of rows = Nbins and # of columns = 3. The first column has the bin coordinate, the 2nd
column has the count of values in that histogram bin, and the 3rd column has the bin count divided by the
total count (not including missing counts), so that the values in the 3rd column sum to 1.0.

The vector and array values calculated by this fix are all treated as "intensive". If this is not the case, e.g. due
to histogramming per-atom input values, then you will need to account for that when interpreting the values
produced by this fix.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

LIGGGHTS Users Manual

fix ave/histo command 309

Related commands:

compute, fix ave/atom, fix ave/spatial, fix ave/time, variable, fix ave/correlate,

Default: none

The option defaults are mode = scalar, ave = one, start = 0, no file output, beyond = ignore, and title 1,2,3 =
strings as described above.

LIGGGHTS Users Manual

fix ave/histo command 310

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix ave/spatial command

Syntax:

fix ID group-ID ave/spatial Nevery Nrepeat Nfreq dim origin delta ... value1 value2 ... keyword args ...

ID, group-ID are documented in fix command•
ave/spatial = style name of this fix command•
Nevery = use input values every this many timesteps•
Nrepeat = # of times to use input values for calculating averages•
Nfreq = calculate averages every this many timesteps•
dim, origin, delta can be repeated 1, 2, or 3 times for 1d, 2d, or 3d bins

 dim = x or y or z
 origin = lower or center or upper or coordinate value (distance units)
 delta = thickness of spatial bins in dim (distance units)

•

one or more input values can be listed•
value = vx, vy, vz, fx, fy, fz, density/mass, density/number, c_ID, c_ID[I], f_ID, f_ID[I], v_name

 vx,vy,vz,fx,fy,fz = atom attribute (velocity, force component)
 density/number, density/mass = number or mass density
 c_ID = per-atom vector calculated by a compute with ID
 c_ID[I] = Ith column of per-atom array calculated by a compute with ID
 f_ID = per-atom vector calculated by a fix with ID
 f_ID[I] = Ith column of per-atom array calculated by a fix with ID
 v_name = per-atom vector calculated by an atom-style variable with name

•

zero or more keyword/arg pairs may be appended•
keyword = norm or units or file or ave or overwrite or title1 or title2 or title3 or std

units arg = box or lattice or reduced
norm arg = all or sample
region arg = region-ID

 region-ID = ID of region atoms must be in to contribute to spatial averaging
ave args = one or running or window M

 one = output new average value every Nfreq steps
 running = output cumulative average of all previous Nfreq steps
 window M = output average of M most recent Nfreq steps

file arg = filename
 filename = file to write results to

overwrite arg = none = overwrite output file with only latest output
title1 arg = string

 string = text to print as 1st line of output file
title2 arg = string

 string = text to print as 2nd line of output file
title3 arg = string

 string = text to print as 3rd line of output file
std arg = N1 N2 filename

 N1 = lower limit of particle number per bin for sampling
 N2 = upper limit of particle number per bin for sampling
 filename = file to write results into

•

Examples:

fix 1 all ave/spatial 10000 1 10000 z lower 0.02 c_myCentro units reduced &
 title1 "My output values"
fix 1 flow ave/spatial 100 10 1000 y 0.0 1.0 vx vz norm sample file vel.profile
fix 1 flow ave/spatial 100 5 1000 z lower 1.0 y 0.0 2.5 density/mass ave running
fix 1 all ave/spatial 1000 1 1000 x 0 1e-3 y 0 1e-3 z 0 1e-3 f_tracer[0] file bin_data.dat std 124 126 samples_data.dat

LIGGGHTS Users Manual

fix ave/spatial command 311

http://lammps.sandia.gov

Description:

Use one or more per-atom vectors as inputs every few timesteps, bin their values spatially into 1d, 2d, or 3d
bins based on current atom coordinates, and average the bin values over longer timescales. The resulting bin
averages can be used by other output commands such as thermo_style custom, and can also be written to a
file.

The group specified with the command means only atoms within the group contribute to bin averages. If the
region keyword is used, the atom must be in both the group and the specified geometric region in order to
contribute to bin averages.

Each listed value can be an atom attribute (position, velocity, force component), a mass or number density, or
the result of a compute or fix or the evaluation of an atom-style variable. In the latter cases, the compute, fix,
or variable must produce a per-atom quantity, not a global quantity. If you wish to time-average global
quantities from a compute, fix, or variable, then see the fix ave/time command.

Computes that produce per-atom quantities are those which have the word atom in their style name. See the
doc pages for individual fixes to determine which ones produce per-atom quantities. Variables of style atom
are the only ones that can be used with this fix since all other styles of variable produce global quantities.

The per-atom values of each input vector are binned and averaged independently of the per-atom values in
other input vectors.

The size and dimensionality of the bins (1d = layers or slabs, 2d = pencils, 3d = boxes) are determined by the
dim, origin, and delta settings and how many times they are specified (1, 2, or 3). See details below.

IMPORTANT NOTE: This fix works by creating an array of size Nbins by Nvalues on each processor. Nbins
is the total number of bins; Nvalues is the number of input values specified. Each processor loops over its
atoms, tallying its values to the appropriate bin. Then the entire array is summed across all processors. This
means that using a large number of bins (easy to do for 2d or 3d bins) will incur an overhead in memory and
computational cost (summing across processors), so be careful to use reasonable numbers of bins.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used to bin
them and contribute to the average. The final averaged quantities are generated on timesteps that are a
multiples of Nfreq. The average is over Nrepeat quantities, computed in the preceding portion of the
simulation every Nevery timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if
Nrepeat is 1. Also, the timesteps contributing to the average value cannot overlap, i.e. Nfreq >
(Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be
used to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc. If Nrepeat=1 and Nfreq = 100, then no time averaging is done; values are simply generated
on timesteps 100,200,etc.

Each per-atom property is also averaged over atoms in each bin. Bins can be 1d layers or slabs, 2d pencils, or
3d boxes. This depends on how many times (1, 2, or 3) the dim, origin, and delta settings are specified in the
fix ave/spatial command. For 2d or 3d bins, there is no restriction on specifying dim = x before dim = y, or
dim = y before dim = z. Bins in a particular dim have a bin size in that dimension given by delta. Every Nfreq
steps, when averaging is being performed and the per-atom property is calculated for the first time, the
number of bins and the bin sizes and boundaries are computed. Thus if the simulation box changes size during
a simulation, the number of bins and their boundaries may also change. In each dimension, bins are defined
relative to a specified origin, which may be the lower/upper edge of the simulation box (in dim) or its center
point, or a specified coordinate value. Starting at the origin, sufficient bins are created in both directions to
completely cover the box. On subsequent timesteps every atom is mapped to one of the bins. Atoms beyond

LIGGGHTS Users Manual

fix ave/spatial command 312

the lowermost/uppermost bin in a dimension are counted in the first/last bin in that dimension.

For orthogonal simulation boxes, the bins are also layers, pencils, or boxes aligned with the xyz coordinate
axes. For triclinic (non-orthogonal) simulation boxes, the bins are so that they are parallel to the tilted faces of
the simulation box. See this section of the manual for a discussion of the geometry of triclinic boxes in
LAMMPS. As described there, a tilted simulation box has edge vectors a,b,c. In that nomenclature, bins in the
x dimension have faces with normals in the "b" cross "c" direction. Bins in y have faces normal to the "a"
cross "c" direction. And bins in z have faces normal to the "a" cross "b" direction. Note that in order to define
the size and position of these bins in an unambiguous fashion, the units option must be set to reduced when
using a triclinic simulation box, as noted below.

The atom attribute values (vx,vy,vz,fx,fy,fz) are self-explanatory. Note that other atom attributes (including
atom postitions x,y,z) can be used as inputs to this fix by using the compute property/atom command and then
specifying an input value from that compute.

The density/number value means the number density is computed in each bin, i.e. a weighting of 1 for each
atom. The density/mass value means the mass density is computed in each bind, i.e. each atom is weighted by
its mass. The resulting density is normalized by the volume of the bin so that units of number/volume or
density are output. See the units command doc page for the definition of density for each choice of units, e.g.
gram/cm^3.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
no bracketed integer is appended, the per-atom vector calculated by the compute is used. If a bracketed integer
is appended, the Ith column of the per-atom array calculated by the compute is used. Users can also write code
for their own compute styles and add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If no
bracketed integer is appended, the per-atom vector calculated by the fix is used. If a bracketed integer is
appended, the Ith column of the per-atom array calculated by the fix is used. Note that some fixes only
produce their values on certain timesteps, which must be compatible with Nevery, else an error results. Users
can also write code for their own fix styles and add them to LAMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input
script. Variables of style atom can reference thermodynamic keywords and various per-atom attributes, or
invoke other computes, fixes, or variables when they are evaluated, so this is a very general means of
generating per-atom quantities to spatially average.

Additional optional keywords also affect the operation of this fix.

The units keyword determines the meaning of the distance units used for the bin size delta and for origin if it
is a coordinate value. For orthogonal simulation boxes, any of the 3 options may be used. For non-orthogonal
(triclinic) simulation boxes, only the reduced option may be used.

A box value selects standard distance units as defined by the units command, e.g. Angstroms for units = real
or metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing. A reduced value means normalized unitless values between 0
and 1, which represent the lower and upper faces of the simulation box respectively. Thus an origin value of
0.5 means the center of the box in any dimension. A delta value of 0.1 means 10 bins span the box in that
dimension.

Consider a non-orthogonal box, with bins that are 1d layers or slabs in the x dimension. No matter how the
box is tilted, an origin of 0.0 means start layers at the lower "b" cross "c" plane of the simulation box and an
origin of 1.0 means to start layers at the upper "b" cross "c" face of the box. A delta value of 0.1 means there
will be 10 layers from 0.0 to 1.0, regardless of the current size or shape of the simulation box.

LIGGGHTS Users Manual

fix ave/spatial command 313

The norm keyword affects how averaging is done for the output produced every Nfreq timesteps. For an all
setting, a bin quantity is summed over all atoms in all Nrepeat samples, as is the count of atoms in the bin.
The printed value for the bin is Total-quantity / Total-count. In other words it is an average over the entire
Nfreq timescale.

For a sample setting, the bin quantity is summed over atoms for only a single sample, as is the count, and a
"average sample value" is computed, i.e. Sample-quantity / Sample-count. The printed value for the bin is the
average of the Nrepeat "average sample values", In other words it is an average of an average.

The ave keyword determines how the bin values produced every Nfreq steps are averaged with bin values
produced on previous steps that were multiples of Nfreq, before they are accessed by another output command
or written to a file.

If the ave setting is one, then the bin values produced on timesteps that are multiples of Nfreq are independent
of each other; they are output as-is without further averaging.

If the ave setting is running, then the bin values produced on timesteps that are multiples of Nfreq are summed
and averaged in a cumulative sense before being output. Each output bin value is thus the average of the bin
value produced on that timestep with all preceding values for the same bin. This running average begins when
the fix is defined; it can only be restarted by deleting the fix via the unfix command, or re-defining the fix by
re-specifying it.

If the ave setting is window, then the bin values produced on timesteps that are multiples of Nfreq are summed
and averaged within a moving "window" of time, so that the last M values for the same bin are used to
produce the output. E.g. if M = 3 and Nfreq = 1000, then the output on step 10000 will be the average of the
individual bin values on steps 8000,9000,10000. Outputs on early steps will average over less than M values
if they are not available.

The file keyword allows a filename to be specified. Every Nfreq timesteps, a section of bin info will be written
to a text file in the following format. A line with the timestep and number of bin is written. Then one line per
bin is written, containing the bin ID (1-N), the coordinate of the center of the bin, the number of atoms in the
bin, and one or more calculated values. The number of values in each line corresponds to the number of
values specified in the fix ave/spatial command. The number of atoms and the value(s) are average quantities.
If the value of the units keyword is box or lattice, the "coord" is printed in box units. If the value of the units
keyword is reduced, the "coord" is printed in reduced units (0-1).

The overwrite keyword will continuously overwrite the output file with the latest output, so that it only
contains one timestep worth of output. This option can only be used with the ave running setting.

The title1 and title2 and title3 keywords allow specification of the strings that will be printed as the first 3
lines of the output file, assuming the file keyword was used. LAMMPS uses default values for each of these,
so they do not need to be specified.

By default, these header lines are as follows:

Spatial-averaged data for fix ID and group name
Timestep Number-of-bins
Bin Coord1 Coord2 Coord3 Count value1 value2 ...

In the first line, ID and name are replaced with the fix-ID and group name. The second line describes the two
values that are printed at the first of each section of output. In the third line the values are replaced with the
appropriate fields from the fix ave/spatial command. The Coord2 and Coord3 entries in the third line only
appear for 2d and 3d bins respectively. For 1d bins, the word Coord1 is replaced by just Coord.

LIGGGHTS Users Manual

fix ave/spatial command 314

If the std keyword is set, mean and standard deviation of the specified values (value1, value2, etc.) over
samples of a defined size are calculated. The sample size has to be defined by a lower limit (N1) and an upper
limit (N2>N1). All bins containing a particle count between N1 and N2 (including N1 and N2) are used as
samples. Every Nfreq timestep a line is written to a file specified after N1 and N2, including the following
numbers: timestep, total number of atoms, total number of bins, maximum number of atoms per bin, number
of empty bins, number of bins including less atoms than N1, number of bins including more atoms than N2,
number of samples, average number of atoms per sample, followed by three quantities for each defined value:
true average (over all atoms), average over the chosen samples, standard deviation over the chosen samples.
For the calculation of the standard deviation the (known) true average is used instead of the samples average
(the latter is only an estimate for the true average!).

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global array of values which can be accessed by various output commands. The values
can only be accessed on timesteps that are multiples of Nfreq since that is when averaging is performed. The
global array has # of rows = Nbins and # of columns = Ndim+1+Nvalues, where Ndim = 1,2,3 for 1d,2d,3d
bins. The first 1 or 2 or 3 columns have the bin coordinates (center of the bin) in the appropriate dimensions,
the next column has the count of atoms in that bin, and the remaining columns are the Nvalue quantities.
When the array is accessed with an I that exceeds the current number of bins, than a 0.0 is returned by the fix
instead of an error, since the number of bins can vary as a simulation runs, depending on the simulation box
size. 2d or 3d bins are ordered so that the last dimension(s) vary fastest. The array values calculated by this fix
are "intensive", since they are already normalized by the count of atoms in each bin.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

When the ave keyword is set to running or window then the number of bins must remain the same during the
simulation, so that the appropriate averaging can be done. This will be the case if the simulation box size
doesn't change or if the units keyword is set to reduced.

Related commands:

compute, fix ave/atom, fix ave/histo, fix ave/time, variable, fix ave/correlate,

Default:

The option defaults are units = lattice, norm = all, no file output, and ave = one, title 1,2,3 = strings as
described above.

LIGGGHTS Users Manual

fix ave/spatial command 315

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix ave/time command

Syntax:

fix ID group-ID ave/time Nevery Nrepeat Nfreq value1 value2 ... keyword args ...

ID, group-ID are documented in fix command•
ave/time = style name of this fix command•
Nevery = use input values every this many timesteps•
Nrepeat = # of times to use input values for calculating averages•
Nfreq = calculate averages every this many timesteps•
one or more input values can be listed•
value = c_ID, c_ID[N], f_ID, f_ID[N], v_name

 c_ID = global scalar or vector calculated by a compute with ID
 c_ID[I] = Ith component of global vector or Ith column of global array calculated by a compute with ID
 f_ID = global scalar or vector calculated by a fix with ID
 f_ID[I] = Ith component of global vector or Ith column of global array calculated by a fix with ID
 v_name = global value calculated by an equal-style variable with name

•

zero or more keyword/arg pairs may be appended•
keyword = mode or file or ave or start or off or overwrite or title1 or title2 or title3

mode arg = scalar or vector
 scalar = all input values are global scalars
 vector = all input values are global vectors or global arrays

ave args = one or running or window M
 one = output a new average value every Nfreq steps
 running = output cummulative average of all previous Nfreq steps
 window M = output average of M most recent Nfreq steps

start args = Nstart
 Nstart = start averaging on this timestep

off arg = M = do not average this value
 M = value # from 1 to Nvalues

file arg = filename
 filename = name of file to output time averages to

overwrite arg = none = overwrite output file with only latest output
title1 arg = string

 string = text to print as 1st line of output file
title2 arg = string

 string = text to print as 2nd line of output file
title3 arg = string

 string = text to print as 3rd line of output file, only for vector mode

•

Examples:

fix 1 all ave/time 100 5 1000 c_myTemp c_thermo_temp file temp.profile
fix 1 all ave/time 100 5 1000 c_thermo_press[2] ave window 20 &
 title1 "My output values"
fix 1 all ave/time 1 100 1000 f_indent f_indent[1] file temp.indent off 1

Description:

Use one or more global values as inputs every few timesteps, and average them over longer timescales. The
resulting averages can be used by other output commands such as thermo_style custom, and can also be
written to a file. Note that if no time averaging is done, this command can be used as a convenient way to
simply output one or more global values to a file.

LIGGGHTS Users Manual

fix ave/time command 316

http://lammps.sandia.gov

The group specified with this command is ignored. However, note that specified values may represent
calculations performed by computes and fixes which store their own "group" definitions.

Each listed value can be the result of a compute or fix or the evaluation of an equal-style variable. In each
case, the compute, fix, or variable must produce a global quantity, not a per-atom or local quantity. If you
wish to spatial- or time-average or histogram per-atom quantities from a compute, fix, or variable, then see the
fix ave/spatial, fix ave/atom, or fix ave/histo commands. If you wish to sum a per-atom quantity into a single
global quantity, see the compute reduce command.

Computes that produce global quantities are those which do not have the word atom in their style name. Only
a few fixes produce global quantities. See the doc pages for individual fixes for info on which ones produce
such values. Variables of style equal are the only ones that can be used with this fix. Variables of style atom
cannot be used, since they produce per-atom values.

The input values must either be all scalars or all vectors (or arrays), depending on the setting of the mode
keyword. In both cases, the averaging is performed independently on each input value. I.e. each input scalar is
averaged independently and each element of each input vector (or array) is averaged independently.

If mode = vector, then the input values may either be vectors or arrays and all must be the same "length",
which is the length of the vector or number of rows in the array. If a global array is listed, then it is the same
as if the individual columns of the array had been listed one by one. E.g. these 2 fix ave/time commands are
equivalent, since the compute rdf command creates, in this case, a global array with 3 columns, each of length
50:

compute myRDF all rdf 50 1 2
fix 1 all ave/time 100 1 100 c_myRDF file tmp1.rdf mode vector
fix 2 all ave/time 100 1 100 c_myRDF[1] c_myRDF[2] c_myRDF[3] file tmp2.rdf mode vector

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the average. The final averaged quantities are generated on timesteps that are a mlutiple of
Nfreq. The average is over Nrepeat quantities, computed in the preceding portion of the simulation every
Nevery timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if Nrepeat is 1. Also,
the timesteps contributing to the average value cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be
used to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc. If Nrepeat=1 and Nfreq = 100, then no time averaging is done; values are simply generated
on timesteps 100,200,etc.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
mode = scalar, then if no bracketed term is appended, the global scalar calculated by the compute is used. If a
bracketed term is appended, the Ith element of the global vector calculated by the compute is used. If mode =
vector, then if no bracketed term is appended, the global vector calculated by the compute is used. Or if the
compute calculates an array, all of the columns of the global array are used as if they had been specified as
individual vectors (see description above). If a bracketed term is appended, the Ith column of the global array
calculated by the compute is used.

Note that there is a compute reduce command which can sum per-atom quantities into a global scalar or vector
which can thus be accessed by fix ave/time. Or it can be a compute defined not in your input script, but by
thermodynamic output or other fixes such as fix nvt or fix temp/rescale. See the doc pages for these
commands which give the IDs of these computes. Users can also write code for their own compute styles and
add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If mode
= scalar, then if no bracketed term is appended, the global scalar calculated by the fix is used. If a bracketed

LIGGGHTS Users Manual

fix ave/time command 317

term is appended, the Ith element of the global vector calculated by the fix is used. If mode = vector, then if no
bracketed term is appended, the global vector calculated by the fix is used. Or if the fix calculates an array, all
of the columns of the global array are used as if they had been specified as individual vectors (see description
above). If a bracketed term is appended, the Ith column of the global array calculated by the fix is used.

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery,
else an error will result. Users can also write code for their own fix styles and add them to LAMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input
script. Variables can only be used as input for mode = scalar. Only equal-style variables can be referenced.
See the variable command for details. Note that variables of style equal define a formula which can reference
individual atom properties or thermodynamic keywords, or they can invoke other computes, fixes, or variables
when they are evaluated, so this is a very general means of specifying quantities to time average.

Additional optional keywords also affect the operation of this fix.

If the mode keyword is set to scalar, then all input values must be global scalars, or elements of global
vectors. If the mode keyword is set to vector, then all input values must be global vectors, or columns of
global arrays. They can also be global arrays, which are converted into a series of global vectors (one per
column), as explained above.

The ave keyword determines how the values produced every Nfreq steps are averaged with values produced
on previous steps that were multiples of Nfreq, before they are accessed by another output command or
written to a file.

If the ave setting is one, then the values produced on timesteps that are multiples of Nfreq are independent of
each other; they are output as-is without further averaging.

If the ave setting is running, then the values produced on timesteps that are multiples of Nfreq are summed
and averaged in a cummulative sense before being output. Each output value is thus the average of the value
produced on that timestep with all preceding values. This running average begins when the fix is defined; it
can only be restarted by deleting the fix via the unfix command, or by re-defining the fix by re-specifying it.

If the ave setting is window, then the values produced on timesteps that are multiples of Nfreq are summed
and averaged within a moving "window" of time, so that the last M values are used to produce the output. E.g.
if M = 3 and Nfreq = 1000, then the output on step 10000 will be the average of the individual values on steps
8000,9000,10000. Outputs on early steps will average over less than M values if they are not available.

The start keyword specifies what timestep averaging will begin on. The default is step 0. Often input values
can be 0.0 at time 0, so setting start to a larger value can avoid including a 0.0 in a running or windowed
average.

The off keyword can be used to flag any of the input values. If a value is flagged, it will not be time averaged.
Instead the most recent input value will always be stored and output. This is useful if one of more of the
inputs produced by a compute or fix or variable are effectively constant or are simply current values. E.g. they
are being written to a file with other time-averaged values for purposes of creating well-formatted output.

The file keyword allows a filename to be specified. Every Nfreq steps, one quantity or vector of quantities is
written to the file for each input value specified in the fix ave/time command. For mode = scalar, this means a
single line is written each time output is performed. Thus the file ends up to be a series of lines, i.e. one
column of numbers for each input value. For mode = vector, an array of numbers is written each time output is
performed. The number of rows is the length of the input vectors, and the number of columns is the number of
values. Thus the file ends up to be a series of these array sections.

LIGGGHTS Users Manual

fix ave/time command 318

The overwrite keyword will continuously overwrite the output file with the latest output, so that it only
contains one timestep worth of output. This option can only be used with the ave running setting.

The title1 and title2 and title3 keywords allow specification of the strings that will be printed as the first 2 or 3
lines of the output file, assuming the file keyword was used. LAMMPS uses default values for each of these,
so they do not need to be specified.

By default, these header lines are as follows for mode = scalar:

Time-averaged data for fix ID
TimeStep value1 value2 ...

In the first line, ID is replaced with the fix-ID. In the second line the values are replaced with the appropriate
fields from the fix ave/time command. There is no third line in the header of the file, so the title3 setting is
ignored when mode = scalar.

By default, these header lines are as follows for mode = vector:

Time-averaged data for fix ID
TimeStep Number-of-rows
Row value1 value2 ...

In the first line, ID is replaced with the fix-ID. The second line describes the two values that are printed at the
first of each section of output. In the third line the values are replaced with the appropriate fields from the fix
ave/time command.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix produces a global scalar or global vector or global array which can be accessed by various output
commands. The values can only be accessed on timesteps that are multiples of Nfreq since that is when
averaging is performed.

A scalar is produced if only a single input value is averaged and mode = scalar. A vector is produced if
multiple input values are averaged for mode = scalar, or a single input value for mode = vector. In the first
case, the length of the vector is the number of inputs. In the second case, the length of the vector is the same
as the length of the input vector. An array is produced if multiple input values are averaged and mode =
vector. The global array has # of rows = length of the input vectors and # of columns = number of inputs.

If the fix prouduces a scalar or vector, then the scalar and each element of the vector can be either "intensive"
or "extensive". If the fix produces an array, then all elements in the array must be the same, either "intensive"
or "extensive". If a compute or fix provides the value being time averaged, then the compute or fix determines
whether the value is intensive or extensive; see the doc page for that compute or fix for further info. Values
produced by a variable are treated as intensive.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

compute, fix ave/atom, fix ave/spatial, fix ave/histo, variable, fix ave/correlate,

LIGGGHTS Users Manual

fix ave/time command 319

Default: none

The option defaults are mode = scalar, ave = one, start = 0, no file output, title 1,2,3 = strings as described
above, and no off settings for any input values.

LIGGGHTS Users Manual

fix ave/time command 320

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix bond/break command

Syntax:

fix ID group-ID bond/break Nevery bondtype Rmax keyword values ...

ID, group-ID are documented in fix command•
bond/break = style name of this fix command•
Nevery = attempt bond breaking every this many steps•
bondtype = type of bonds to break•
Rmax = bond longer than Rmax can break (distance units)•
zero or more keyword/value pairs may be appended to args•
keyword = prob

prob values = fraction seed
 fraction = break a bond with this probability if otherwise eligible
 seed = random number seed (positive integer)

•

Examples:

fix 5 all bond/break 10 2 1.2
fix 5 polymer bond/break 1 1 2.0 prob 0.5 49829

Description:

Break bonds between pairs of atoms as a simulation runs according to specified criteria. This can be used to
model the dissolution of a polymer network due to stretching of the simulation box or other deformations. In
this context, a bond means an interaction between a pair of atoms computed by the bond_style command.
Once the bond is broken it will be permanently deleted. This is different than a pairwise bond-order potential
such as Tersoff or AIREBO which infers bonds and many-body interactions based on the current geometry of
a small cluster of atoms and effectively creates and destroys bonds from timestep to timestep as atoms move.

A check for possible bond breakage is performed every Nevery timesteps. If two bonded atoms I,J are further
than a distance Rmax of each other, if the bond is of type bondtype, and if both I and J are in the specified fix
group, then I,J is labeled as a "possible" bond to break.

If several bonds involving an atom are stretched, it may have multiple possible bonds to break. Every atom
checks its list of possible bonds to break and labels the longest such bond as its "sole" bond to break. After
this is done, if atom I is bonded to atom J in its sole bond, and atom J is bonded to atom I in its sole bond, then
the I,J bond is "eligible" to be broken.

Note that these rules mean an atom will only be part of at most one broken bond on a given timestep. It also
means that if atom I chooses atom J as its sole partner, but atom J chooses atom K is its sole partner (due to
Rjk > Rij), then this means atom I will not be part of a broken bond on this timestep, even if it has other
possible bond partners.

The prob keyword can effect whether an eligible bond is actually broken. The fraction setting must be a value
between 0.0 and 1.0. A uniform random number between 0.0 and 1.0 is generated and the eligible bond is only
broken if the random number < fraction.

When a bond is broken, data structures within LAMMPS that store bond topology are updated to reflect the
breakage. This can also affect subsequent computation of pairwise interactions involving the atoms in the
bond. See the Restriction section below for additional information.

LIGGGHTS Users Manual

fix bond/break command 321

http://lammps.sandia.gov

Computationally, each timestep this fix operates, it loops over bond lists and computes distances between
pairs of bonded atoms in the list. It also communicates between neighboring processors to coordinate which
bonds are broken. Thus it will increase the cost of a timestep. Thus you should be cautious about invoking this
fix too frequently.

You can dump out snapshots of the current bond topology via the dump local command.

IMPORTANT NOTE: Breaking a bond typically alters the energy of a system. You should be careful not to
choose bond breaking criteria that induce a dramatic change in energy. For example, if you define a very stiff
harmonic bond and break it when 2 atoms are separated by a distance far from the equilibribum bond length,
then the 2 atoms will be dramatically released when the bond is broken. More generally, you may need to
thermostat your system to compensate for energy changes resulting from broken bonds.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes two statistics which it stores in a global vector of length 2, which can be accessed by
various output commands. The vector values calculated by this fix are "intensive".

These are the 2 quantities:

(1) # of bonds broken on the most recent breakage timestep•
(2) cummulative # of bonds broken•

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the MC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Currently, there are 2 restrictions for using this fix. We may relax these in the future if there are new models
that would be enabled by it.

When a bond is broken, you might wish to turn off angle and dihedral interactions that include that bond.
However, LAMMPS does not check for these angles and dihedrals, even if your simulation defines an
angle_style or dihedral_style.

This fix requires that the pairwise weightings defined by the special_bonds command be 0,1,1 for 1-2, 1-3,
and 1-4 neighbors within the bond topology. This effectively means that the pairwise interaction between
atoms I and J is turned off when a bond between them exists and will be turned on when the bond is broken. It
also means that the pairwise interaction of I with J's other bond partners is unaffected by the existence of the
bond.

Related commands:

fix bond/create, fix bond/swap, dump local, special_bonds

Default:

The option defaults are prob = 1.0.

LIGGGHTS Users Manual

fix bond/break command 322

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix bond/create command

Syntax:

fix ID group-ID bond/create Nevery itype jtype Rmin bondtype keyword values ...

ID, group-ID are documented in fix command•
bond/create = style name of this fix command•
Nevery = attempt bond creation every this many steps•
itype,jtype = atoms of itype can bond to atoms of jtype•
Rmin = 2 atoms separated by less than Rmin can bond (distance units)•
bondtype = type of created bonds•
zero or more keyword/value pairs may be appended to args•
keyword = iparam or jparam or prob

iparam values = maxbond, newtype
 maxbond = max # of bonds of bondtype the itype atom can have
 newtype = change the itype atom to this type when maxbonds exist

jparam values = maxbond, newtype
 maxbond = max # of bonds of bondtype the jtype atom can have
 newtype = change the jtype atom to this type when maxbonds exist

prob values = fraction seed
 fraction = create a bond with this probability if otherwise eligible
 seed = random number seed (positive integer)

•

Examples:

fix 5 all bond/create 10 1 2 0.8 1
fix 5 all bond/create 1 3 3 0.8 1 prob 0.5 85784 iparam 2 3

Description:

Create bonds between pairs of atoms as a simulation runs according to specified criteria. This can be used to
model cross-linking of polymers, the formation of a percolation network, etc. In this context, a bond means an
interaction between a pair of atoms computed by the bond_style command. Once the bond is created it will be
permanently in place. This is different than a pairwise bond-order potential such as Tersoff or AIREBO which
infers bonds and many-body interactions based on the current geometry of a small cluster of atoms and
effectively creates and destroys bonds from timestep to timestep as atoms move.

A check for possible new bonds is performed every Nevery timesteps. If two atoms I,J are within a distance
Rmin of each other, if I is of atom type itype, if J is of atom type jtype, if both I and J are in the specified fix
group, if a bond does not already exist between I and J, and if both I and J meet their respective maxbond
requirement (explained below), then I,J is labeled as a "possible" bond pair.

If several atoms are close to an atom, it may have multiple possible bond partners. Every atom checks its list
of possible bond partners and labels the closest such partner as its "sole" bond partner. After this is done, if
atom I has atom J as its sole partner, and atom J has atom I as its sole partner, then the I,J bond is "eligible" to
be formed.

Note that these rules mean an atom will only be part of at most one created bond on a given timestep. It also
means that if atom I chooses atom J as its sole partner, but atom J chooses atom K is its sole partner (due to
Rjk < Rij), then this means atom I will not form a bond on this timestep, even if it has other possible bond
partners.

LIGGGHTS Users Manual

fix bond/create command 323

http://lammps.sandia.gov

It is permissible to have itype = jtype. Rmin must be <= the pairwise cutoff distance between itype and jtype
atoms, as defined by the pair_style command.

The iparam and jparam keywords can be used to limit the bonding functionality of the participating atoms.
Each atom keeps track of how many bonds of bondtype it already has. If atom I of itype already has maxbond
bonds (as set by the iparam keyword), then it will not form any more. Likewise for atom J. If maxbond is set
to 0, then there is no limit on the number of bonds that can be formed with that atom.

The newtype value for iparam and jparam can be used to change the atom type of atom I or J when it reaches
maxbond number of bonds of type bondtype. This means it can now interact in a pairwise fashion with other
atoms in a different way by specifying different pair_coeff coefficients. If you do not wish the atom type to
change, simply specify newtype as itype or jtype.

The prob keyword can also effect whether an eligible bond is actually created. The fraction setting must be a
value between 0.0 and 1.0. A uniform random number between 0.0 and 1.0 is generated and the eligible bond
is only created if the random number < fraction.

Any bond that is created is assigned a bond type of bondtype. Data structures within LAMMPS that store
bond topology are updated to reflect the new bond. This can also affect subsequent computation of pairwise
interactions involving the atoms in the bond. See the Restriction section below for additional information.

IMPORTANT NOTE: To create a new bond, the internal LAMMPS data structures that store this information
must have space for it. When LAMMPS is initialized from a data file, the list of bonds is scanned and the
maximum number of bonds per atom is tallied. If some atom will acquire more bonds than this limit as this fix
operates, then the "extra bonds per atom" parameter in the data file header must be set to allow for it. See the
read_data command for more details. Note that if this parameter needs to be set, it means a data file must be
used to initialize the system, even if it initially has no bonds. A data file with no atoms can be used if you
wish to add unbonded atoms via the create atoms command, e.g. for a percolation simulation.

IMPORTANT NOTE: LAMMPS also maintains a data structure that stores a list of 1st, 2nd, and 3rd
neighbors of each atom (in the bond topology of the system) for use in weighting pairwise interactions for
bonded atoms. Adding a bond adds a single entry to this list. The "extra" keyword of the special_bonds
command should be used to leave space for new bonds if the maximum number of entries for any atom will be
exceeded as this fix operates. See the special_bonds command for details.

Note that even if your simulation starts with no bonds, you must define a bond_style and use the bond_coeff
command to specify coefficients for the bondtype. Similarly, if new atom types are specified by the iparam or
jparam keywords, they must be within the range of atom types allowed by the simulation and pairwise
coefficients must be specified for the new types.

Computationally, each timestep this fix operates, it loops over neighbor lists and computes distances between
pairs of atoms in the list. It also communicates between neighboring processors to coordinate which bonds are
created. Thus it roughly doubles the cost of a timestep. Thus you should be cautious about invoking this fix
too frequently.

You can dump out snapshots of the current bond topology via the dump local command.

IMPORTANT NOTE: Creating a bond typically alters the energy of a system. You should be careful not to
choose bond creation criteria that induce a dramatic change in energy. For example, if you define a very stiff
harmonic bond and create it when 2 atoms are separated by a distance far from the equilibribum bond length,
then the 2 atoms will oscillate dramatically when the bond is formed. More generally, you may need to
thermostat your system to compensate for energy changes resulting from created bonds.

Restart, fix_modify, output, run start/stop, minimize info:

LIGGGHTS Users Manual

fix bond/create command 324

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes two statistics which it stores in a global vector of length 2, which can be accessed by
various output commands. The vector values calculated by this fix are "intensive".

These are the 2 quantities:

(1) # of bonds created on the most recent creation timestep•
(2) cummulative # of bonds created•

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the MC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Currently, there are 2 restrictions for using this fix. We may relax these in the future if there are new models
that would be enabled by it.

When a bond is created, you might wish to induce new angle and dihedral interactions that include that bond.
However, LAMMPS does not create these angles and dihedrals, even if your simulation defines an
angle_style or dihedral_style.

This fix requires that the pairwise weightings defined by the special_bonds command be 0,1,1 for 1-2, 1-3,
and 1-4 neighbors within the bond topology. This effectively means that the pairwise interaction between
atoms I and J will be turned off when a bond between them is created. It also means that the pairwise
interaction of I with J's other bond partners will be unaffected by the new bond.

Related commands:

fix bond/break, fix bond/swap, dump local, special_bonds

Default:

The option defaults are iparam = (0,itype), jparam = (0,jtype), and prob = 1.0.

LIGGGHTS Users Manual

fix bond/create command 325

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix bond/swap command

Syntax:

fix ID group-ID bond/swap fraction cutoff seed

ID, group-ID are documented in fix command•
bond/swap = style name of this fix command•
fraction = fraction of group atoms to consider for swapping•
cutoff = distance at which swapping will be considered (distance units)•
seed = random # seed (positive integer)•

Examples:

fix 1 all bond/swap 0.5 1.3 598934

Description:

In a simulation of polymer chains, this command attempts to swap bonds between two different chains,
effectively grafting the end of one chain onto another chain and vice versa. This is done via Monte Carlo rules
using the Boltzmann acceptance criterion. The purpose is to equilibrate the polymer chain conformations
more rapidly than dynamics alone would do it, by enabling instantaneous large conformational changes in a
dense polymer melt. The polymer chains should thus more rapidly converge to the proper end-to-end
distances and radii of gyration. It is designed for use with systems of FENE or harmonic bead-spring polymer
chains where each polymer is a linear chain of monomers, but LAMMPS does not enforce this requirement,
i.e. any bond_style can be used.

A schematic of the kinds of bond swaps that can occur is shown here:

On the left, the red and blue chains have two monomers A1 and B1 close to each other, which are currently
bonded to monomers A2 and B2 respectively within their own chains. The bond swap operation will attempt
to delete the A1-A2 and B1-B2 bonds and replace them with A1-B2 and B1-A2 bonds. If the swap is
energetically favorable, the two chains on the right are the result and each polymer chain has undergone a
dramatic conformational change. This reference provides more details on how the algorithm works and its
application: (Sides).

The bond swapping operation is invoked each time neighbor lists are built during a simulation, since it
potentially alters the list of which neighbors are considered for pairwise interaction. At each reneighboring
step, each processor considers a random specified fraction of its atoms as potential swapping monomers for
this timestep. Choosing a small fraction value can reduce the likelihood of a reverse swap occurring soon after
an initial swap.

LIGGGHTS Users Manual

fix bond/swap command 326

http://lammps.sandia.gov

For each monomer A1, its neighbors are examined to find a possible B1 monomer. Both A1 and B1 must be
in the fix group, their separation must be less than the specified cutoff, and the molecule IDs of A1 and B1
must be the same (see below). If a suitable partner is found, the energy change due to swapping the 2 bonds is
computed. This includes changes in pairwise, bond, and angle energies due to the altered connectivity of the 2
chains. Dihedral and improper interactions are not allowed to be defined when this fix is used.

If the energy decreases due to the swap operation, the bond swap is accepted. If the energy increases it is
accepted with probability exp(-delta/kT) where delta is the increase in energy, k is the Boltzmann constant,
and T is the current temperature of the system. Whether the swap is accepted or rejected, no other swaps are
attempted by this processor on this timestep.

The criterion for matching molecule IDs is how bond swaps performed by this fix conserve chain length. To
use this features you must setup the molecule IDs for your polymer chains in a certain way, typically in the
data file, read by the read_data comand. Consider a system of 6-mer chains. You have 2 choices. If the
molecule IDs for monomers on each chain are set to 1,2,3,4,5,6 then swaps will conserve chain length. For a
particular momoner there will be only one other monomer on another chain which is a potential swap partner.
If the molecule IDs for monomers on each chain are set to 1,2,3,3,2,1 then swaps will conserve chain length
but swaps will be able to occur at either end of a chain. Thus for a particular monomer there will be 2 possible
swap partners on another chain. In this scenario, swaps can also occur within a single chain, i.e. the two ends
of a chain swap with each other.

IMPORTANT NOTE: If your simulation uses molecule IDs in the usual way, where all monomers on a single
chain are assigned the same ID (different for each chain), then swaps will only occur within the same chain. If
you assign the same molecule ID to all monomers in all chains then inter-chain swaps will occur, but they will
not conserve chain length. Neither of these scenarios is probably not what you want for this fix.

IMPORTANT NOTE: When a bond swap occurs the image flags of monomers in the new polymer chains can
become inconsistent. See the dump command for a discussion of image flags. This is not an issue for running
dynamics, but can affect calculation of some diagnostic quantities or the printing of unwrapped coordinates to
a dump file.

This fix computes a temperature each time it is invoked for use by the Boltzmann criterion. To do this, the fix
creates its own compute of style temp, as if this command had been issued:

compute fix-ID_temp all temp

See the compute temp command for details. Note that the ID of the new compute is the fix-ID with underscore
+ "temp" appended and the group for the new compute is "all", so that the temperature of the entire system is
used.

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp. This means you can change the attributes of this fix's temperature (e.g. its degrees-of-freedom)
via the compute_modify command or print this temperature during thermodyanmic output via the
thermo_style custom command using the appropriate compute-ID. It also means that changing attributes of
thermo_temp will have no effect on this fix.

Restart, fix_modify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. Because the state of the random number
generator is not saved in restart files, this means you cannot do "exact" restarts with this fix, where the
simulation continues on the same as if no restart had taken place. However, in a statistical sense, a restarted
simulation should produce the same behavior. Also note that each processor generates possible swaps
independently of other processors. Thus if you repeat the same simulation on a different number of
processors, the specific swaps performed will be different.

LIGGGHTS Users Manual

fix bond/swap command 327

The fix_modify temp option is supported by this fix. You can use it to assign a compute you have defined to
this fix which will be used to compute the temperature for the Boltzmann criterion.

This fix computes two statistical quantities as a global 2-vector of output, which can be accessed by various
output commands. The first component of the vector is the cummulative number of swaps performed by all
processors. The second component of the vector is the cummulative number of swaps attempted (whether
accepted or rejected). Note that a swap "attempt" only occurs when swap partners meeting the criteria
described above are found on a particular timestep. The vector values calculated by this fix are "intensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the MC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

The setings of the "special_bond" command must be 0,1,1 in order to use this fix, which is typical of
bead-spring chains with FENE or harmonic bonds. This means that pairwise interactions between bonded
atoms are turned off, but are turned on between atoms two or three hops away along the chain backbone.

Currently, energy changes in dihedral and improper interactions due to a bond swap are not considered. Thus
a simulation that uses this fix cannot use a dihedral or improper potential.

Related commands: none

Default: none

(Sides) Sides, Grest, Stevens, Plimpton, J Polymer Science B, 42, 199-208 (2004).

LIGGGHTS Users Manual

fix bond/swap command 328

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix box/relax command

Syntax:

fix ID group-ID box/relax keyword value ...

ID, group-ID are documented in fix command•
box/relax = style name of this fix command

one or more keyword value pairs may be appended
keyword = iso or aniso or tri or x or y or z or xy or yz or xz or couple or nreset or vmax or dilate or scaleyz or scalexz or scalexy or fixedpoint

iso or aniso or tri value = Ptarget = desired pressure (pressure units)
x or y or z or xy or yz or xz value = Ptarget = desired pressure (pressure units)
couple = none or xyz or xy or yz or xz
nreset value = reset reference cell every this many minimizer iterations
vmax value = fraction = max allowed volume change in one iteration
dilate value = all or partial
scaleyz value = yes or no = scale yz with lz
scalexz value = yes or no = scale xz with lz
scalexy value = yes or no = scale xy with ly
fixedpoint values = x y z

 x,y,z = perform relaxation dilation/contraction around this point (distance units)

•

Examples:

fix 1 all box/relax iso 0.0 vmax 0.001
fix 2 water box/relax aniso 0.0 dilate partial
fix 2 ice box/relax tri 0.0 couple xy nreset 100

Description:

Apply an external pressure or stress tensor to the simulation box during an energy minimization. This allows
the box size and shape to vary during the iterations of the minimizer so that the final configuration will be
both an energy minimum for the potential energy of the atoms, and the system pressure tensor will be close to
the specified external tensor. Conceptually, specifying a positive pressure is like squeezing on the simulation
box; a negative pressure typically allows the box to expand.

The external pressure tensor is specified using one or more of the iso, aniso, tri, x, y, z, xy, xz, yz, and couple
keywords. These keywords give you the ability to specify all 6 components of an external stress tensor, and to
couple various of these components together so that the dimensions they represent are varied together during
the mimimization.

Orthogonal simulation boxes have 3 adjustable dimensions (x,y,z). Triclinic (non-orthogonal) simulation
boxes have 6 adjustable dimensions (x,y,z,xy,xz,yz). The create_box, read data, and read_restart commands
specify whether the simulation box is orthogonal or non-orthogonal (triclinic) and explain the meaning of the
xy,xz,yz tilt factors.

The target pressures Ptarget for each of the 6 components of the stress tensor can be specified independently
via the x, y, z, xy, xz, yz keywords, which correspond to the 6 simulation box dimensions. For example, if the y
keyword is used, the y-box length will change during the minimization. If the xy keyword is used, the xy tilt
factor will change. A box dimension will not change if that component is not specified.

Note that in order to use the xy, xz, or yz keywords, the simulation box must be triclinic, even if its initial tilt
factors are 0.0.

LIGGGHTS Users Manual

fix box/relax command 329

http://lammps.sandia.gov

When the size of the simulation box changes, all atoms are re-scaled to new positions, unless the keyword
dilate is specified with a value of partial, in which case only the atoms in the fix group are re-scaled. This can
be useful for leaving the coordinates of atoms in a solid substrate unchanged and controlling the pressure of a
surrounding fluid.

The scaleyz, scalexz, and scalexy keywords control whether or not the corresponding tilt factors are scaled
with the associated box dimensions when relaxing triclinic periodic cells. The default values yes will turn on
scaling, which corresponds to adjusting the linear dimensions of the cell while preserving its shape. Choosing
no ensures that the tilt factors are not scaled with the box dimensions. See below for restrictions and default
values in different situations. In older versions of LAMMPS, scaling of tilt factors was not performed. The old
behavior can be recovered by setting all three scale keywords to no.

The fixedpoint keyword specifies the fixed point for cell relaxation. By default, it is the center of the box.
Whatever point is chosen will not move during the simulation. For example, if the lower periodic boundaries
pass through (0,0,0), and this point is provided to fixedpoint, then the lower periodic boundaries will remain at
(0,0,0), while the upper periodic boundaries will move twice as far. In all cases, the particle positions at each
iteration are unaffected by the chosen value, except that all particles are displaced by the same amount,
different on each iteration.

IMPORTANT NOTE: Appling an external pressure to tilt dimensions xy, xz, yz can sometimes result in
arbitrarily large values of the tilt factors, i.e. a dramatically deformed simulation box. This typically indicates
that there is something badly wrong with how the simulation was constructed. The two most common sources
of this error are applying a shear stress to a liquid system or specifying an external shear stress tensor that
exceeds the yield stress of the solid. In either case the minimization may converge to a bogus conformation or
not converge at all. Also note that if the box shape tilts to an extreme shape, LAMMPS will run less
efficiently, due to the large volume of communication needed to acquire ghost atoms around a processor's
irregular-shaped sub-domain. For extreme values of tilt, LAMMPS may also lose atoms and generate an error.

The couple keyword allows two or three of the diagonal components of the pressure tensor to be "coupled"
together. The value specified with the keyword determines which are coupled. For example, xz means the Pxx
and Pzz components of the stress tensor are coupled. Xyz means all 3 diagonal components are coupled.
Coupling means two things: the instantaneous stress will be computed as an average of the corresponding
diagonal components, and the coupled box dimensions will be changed together in lockstep, meaning coupled
dimensions will be dilated or contracted by the same percentage every timestep. The Ptarget values for any
coupled dimensions must be identical. Couple xyz can be used for a 2d simulation; the z dimension is simply
ignored.

The iso, aniso, and tri keywords are simply shortcuts that are equivalent to specifying several other keywords
together.

The keyword iso means couple all 3 diagonal components together when pressure is computed (hydrostatic
pressure), and dilate/contract the dimensions together. Using "iso Ptarget" is the same as specifying these 4
keywords:

x Ptarget
y Ptarget
z Ptarget
couple xyz

The keyword aniso means x, y, and z dimensions are controlled independently using the Pxx, Pyy, and Pzz
components of the stress tensor as the driving forces, and the specified scalar external pressure. Using "aniso
Ptarget" is the same as specifying these 4 keywords:

x Ptarget
y Ptarget
z Ptarget

LIGGGHTS Users Manual

fix box/relax command 330

couple none

The keyword tri means x, y, z, xy, xz, and yz dimensions are controlled independently using their individual
stress components as the driving forces, and the specified scalar pressure as the external normal stress. Using
"tri Ptarget" is the same as specifying these 7 keywords:

x Ptarget
y Ptarget
z Ptarget
xy 0.0
yz 0.0
xz 0.0
couple none

The vmax keyword can be used to limit the fractional change in the volume of the simulation box that can
occur in one iteration of the minimizer. If the pressure is not settling down during the minimization this can be
because the volume is fluctuating too much. The specified fraction must be greater than 0.0 and should be <<
1.0. A value of 0.001 means the volume cannot change by more than 1/10 of a percent in one iteration when
couple xyz has been specified. For any other case it means no linear dimension of the simulation box can
change by more than 1/10 of a percent.

With this fix, the potential energy used by the minimizer is augmented by an additional energy provided by
the fix. The overall objective function then is:

where U is the system potential energy, P_t is the desired hydrostatic pressure, V and V_0 are the system and
reference volumes, respectively. E_strain is the strain energy expression proposed by Parrinello and Rahman
(Parrinello1981). Taking derivatives of E w.r.t. the box dimensions, and setting these to zero, we find that at
the minimum of the objective function, the global system stress tensor P will satisfy the relation:

where I is the identity matrix, h_0 is the box dimension tensor of the reference cell, and h_0d is the diagonal
part of h_0. S_t is a symmetric stress tensor that is chosen by LAMMPS so that the upper-triangular
components of P equal the stress tensor specified by the user.

This equation only applies when the box dimensions are equal to those of the reference dimensions. If this is
not the case, then the converged stress tensor will not equal that specified by the user. We can resolve this
problem by periodically resetting the reference dimensions. The keyword nreset_ref controls how often this is
done. If this keyword is not used, or is given a value of zero, then the reference dimensions are set to those of
the initial simulation domain and are never changed. A value of nstep means that every nstep minimization
steps, the reference dimensions are set to those of the current simulation domain. Note that resetting the
reference dimensions changes the objective function and gradients, which sometimes causes the minimization
to fail. This can be resolved by changing the value of nreset, or simply continuing the minimization from a
restart file.

IMPORTANT NOTE: As normally computed, pressure includes a kinetic- energy or temperature-dependent
component; see the compute pressure command. However, atom velocities are ignored during a minimization,

LIGGGHTS Users Manual

fix box/relax command 331

and the applied pressure(s) specified with this command are assumed to only be the virial component of the
pressure (the non-kinetic portion). Thus if atoms have a non-zero temperature and you print the usual
thermodynamic pressure, it may not appear the system is converging to your specified pressure. The solution
for this is to either (a) zero the velocities of all atoms before performing the minimization, or (b) make sure
you are monitoring the pressure without its kinetic component. The latter can be done by outputting the
pressure from the fix this command creates (see below) or a pressure fix you define yourself.

IMPORTANT NOTE: Because pressure is often a very sensitive function of volume, it can be difficult for the
minimizer to equilibrate the system the desired pressure with high precision, particularly for solids. Some
techniques that seem to help are (a) use the "min_modify line quadratic" option when minimizing with box
relaxations, and (b) minimize several times in succession if need be, to drive the pressure closer to the target
pressure. Also note that some systems (e.g. liquids) will not sustain a non-hydrostatic applied pressure, which
means the minimizer will not converge.

This fix computes a temperature and pressure each timestep. The temperature is used to compute the kinetic
contribution to the pressure, even though this is subsequently ignored by default. To do this, the fix creates its
own computes of style "temp" and "pressure", as if these commands had been issued:

compute fix-ID_temp group-ID temp
compute fix-ID_press group-ID pressure fix-ID_temp virial

See the compute temp and compute pressure commands for details. Note that the IDs of the new computes are
the fix-ID + underscore + "temp" or fix_ID + underscore + "press", and the group for the new computes is the
same as the fix group. Also note that the pressure compute does not include a kinetic component.

Note that these are NOT the computes used by thermodynamic output (see the thermo_style command) with
ID = thermo_temp and thermo_press. This means you can change the attributes of this fix's temperature or
pressure via the compute_modify command or print this temperature or pressure during thermodynamic
output via the thermo_style custom command using the appropriate compute-ID. It also means that changing
attributes of thermo_temp or thermo_press will have no effect on this fix.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify temp and press options are supported by this fix. You can use them to assign a compute you
have defined to this fix which will be used in its temperature and pressure calculation, as described above.
Note that as described above, if you assign a pressure compute to this fix that includes a kinetic energy
component it will affect the minimization, most likely in an undesirable way.

IMPORTANT NOTE: If both the temp and press keywords are used in a single thermo_modify command (or
in two separate commands), then the order in which the keywords are specified is important. Note that a
pressure compute defines its own temperature compute as an argument when it is specified. The temp
keyword will override this (for the pressure compute being used by fix npt), but only if the temp keyword
comes after the press keyword. If the temp keyword comes before the press keyword, then the new pressure
compute specified by the press keyword will be unaffected by the temp setting.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the
pressure-volume energy, plus the strain energy, if it exists.

No parameter of this fix can be used with the start/stop keywords of the run command.

This fix is invoked during energy minimization, but not for the purpose of adding a contribution to the energy
or forces being minimized. Instead it alters the simulation box geometry as described above.

LIGGGHTS Users Manual

fix box/relax command 332

Restrictions:

Only dimensions that are available can be adjusted by this fix. Non-periodic dimensions are not available. z,
xz, and yz, are not available for 2D simulations. xy, xz, and yz are only available if the simulation domain is
non-orthogonal. The create_box, read data, and read_restart commands specify whether the simulation box is
orthogonal or non-orthogonal (triclinic) and explain the meaning of the xy,xz,yz tilt factors.

The scaleyz yes and scalexz yes keyword/value pairs can not be used for 2D simulations. scaleyz yes, scalexz
yes, and scalexy yes options can only be used if the 2nd dimension in the keyword is periodic, and if the tilt
factor is not coupled to the barostat via keywords tri, yz, xz, and xy.

Related commands:

fix npt, minimize

Default:

The keyword defaults are dilate = all, vmax = 0.0001, nreset = 0.

(Parrinello1981) Parrinello and Rahman, J Appl Phys, 52, 7182 (1981).

LIGGGHTS Users Manual

fix box/relax command 333

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix check/timestep/gran command

Syntax:

fix ID group-ID check/timestep/gran nevery fraction_r fraction_h

ID, group-ID are documented in fix command•
check/timestep/gran = style name of this fix command•
nevery = evaluate time-step size accuracy every this many time-steps•
fraction_r = warn if time-step size exceeds this fraction of the Rayleigh time•
fraction_h = warn if time-step size exceeds this fraction of the Hertz time•

Examples:

fix ts_check all check/timestep/gran 1000 0.1 0.1

Description:

Periodically calculate estimations of the Rayleigh- and Hertz time dt_r and dt_h for a granular system every
'nevery' time-steps. The user can specify two quantities fraction_r and fraction_h. A warning message is
printed if the time-step size as specified via the timestep command exceeds either of dt_r * fraction_r or dt_h
* fraction_h.

The former quantity is

dt_r = PI*r*sqrt(rho/G)/(0.1631*nu+0.8766),

where rho is particle density, G is the shear modulus and nu is Poisson's ratio. The latter quantity is expressed
by

dt_h = 2.87*(m_eff^2/(r_eff*Y_eff^2*v_max)^0.2.

The effective mass m_eff, the effective radius r_eff and the effective Young's modulus Y_eff are as defined in
pair gran. v_max is the maximum relative velocity, taking mesh movement into account. Please note that the
Hertz criterion will also be used if you use a different granular pair style (e.g. Hooke).

Additionally, this command checks the ratio of skin to the distance that particles can travel relative to each
other in one time-step. This value should be >1, otherwise some interactions may be missed or overlap energy
may be generated artificially. This command will warn you if this is the case.

These criteria are checked every 'nevery' time-steps. Rayleigh time dt_r is calculated for each particle in the
simulation, and the minimum value is taken for further calculations. Hertz time dt_h is estimated by testing a
collision of each particle with itself using v_max as the assumed collision velocity.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. This fix computes a 3-vector, for access by various output commands. The vector consists of the
time-step size expressed as fraction of the Rayleigh and Hertz time-step sizes and the ratio of skin to the
distance particles can travel relative to each other in one time-step, respectively. No parameter of this fix can
be used with the start/stop keywords of the run command. This fix is not invoked during energy minimization.

LIGGGHTS Users Manual

fix check/timestep/gran command 334

http://www.cfdem.com
http://lammps.sandia.gov

Restrictions: none

Related commands: none

Default: none

LIGGGHTS Users Manual

fix check/timestep/gran command 335

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix colvars command

Syntax:

fix ID group-ID colvars configfile keyword values ...

ID, group-ID are documented in fix command•
colvars = style name of this fix command•
configfile = the configuration file for the colvars module•
keyword = input or output or seed or tstat

input arg = colvars.state file name or prefix or NULL (default: NULL)
output arg = output filename prefix (default: out)
seed arg = seed for random number generator (default: 1966)
unwrap arg = yes or no

 use unwrapped coordinates in collective variables (default: yes)
tstat arg = fix id of a thermostat or NULL (default: NULL)

•

Examples:

fix mtd all colvars peptide.colvars.inp seed 2122 input peptide.colvars.state output peptide
fix abf all colvars colvars.inp tstat 1

Description:

This fix interfaces LAMMPS to a "collective variables" or "colvars" module library which allows to calculate
potentials of mean force (PMFs) for any set of colvars, using different sampling methods: currently
implemented are the Adaptive Biasing Force (ABF) method, metadynamics, Steered Molecular Dynamics
(SMD) and Umbrella Sampling (US) via a flexible harmonic restraint bias. The colvars library is hosted at
http://colvars.github.io/

This documentation describes only the fix colvars command itself and LAMMPS specific parts of the code.
The full documentation of the colvars library is available as this supplementary PDF document

A detailed discussion of the implementation of the portable collective variable library is in (Fiorin).
Additional information can be found in (Henin).

There are some example scripts for using this package with LAMMPS in the examples/USER/colvars
directory.

The only mandatory argument to the fix is the filename to the colvars input file that contains the input that is
independent from the MD program in which the colvars library has been integrated.

The group-ID entry is ignored. The collective variable module will always apply to the entire system and
there can only be one instance of the colvars fix at a time. The colvars fix will only communicate the
minimum information necessary and the colvars library supports multiple, completely independent collective
variables, so there is no restriction to functionaliry by limiting the number of colvars fixes.

The input keyword allows to specify a state file that would contain the restart information required in order to
continue a calculation from a prerecorded state. Fix colvars records it state in binary restart files, so when
using the read_restart command, this is usually not needed.

The output keyword allows to specify the output prefix. All output files generated will use this prefix
followed by the ".colvars." and a word like "state" or "traj".

LIGGGHTS Users Manual

fix colvars command 336

http://lammps.sandia.gov
http://colvars.github.io/

The seed keyword contains the seed for the random number generator that will be used in the colvars module.

The unwrap keyword controls whether wrapped or unwrapped coordinates are passed to the colvars library for
calculation of the collective variables and the resulting forces. The default is yes, i.e. to use the image flags to
reconstruct the absolute atom positions. Setting this to no will use the current local coordinates that are
wrapped back into the simulation cell at each re-neighboring instead.

The tstat keyword can be either NULL or the label of a thermostating fix that thermostats all atoms in the fix
colvars group. This will be used to provide the colvars module with the current thermostat target temperature.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the current status of the colvars module into binary restart files. This is in addition to the text
mode status file that is written by the colvars module itself and the kind of information in both files is
identical.

The fix_modify energy option is supported by this fix to add the energy change from the biasing force added
by the fix to the system's potential energy as part of thermodynamic output.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the
cummulative energy change due to this fix. The scalar value calculated by this fix is "extensive".

Restrictions:

This fix is part of the USER-COLVARS package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

There can only be one colvars fix active at a time. Since the interface communicates only the minimum
amount of information and colvars module itself can handle an arbitrary number of collective variables, this is
not a limitation of functionality.

Related commands:

fix smd

Default:

The default options are input = NULL, output = out, seed = 1966, unwrap yes, and tstat = NULL.

(Fiorin) Fiorin , Klein, Henin, Mol. Phys., DOI:10.1080/00268976.2013.813594

(Henin) Henin, Fiorin, Chipot, Klein, J. Chem. Theory Comput., 6, 35-47 (2010)

LIGGGHTS Users Manual

fix colvars command 337

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix deform command

Syntax:

fix ID group-ID deform N parameter args ... keyword value ...

ID, group-ID are documented in fix command•
deform = style name of this fix command•
N = perform box deformation every this many timesteps•
one or more parameter/arg pairs may be appended

parameter = x or y or z or xy or xz or yz
x, y, z args = style value(s)

 style = final or delta or scale or vel or erate or trate or volume or wiggle or variable
final values = lo hi

 lo hi = box boundaries at end of run (distance units)
delta values = dlo dhi

 dlo dhi = change in box boundaries at end of run (distance units)
scale values = factor

 factor = multiplicative factor for change in box length at end of run
vel value = V

 V = change box length at this velocity (distance/time units),
 effectively an engineering strain rate

erate value = R
 R = engineering strain rate (1/time units)

trate value = R
 R = true strain rate (1/time units)

volume value = none = adjust this dim to preserve volume of system
wiggle values = A Tp

 A = amplitude of oscillation (distance units)
 Tp = period of oscillation (time units)

variable values = v_name1 v_name2
 v_name1 = variable with name1 for box length change as function of time
 v_name2 = variable with name2 for change rate as function of time

xy, xz, yz args = style value
 style = final or delta or vel or erate or trate or wiggle

final value = tilt
 tilt = tilt factor at end of run (distance units)

delta value = dtilt
 dtilt = change in tilt factor at end of run (distance units)

vel value = V
 V = change tilt factor at this velocity (distance/time units),
 effectively an engineering shear strain rate

erate value = R
 R = engineering shear strain rate (1/time units)

trate value = R
 R = true shear strain rate (1/time units)

wiggle values = A Tp
 A = amplitude of oscillation (distance units)
 Tp = period of oscillation (time units)

variable values = v_name1 v_name2
 v_name1 = variable with name1 for tilt change as function of time
 v_name2 = variable with name2 for change rate as function of time

•

zero or more keyword/value pairs may be appended•
keyword = remap or flip or units

remap value = x or v or none
 x = remap coords of atoms in group into deforming box
 v = remap velocities of all atoms when they cross periodic boundaries
 none = no remapping of x or v

flip value = yes or no

•

LIGGGHTS Users Manual

fix deform command 338

http://lammps.sandia.gov

 allow or disallow box flips when it becomes highly skewed
units value = lattice or box

 lattice = distances are defined in lattice units
 box = distances are defined in simulation box units

Examples:

fix 1 all deform 1 x final 0.0 9.0 z final 0.0 5.0 units box
fix 1 all deform 1 x trate 0.1 y volume z volume
fix 1 all deform 1 xy erate 0.001 remap v
fix 1 all deform 10 y delta -0.5 0.5 xz vel 1.0

Description:

Change the volume and/or shape of the simulation box during a dynamics run. Orthogonal simulation boxes
have 3 adjustable parameters (x,y,z). Triclinic (non-orthogonal) simulation boxes have 6 adjustable
parameters (x,y,z,xy,xz,yz). Any or all of them can be adjusted independently and simultaneously by this
command. This fix can be used to perform non-equilibrium MD (NEMD) simulations of a continuously
strained system. See the fix nvt/sllod and compute temp/deform commands for more details.

For the x, y, z parameters, the associated dimension cannot be shrink-wrapped. For the xy, yz, xz parameters,
the associated 2nd dimension cannot be shrink-wrapped. Dimensions not varied by this command can be
periodic or non-periodic. Dimensions corresponding to unspecified parameters can also be controlled by a fix
npt or fix nph command.

The size and shape of the simulation box at the beginning of the simulation run were either specified by the
create_box or read_data or read_restart command used to setup the simulation initially if it is the first run, or
they are the values from the end of the previous run. The create_box, read data, and read_restart commands
specify whether the simulation box is orthogonal or non-orthogonal (triclinic) and explain the meaning of the
xy,xz,yz tilt factors. If fix deform changes the xy,xz,yz tilt factors, then the simulation box must be triclinic,
even if its initial tilt factors are 0.0.

As described below, the desired simulation box size and shape at the end of the run are determined by the
parameters of the fix deform command. Every Nth timestep during the run, the simulation box is expanded,
contracted, or tilted to ramped values between the initial and final values.

For the x, y, and z parameters, this is the meaning of their styles and values.

The final, delta, scale, vel, and erate styles all change the specified dimension of the box via "constant
displacement" which is effectively a "constant engineering strain rate". This means the box dimension
changes linearly with time from its initial to final value.

For style final, the final lo and hi box boundaries of a dimension are specified. The values can be in lattice or
box distance units. See the discussion of the units keyword below.

For style delta, plus or minus changes in the lo/hi box boundaries of a dimension are specified. The values can
be in lattice or box distance units. See the discussion of the units keyword below.

For style scale, a multiplicative factor to apply to the box length of a dimension is specified. For example, if
the initial box length is 10, and the factor is 1.1, then the final box length will be 11. A factor less than 1.0
means compression.

For style vel, a velocity at which the box length changes is specified in units of distance/time. This is
effectively a "constant engineering strain rate", where rate = V/L0 and L0 is the initial box length. The
distance can be in lattice or box distance units. See the discussion of the units keyword below. For example, if
the initial box length is 100 Angstroms, and V is 10 Angstroms/psec, then after 10 psec, the box length will

LIGGGHTS Users Manual

fix deform command 339

have doubled. After 20 psec, it will have tripled.

The erate style changes a dimension of the the box at a "constant engineering strain rate". The units of the
specified strain rate are 1/time. See the units command for the time units associated with different choices of
simulation units, e.g. picoseconds for "metal" units). Tensile strain is unitless and is defined as delta/L0,
where L0 is the original box length and delta is the change relative to the original length. The box length L as
a function of time will change as

L(t) = L0 (1 + erate*dt)

where dt is the elapsed time (in time units). Thus if erate R is specified as 0.1 and time units are picoseconds,
this means the box length will increase by 10% of its original length every picosecond. I.e. strain after 1 psec
= 0.1, strain after 2 psec = 0.2, etc. R = -0.01 means the box length will shrink by 1% of its original length
every picosecond. Note that for an "engineering" rate the change is based on the original box length, so
running with R = 1 for 10 picoseconds expands the box length by a factor of 11 (strain of 10), which is
different that what the trate style would induce.

The trate style changes a dimension of the box at a "constant true strain rate". Note that this is not an
"engineering strain rate", as the other styles are. Rather, for a "true" rate, the rate of change is constant, which
means the box dimension changes non-linearly with time from its initial to final value. The units of the
specified strain rate are 1/time. See the units command for the time units associated with different choices of
simulation units, e.g. picoseconds for "metal" units). Tensile strain is unitless and is defined as delta/L0,
where L0 is the original box length and delta is the change relative to the original length.

The box length L as a function of time will change as

L(t) = L0 exp(trate*dt)

where dt is the elapsed time (in time units). Thus if trate R is specified as ln(1.1) and time units are
picoseconds, this means the box length will increase by 10% of its current (not original) length every
picosecond. I.e. strain after 1 psec = 0.1, strain after 2 psec = 0.21, etc. R = ln(2) or ln(3) means the box length
will double or triple every picosecond. R = ln(0.99) means the box length will shrink by 1% of its current
length every picosecond. Note that for a "true" rate the change is continuous and based on the current length,
so running with R = ln(2) for 10 picoseconds does not expand the box length by a factor of 11 as it would with
erate, but by a factor of 1024 since the box length will double every picosecond.

Note that to change the volume (or cross-sectional area) of the simulation box at a constant rate, you can
change multiple dimensions via erate or trate. E.g. to double the box volume in a picosecond picosecond, you
could set "x erate M", "y erate M", "z erate M", with M = pow(2,1/3) - 1 = 0.26, since if each box dimension
grows by 26%, the box volume doubles. Or you could set "x trate M", "y trate M", "z trate M", with M =
ln(1.26) = 0.231, and the box volume would double every picosecond.

The volume style changes the specified dimension in such a way that the box volume remains constant while
other box dimensions are changed explicitly via the styles discussed above. For example, "x scale 1.1 y scale
1.1 z volume" will shrink the z box length as the x,y box lengths increase, to keep the volume constant
(product of x,y,z lengths). If "x scale 1.1 z volume" is specified and parameter y is unspecified, then the z box
length will shrink as x increases to keep the product of x,z lengths constant. If "x scale 1.1 y volume z
volume" is specified, then both the y,z box lengths will shrink as x increases to keep the volume constant
(product of x,y,z lengths). In this case, the y,z box lengths shrink so as to keep their relative aspect ratio
constant.

For solids or liquids, note that when one dimension of the box is expanded via fix deform (i.e. tensile strain),
it may be physically undesirable to hold the other 2 box lengths constant (unspecified by fix deform) since
that implies a density change. Using the volume style for those 2 dimensions to keep the box volume constant
may make more physical sense, but may also not be correct for materials and potentials whose Poisson ratio is

LIGGGHTS Users Manual

fix deform command 340

not 0.5. An alternative is to use fix npt aniso with zero applied pressure on those 2 dimensions, so that they
respond to the tensile strain dynamically.

The wiggle style oscillates the specified box length dimension sinusoidally with the specified amplitude and
period. I.e. the box length L as a function of time is given by

L(t) = L0 + A sin(2*pi t/Tp)

where L0 is its initial length. If the amplitude A is a positive number the box initially expands, then contracts,
etc. If A is negative then the box initially contracts, then expands, etc. The amplitude can be in lattice or box
distance units. See the discussion of the units keyword below.

The variable style changes the specified box length dimension by evaluating a variable, which presumably is
a function of time. The variable with name1 must be an equal-style variable and should calculate a change in
box length in units of distance. Note that this distance is in box units, not lattice units; see the discussion of
the units keyword below. The formula associated with variable name1 can reference the current timestep.
Note that it should return the "change" in box length, not the absolute box length. This means it should
evaluate to 0.0 when invoked on the initial timestep of the run following the definition of fix deform. It should
evaluate to a value > 0.0 to dilate the box at future times, or a value < 0.0 to compress the box.

The variable name2 must also be an equal-style variable and should calculate the rate of box length change, in
units of distance/time, i.e. the time-derivative of the name1 variable. This quantity is used internally by
LAMMPS to reset atom velocities when they cross periodic boundaries. It is computed internally for the other
styles, but you must provide it when using an arbitrary variable.

Here is an example of using the variable style to perform the same box deformation as the wiggle style
formula listed above, where we assume that the current timestep = 0.

variable A equal 5.0
variable Tp equal 10.0
variable displace equal "v_A * sin(2*PI * step*dt/v_Tp)"
variable rate equal "2*PI*v_A/v_Tp * cos(2*PI * step*dt/v_Tp)"
fix 2 all deform 1 x variable v_displace v_rate remap v

For the scale, vel, erate, trate, volume, wiggle, and variable styles, the box length is expanded or compressed
around its mid point.

For the xy, xz, and yz parameters, this is the meaning of their styles and values. Note that changing the tilt
factors of a triclinic box does not change its volume.

The final, delta, vel, and erate styles all change the shear strain at a "constant engineering shear strain rate".
This means the tilt factor changes linearly with time from its initial to final value.

For style final, the final tilt factor is specified. The value can be in lattice or box distance units. See the
discussion of the units keyword below.

For style delta, a plus or minus change in the tilt factor is specified. The value can be in lattice or box distance
units. See the discussion of the units keyword below.

For style vel, a velocity at which the tilt factor changes is specified in units of distance/time. This is
effectively an "engineering shear strain rate", where rate = V/L0 and L0 is the initial box length perpendicular
to the direction of shear. The distance can be in lattice or box distance units. See the discussion of the units
keyword below. For example, if the initial tilt factor is 5 Angstroms, and the V is 10 Angstroms/psec, then
after 1 psec, the tilt factor will be 15 Angstroms. After 2 psec, it will be 25 Angstroms.

LIGGGHTS Users Manual

fix deform command 341

The erate style changes a tilt factor at a "constant engineering shear strain rate". The units of the specified
shear strain rate are 1/time. See the units command for the time units associated with different choices of
simulation units, e.g. picoseconds for "metal" units). Shear strain is unitless and is defined as offset/length,
where length is the box length perpendicular to the shear direction (e.g. y box length for xy deformation) and
offset is the displacement distance in the shear direction (e.g. x direction for xy deformation) from the
unstrained orientation.

The tilt factor T as a function of time will change as

T(t) = T0 + L0*erate*dt

where T0 is the initial tilt factor, L0 is the original length of the box perpendicular to the shear direction (e.g.
y box length for xy deformation), and dt is the elapsed time (in time units). Thus if erate R is specified as 0.1
and time units are picoseconds, this means the shear strain will increase by 0.1 every picosecond. I.e. if the xy
shear strain was initially 0.0, then strain after 1 psec = 0.1, strain after 2 psec = 0.2, etc. Thus the tilt factor
would be 0.0 at time 0, 0.1*ybox at 1 psec, 0.2*ybox at 2 psec, etc, where ybox is the original y box length. R
= 1 or 2 means the tilt factor will increase by 1 or 2 every picosecond. R = -0.01 means a decrease in shear
strain by 0.01 every picosecond.

The trate style changes a tilt factor at a "constant true shear strain rate". Note that this is not an "engineering
shear strain rate", as the other styles are. Rather, for a "true" rate, the rate of change is constant, which means
the tilt factor changes non-linearly with time from its initial to final value. The units of the specified shear
strain rate are 1/time. See the units command for the time units associated with different choices of simulation
units, e.g. picoseconds for "metal" units). Shear strain is unitless and is defined as offset/length, where length
is the box length perpendicular to the shear direction (e.g. y box length for xy deformation) and offset is the
displacement distance in the shear direction (e.g. x direction for xy deformation) from the unstrained
orientation.

The tilt factor T as a function of time will change as

T(t) = T0 exp(trate*dt)

where T0 is the initial tilt factor and dt is the elapsed time (in time units). Thus if trate R is specified as ln(1.1)
and time units are picoseconds, this means the shear strain or tilt factor will increase by 10% every
picosecond. I.e. if the xy shear strain was initially 0.1, then strain after 1 psec = 0.11, strain after 2 psec =
0.121, etc. R = ln(2) or ln(3) means the tilt factor will double or triple every picosecond. R = ln(0.99) means
the tilt factor will shrink by 1% every picosecond. Note that the change is continuous, so running with R =
ln(2) for 10 picoseconds does not change the tilt factor by a factor of 10, but by a factor of 1024 since it
doubles every picosecond. Note that the initial tilt factor must be non-zero to use the trate option.

Note that shear strain is defined as the tilt factor divided by the perpendicular box length. The erate and trate
styles control the tilt factor, but assume the perpendicular box length remains constant. If this is not the case
(e.g. it changes due to another fix deform parameter), then this effect on the shear strain is ignored.

The wiggle style oscillates the specified tilt factor sinusoidally with the specified amplitude and period. I.e.
the tilt factor T as a function of time is given by

T(t) = T0 + A sin(2*pi t/Tp)

where T0 is its initial value. If the amplitude A is a positive number the tilt factor initially becomes more
positive, then more negative, etc. If A is negative then the tilt factor initially becomes more negative, then
more positive, etc. The amplitude can be in lattice or box distance units. See the discussion of the units
keyword below.

LIGGGHTS Users Manual

fix deform command 342

The variable style changes the specified tilt factor by evaluating a variable, which presumably is a function of
time. The variable with name1 must be an equal-style variable and should calculate a change in tilt in units of
distance. Note that this distance is in box units, not lattice units; see the discussion of the units keyword
below. The formula associated with variable name1 can reference the current timestep. Note that it should
return the "change" in tilt factor, not the absolute tilt factor. This means it should evaluate to 0.0 when
invoked on the initial timestep of the run following the definition of fix deform.

The variable name2 must also be an equal-style variable and should calculate the rate of tilt change, in units of
distance/time, i.e. the time-derivative of the name1 variable. This quantity is used internally by LAMMPS to
reset atom velocities when they cross periodic boundaries. It is computed internally for the other styles, but
you must provide it when using an arbitrary variable.

Here is an example of using the variable style to perform the same box deformation as the wiggle style
formula listed above, where we assume that the current timestep = 0.

variable A equal 5.0
variable Tp equal 10.0
variable displace equal "v_A * sin(2*PI * step*dt/v_Tp)"
variable rate equal "2*PI*v_A/v_Tp * cos(2*PI * step*dt/v_Tp)"
fix 2 all deform 1 xy variable v_displace v_rate remap v

All of the tilt styles change the xy, xz, yz tilt factors during a simulation. In LAMMPS, tilt factors (xy,xz,yz)
for triclinic boxes are normally bounded by half the distance of the parallel box length. See the discussion of
the flip keyword below, to allow this bound to be exceeded, if desired.

For example, if xlo = 2 and xhi = 12, then the x box length is 10 and the xy tilt factor must be between -5 and
5. Similarly, both xz and yz must be between -(xhi-xlo)/2 and +(yhi-ylo)/2. Note that this is not a limitation,
since if the maximum tilt factor is 5 (as in this example), then configurations with tilt = ..., -15, -5, 5, 15, 25,
... are all equivalent.

To obey this constraint and allow for large shear deformations to be applied via the xy, xz, or yz parameters,
the following algorithm is used. If prd is the associated parallel box length (10 in the example above), then if
the tilt factor exceeds the accepted range of -5 to 5 during the simulation, then the box is flipped to the other
limit (an equivalent box) and the simulation continues. Thus for this example, if the initial xy tilt factor was
0.0 and "xy final 100.0" was specified, then during the simulation the xy tilt factor would increase from 0.0 to
5.0, the box would be flipped so that the tilt factor becomes -5.0, the tilt factor would increase from -5.0 to
5.0, the box would be flipped again, etc. The flip occurs 10 times and the final tilt factor at the end of the
simulation would be 0.0. During each flip event, atoms are remapped into the new box in the appropriate
manner.

The one exception to this rule is if the 1st dimension in the tilt factor (x for xy) is non-periodic. In that case,
the limits on the tilt factor are not enforced, since flipping the box in that dimension does not change the atom
positions due to non-periodicity. In this mode, if you tilt the system to extreme angles, the simulation will
simply become inefficient due to the highly skewed simulation box.

Each time the box size or shape is changed, the remap keyword determines whether atom positions are
remapped to the new box. If remap is set to x (the default), atoms in the fix group are remapped; otherwise
they are not. Note that their velocities are not changed, just their positions are altered. If remap is set to v, then
any atom in the fix group that crosses a periodic boundary will have a delta added to its velocity equal to the
difference in velocities between the lo and hi boundaries. Note that this velocity difference can include tilt
components, e.g. a delta in the x velocity when an atom crosses the y periodic boundary. If remap is set to
none, then neither of these remappings take place.

Conceptually, setting remap to x forces the atoms to deform via an affine transformation that exactly matches
the box deformation. This setting is typically appropriate for solids. Note that though the atoms are effectively

LIGGGHTS Users Manual

fix deform command 343

"moving" with the box over time, it is not due to their having a velocity that tracks the box change, but only
due to the remapping. By contrast, setting remap to v is typically appropriate for fluids, where you want the
atoms to respond to the change in box size/shape on their own and acquire a velocity that matches the box
change, so that their motion will naturally track the box without explicit remapping of their coordinates.

IMPORTANT NOTE: When non-equilibrium MD (NEMD) simulations are performed using this fix, the
option "remap v" should normally be used. This is because fix nvt/sllod adjusts the atom positions and
velocities to induce a velocity profile that matches the changing box size/shape. Thus atom coordinates should
NOT be remapped by fix deform, but velocities SHOULD be when atoms cross periodic boundaries, since
that is consistent with maintaining the velocity profile already created by fix nvt/sllod. LAMMPS will warn
you if the remap setting is not consistent with fix nvt/sllod.

IMPORTANT NOTE: For non-equilibrium MD (NEMD) simulations using "remap v" it is usually desirable
that the fluid (or flowing material, e.g. granular particles) stream with a velocity profile consistent with the
deforming box. As mentioned above, using a thermostat such as fix nvt/sllod or fix lavgevin (with a bias
provided by compute temp/deform), will typically accomplish that. If you do not use a thermostat, then there
is no driving force pushing the atoms to flow in a manner consistent with the deforming box. E.g. for a
shearing system the box deformation velocity may vary from 0 at the bottom to 10 at the top of the box. But
the stream velocity profile of the atoms may vary from -5 at the bottom to +5 at the top. You can monitor
these effects using the fix ave/spatial, compute temp/deform, and compute temp/profile commands. One way
to induce atoms to stream consistent with the box deformation is to give them an initial velocity profile, via
the velocity ramp command, that matches the box deformation rate. This also typically helps the system come
to equilibrium more quickly, even if a thermostat is used.

IMPORTANT NOTE: If a fix rigid is defined for rigid bodies, and remap is set to x, then the center-of-mass
coordinates of rigid bodies will be remapped to the changing simulation box. This will be done regardless of
whether atoms in the rigid bodies are in the fix deform group or not. The velocity of the centers of mass are
not remapped even if remap is set to v, since fix nvt/sllod does not currently do anything special for rigid
particles. If you wish to perform a NEMD simulation of rigid particles, you can either thermostat them
independently or include a background fluid and thermostat the fluid via fix nvt/sllod.

The flip keyword allows the tilt factors for a triclinic box to exceed half the distance of the parallel box length,
as discussed above. If the flip value is set to yes, the bound is enforced by flipping the box when it is
exceeded. If the flip value is set to no, the tilt will continue to change without flipping. Note that if you apply
large deformations, this means the box shape can tilt dramatically LAMMPS will run less efficiently, due to
the large volume of communication needed to acquire ghost atoms around a processor's irregular-shaped
sub-domain. For extreme values of tilt, LAMMPS may also lose atoms and generate an error.

The units keyword determines the meaning of the distance units used to define various arguments. A box
value selects standard distance units as defined by the units command, e.g. Angstroms for units = real or
metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing. Note that the units choice also affects the vel style parameters
since it is defined in terms of distance/time. Also note that the units keyword does not affect the variable
style. You should use the xlat, ylat, zlat keywords of the thermo_style command if you want to include lattice
spacings in a variable formula.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands.

This fix can perform deformation over multiple runs, using the start and stop keywords of the run command.
See the run command for details of how to do this.

LIGGGHTS Users Manual

fix deform command 344

This fix is not invoked during energy minimization.

Restrictions:

You cannot apply x, y, or z deformations to a dimension that is shrink-wrapped via the boundary comamnd.

You cannot apply xy, yz, or xz deformations to a 2nd dimension (y in xy) that is shrink-wrapped via the
boundary comamnd.

Related commands:

change_box

Default:

The option defaults are remap = x, flip = yes, and units = lattice.

LIGGGHTS Users Manual

fix deform command 345

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix deposit command

Syntax:

fix ID group-ID deposit N type M seed keyword values ...

ID, group-ID are documented in fix command•
deposit = style name of this fix command•
N = # of atoms to insert•
type = atom type to assign to inserted atoms•
M = insert a single particle every M steps•
seed = random # seed (positive integer)•
one or more keyword/value pairs may be appended to args•
keyword = region or id or global or local or near or attempt or rate or vx or vy or vz or units

region value = region-ID
 region-ID = ID of region to use as insertion volume

id value = max or next
 max = atom ID for new atom is max ID of all current atoms plus one
 next = atom ID for new atom increments by one for every deposition

global values = lo hi
 lo,hi = put new particle a distance lo-hi above all other particles (distance units)

local values = lo hi delta
 lo,hi = put new particle a distance lo-hi above any nearby particle beneath it (distance units)
 delta = lateral distance within which a neighbor is considered "nearby" (distance units)

near value = R
 R = only insert particle if further than R from existing particles (distance units)

attempt value = Q
 Q = attempt a single insertion up to Q times

rate value = V
 V = z velocity (y in 2d) at which insertion volume moves (velocity units)

vx values = vxlo vxhi
 vxlo,vxhi = range of x velocities for inserted particle (velocity units)

vy values = vylo vyhi
 vylo,vyhi = range of y velocities for inserted particle (velocity units)

vz values = vzlo vzhi
 vzlo,vzhi = range of z velocities for inserted particle (velocity units)

target values = tx ty tz
 tx,ty,tz = location of sputtering target (distance units)

units value = lattice or box
 lattice = the geometry is defined in lattice units
 box = the geometry is defined in simulation box units

•

Examples:

fix 3 all deposit 1000 2 100 29494 region myblock local 1.0 1.0 1.0 units box
fix 2 newatoms deposit 10000 1 500 12345 region disk near 2.0 vz -1.0 -0.8

fix 4 sputter deposit 1000 2 500 12235 region sphere vz -1.0 -1.0 target 5.0 5.0 0.0 units lattice

Description:

Insert a single particle into the simulation domain every M timesteps until N particles have been inserted. This
is useful for simulating the deposition of particles onto a surface.

Inserted particles have the specified atom type and are assigned to two groups: the default group "all" and the
group specified in the fix deposit command (which can also be "all").

LIGGGHTS Users Manual

fix deposit command 346

http://lammps.sandia.gov

If you are computing temperature values which include inserted particles, you will want to use the
compute_modify dynamic option, which insures the current number of atoms is used as a normalizing factor
each time temperature is computed.

Care must be taken that inserted particles are not too near existing particles, using the options described
below. When inserting particles above a surface in a non-periodic box (see the boundary command), the
possibility of a particle escaping the surface and flying upward should be considered, since the particle may be
lost or the box size may grow infinitely large. A fix wall/reflect command can be used to prevent this
behavior. Note that if a shrink-wrap boundary is used, it is OK to insert the new particle outside the box,
however the box will immediately be expanded to include the new particle. When simulating a sputtering
experiment it is probably more realistic to ignore those atoms using the thermo_modify command with the
lost ignore option and a fixed boundary.

This command must use the region keyword to define an insertion volume. The specified region must have
been previously defined with a region command. It must be defined with side = in.

Each timestep a particle is to be inserted, its coordinates are chosen as follows. A random position within the
insertion volume is generated. If neither the global or local keyword is used, that is the trial position. If the
global keyword is used, the random x,y values are used, but the z position of the new particle is set above the
highest current atom in the simulation by a distance randomly chosen between lo/hi. (For a 2d simulation, this
is done for the y position.) If the local keyword is used, the z position is set a distance between lo/hi above the
highest current atom in the simulation that is "nearby" the chosen x,y position. In this context, "nearby" means
the lateral distance (in x,y) between the new and old particles is less than the delta parameter.

Once a trial x,y,z location has been computed, the insertion is only performed if no current particle in the
simulation is within a distance R of the new particle. If this test fails, a new random position within the
insertion volume is chosen and another trial is made. Up to Q attempts are made. If an atom is not successfully
deposited, LAMMPS prints a warning message.

The rate option moves the insertion volume in the z direction (3d) or y direction (2d). This enables particles to
be inserted from a successively higher height over time. Note that this parameter is ignored if the global or
local keywords are used, since those options choose a z-coordinate for insertion independently.

The vx, vy, and vz components of velocity for the inserted particle are set using the values specified for the
vx, vy, and vz keywords. Note that normally, new particles should be a assigned a negative vertical velocity so
that they move towards the surface.

In case the target option is used, the velocity vector of the inserted particle will be changed in a way so that it
would pass through the specified coordinate. This allows convenient simulation of a sputtering process.

The id keyword determines how an atom ID is assigned to newly deposited atoms. For the max setting, the
IDs of all current atoms are checked and the new ID is the current maximum value plus one. This means that
if atoms have left the system, the new ID may reflect this fact. For the next setting, the maximum ID of all
atoms is stored at the time the fix is defined. Each time a deposited atom is added, this value is incremented
by one and assigned to the new atom. Thus atom IDs for deposited atoms will be consecutive even if atoms
leave the system over time.

The units keyword determines the meaning of the distance units used for the other deposition parameters. A
box value selects standard distance units as defined by the units command, e.g. Angstroms for units = real or
metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing. Note that the units choice affects all the keyword values that
have units of distance or velocity.

Restart, fix_modify, output, run start/stop, minimize info:

LIGGGHTS Users Manual

fix deposit command 347

This fix writes the state of the deposition to binary restart files. This includes information about how many
atoms have been depositied, the random number generator seed, the next timestep for deposition, etc. See the
read_restart command for info on how to re-specify a fix in an input script that reads a restart file, so that the
operation of the fix continues in an uninterrupted fashion.

None of the fix_modify options are relevant to this fix. No global or per-atom quantities are stored by this fix
for access by various output commands. No parameter of this fix can be used with the start/stop keywords of
the run command. This fix is not invoked during energy minimization.

Restrictions:

The specified insertion region cannot be a "dynamic" region, as defined by the region command.

Related commands:

fix_pour, region

Default:

The option defaults are id = max, delta = 0.0, near = 0.0, attempt = 10, rate = 0.0, vx = 0.0 0.0, vy = 0.0 0.0,
vz = 0.0 0.0, and units = lattice.

LIGGGHTS Users Manual

fix deposit command 348

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix drag command

Syntax:

fix ID group-ID drag x y z fmag delta

ID, group-ID are documented in fix command•
drag = style name of this fix command•
x,y,z = coord to drag atoms towards•
fmag = magnitude of force to apply to each atom (force units)•
delta = cutoff distance inside of which force is not applied (distance units)•

Examples:

fix center small-molecule drag 0.0 10.0 0.0 5.0 2.0

Description:

Apply a force to each atom in a group to drag it towards the point (x,y,z). The magnitude of the force is
specified by fmag. If an atom is closer than a distance delta to the point, then the force is not applied.

Any of the x,y,z values can be specified as NULL which means do not include that dimension in the distance
calculation or force application.

This command can be used to steer one or more atoms to a new location in the simulation.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global 3-vector of forces, which can be accessed by various output commands. This is the
total force on the group of atoms by the drag force. The vector values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

fix spring, fix spring/self, fix spring/rg, fix smd

Default: none

LIGGGHTS Users Manual

fix drag command 349

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix dt/reset command

Syntax:

fix ID group-ID dt/reset N Tmin Tmax Xmax keyword values ...

ID, group-ID are documented in fix command•
dt/reset = style name of this fix command•
N = recompute dt every N timesteps•
Tmin = minimum dt allowed which can be NULL (time units)•
Tmax = maximum dt allowed which can be NULL (time units)•
Xmax = maximum distance for an atom to move in one timestep (distance units)•
zero or more keyword/value pairs may be appended•
keyword = units•

units value = lattice or box
 lattice = Xmax is defined in lattice units
 box = Xmax is defined in simulation box units

Examples:

fix 5 all dt/reset 10 1.0e-5 0.01 0.1
fix 5 all dt/reset 10 0.01 2.0 0.2 units box

Description:

Reset the timestep size every N steps during a run, so that no atom moves further than Xmax, based on current
atom velocities and forces. This can be useful when starting from a configuration with overlapping atoms,
where forces will be large. Or it can be useful when running an impact simulation where one or more
high-energy atoms collide with a solid, causing a damage cascade.

This fix overrides the timestep size setting made by the timestep command. The new timestep size dt is
computed in the following manner.

For each atom, the timestep is computed that would cause it to displace Xmax on the next integration step, as a
function of its current velocity and force. Since performing this calculation exactly would require the solution
to a quartic equation, a cheaper estimate is generated. The estimate is conservative in that the atom's
displacement is guaranteed not to exceed Xmax, though it may be smaller.

Given this putative timestep for each atom, the minimum timestep value across all atoms is computed. Then
the Tmin and Tmax bounds are applied, if specified. If one (or both) is specified as NULL, it is not applied.

When the run style is respa, this fix resets the outer loop (largest) timestep, which is the same timestep that
the timestep command sets.

Note that the cumulative simulation time (in time units), which accounts for changes in the timestep size as a
simulation proceeds, can be accessed by the thermo_style time keyword.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

LIGGGHTS Users Manual

fix dt/reset command 350

http://lammps.sandia.gov

This fix computes a global scalar which can be accessed by various output commands. The scalar stores the
last timestep on which the timestep was reset to a new value.

The scalar value calculated by this fix is "intensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

timestep

Default:

The option defaults is units = lattice.

LIGGGHTS Users Manual

fix dt/reset command 351

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix efield command

Syntax:

fix ID group-ID efield ex ey ez keyword value ...

ID, group-ID are documented in fix command•
efield = style name of this fix command•
ex,ey,ez = E-field component values (electric field units)•
any of ex,ey,ez can be a variable (see below)•
zero or more keyword/value pairs may be appended to args•
keyword = region or energy

region value = region-ID
 region-ID = ID of region atoms must be in to have added force

energy value = v_name
 v_name = variable with name that calculates the potential energy of each atom in the added E-field

•

Examples:

fix kick external-field efield 1.0 0.0 0.0
fix kick external-field efield 0.0 0.0 v_oscillate

Description:

Add a force F = qE to each charged atom in the group due to an external electric field being applied to the
system. If the system contains point-dipoles, also add a torque on the dipoles due to the external electric field.

For charges, any of the 3 quantities defining the E-field components can be specified as an equal-style or
atom-style variable, namely ex, ey, ez. If the value is a variable, it should be specified as v_name, where name
is the variable name. In this case, the variable will be evaluated each timestep, and its value used to determine
the E-field component.

For point-dipoles, equal-style variables can be used, but atom-style variables are not currently supported,
since they imply a spatial gradient in the electric field which means additional terms with gradients of the field
are required for the force and torque on dipoles.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent E-field.

Atom-style variables can specify the same formulas as equal-style variables but can also include per-atom
values, such as atom coordinates. Thus it is easy to specify a spatially-dependent E-field with optional
time-dependence as well.

If the region keyword is used, the atom must also be in the specified geometric region in order to have force
added to it.

Adding a force or torque to atoms implies a change in their potential energy as they move or rotate due to the
applied E-field.

For dynamics via the "run" command, this energy can be optionally added to the system's potential energy for
thermodynamic output (see below). For energy minimization via the "minimize" command, this energy must

LIGGGHTS Users Manual

fix efield command 352

http://lammps.sandia.gov

be added to the system's potential energy to formulate a self-consistent minimization problem (see below).

The energy keyword is not allowed if the added field is a constant vector (ex,ey,ez), with all components
defined as numeric constants and not as variables. This is because LAMMPS can compute the energy for each
charged particle directly as E = -x dot qE = -q (x*ex + y*ey + z*ez), so that -Grad(E) = F. Similarly for
point-dipole particles the energy can be computed as E = -mu dot E = -(mux*ex + muy*ey + muz*ez).

The energy keyword is optional if the added force is defined with one or more variables, and if you are
performing dynamics via the run command. If the keyword is not used, LAMMPS will set the energy to 0.0,
which is typically fine for dynamics.

The energy keyword is required if the added force is defined with one or more variables, and you are
performing energy minimization via the "minimize" command for charged particles. It is not required for
point-dipoles, but a warning is issued since the minimizer in LAMMPS does not rotate dipoles, so you should
not expect to be able to minimize the orientation of dipoles in an applied electric field.

The energy keyword specifies the name of an atom-style variable which is used to compute the energy of each
atom as function of its position. Like variables used for ex, ey, ez, the energy variable is specified as v_name,
where name is the variable name.

Note that when the energy keyword is used during an energy minimization, you must insure that the formula
defined for the atom-style variable is consistent with the force variable formulas, i.e. that -Grad(E) = F. For
example, if the force due to the electric field were a spring-like F = kx, then the energy formula should be E =
-0.5kx^2. If you don't do this correctly, the minimization will not converge properly.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential "energy" inferred by the added
force due to the electric field to the system's potential energy as part of thermodynamic output. This is a
fictitious quantity but is needed so that the minimize command can include the forces added by this fix in a
consistent manner. I.e. there is a decrease in potential energy when atoms move in the direction of the added
force due to the electric field.

This fix computes a global scalar and a global 3-vector of forces, which can be accessed by various output
commands. The scalar is the potential energy discussed above. The vector is the total force added to the group
of atoms. The scalar and vector values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
You should not specify force components with a variable that has time-dependence for use with a minimizer,
since the minimizer increments the timestep as the iteration count during the minimization.

IMPORTANT NOTE: If you want the fictitious potential energy associated with the added forces to be
included in the total potential energy of the system (the quantity being minimized), you MUST enable the
fix_modify energy option for this fix.

Restrictions:

This fix is part of the MISC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

LIGGGHTS Users Manual

fix efield command 353

Related commands:

fix addforce

Default: none

LIGGGHTS Users Manual

fix efield command 354

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix enforce2d command

fix enforce2d/cuda command

Syntax:

fix ID group-ID enforce2d

ID, group-ID are documented in fix command•
enforce2d = style name of this fix command•

Examples:

fix 5 all enforce2d

Description:

Zero out the z-dimension velocity and force on each atom in the group. This is useful when running a 2d
simulation to insure that atoms do not move from their initial z coordinate.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

Restrictions: none

Related commands: none

Default: none

LIGGGHTS Users Manual

fix enforce2d command 355

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix evaporate command

Syntax:

fix ID group-ID evaporate N M region-ID seed

ID, group-ID are documented in fix command•
evaporate = style name of this fix command•
N = delete atoms every this many timesteps•
M = number of atoms to delete each time•
region-ID = ID of region within which to perform deletions•
seed = random number seed to use for choosing atoms to delete•
zero or more keyword/value pairs may be appended

keyword = molecule
molecule value = no or yes

•

Examples:

fix 1 solvent evaporate 1000 10 surface 49892
fix 1 solvent evaporate 1000 10 surface 38277 molecule yes

Description:

Remove M atoms from the simulation every N steps. This can be used, for example, to model evaporation of
solvent particles or moleclues (i.e. drying) of a system. Every N steps, the number of atoms in the fix group
and within the specifed region are counted. M of these are chosen at random and deleted. If there are less than
M eligible particles, then all of them are deleted.

If the setting for the molecule keyword is no, then only single atoms are deleted. In this case, you should
insure you do not delete only a portion of a molecule (only some of its atoms), or LAMMPS will soon
generate an error when it tries to find those atoms. LAMMPS will warn you if any of the atoms eligible for
deletion have a non-zero molecule ID, but does not check for this at the time of deletion.

If the setting for the molecule keyword is yes, then when an atom is chosen for deletion, the entire molecule it
is part of is deleted. The count of deleted atoms is incremented by the number of atoms in the molecule, which
may make it exceed M. If the molecule ID of the chosen atom is 0, then it is assumed to not be part of a
molecule, and just the single atom is deleted.

As an example, if you wish to delete 10 water molecules every N steps, you should set M to 30. If only the
water's oxygen atoms were in the fix group, then two hydrogen atoms would be deleted when an oxygen atom
is selected for deletion, whether the hydrogens are inside the evaporation region or not.

Note that neighbor lists are re-built on timesteps that atoms are removed. Thus you should not remove atoms
too frequently or you will incur overhead due to the cost of building neighbor lists.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global scalar, which can be accessed by various output commands. The scalar is the
cummulative number of deleted atoms. The scalar value calculated by this fix is "intensive".

LIGGGHTS Users Manual

fix enforce2d/cuda command 356

http://lammps.sandia.gov

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the MISC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:

fix deposit

Default:

The option defaults are molecule = no.

LIGGGHTS Users Manual

fix evaporate command 357

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix external command

Syntax:

fix ID group-ID external mode args

ID, group-ID are documented in fix command•
external = style name of this fix command•
mode = pf/callback or pf/array

pf/callback args = Ncall Napply
 Ncall = make callback every Ncall steps
 Napply = apply callback forces every Napply steps

pf/array args = Napply
 Napply = apply array forces every Napply steps

•

Examples:

fix 1 all external pf/callback 1 1
fix 1 all external pf/callback 100 1
fix 1 all external pf/array 10

Description:

This fix allows external programs that are running LAMMPS through its library interface to modify certain
LAMMPS properties on specific timesteps, similar to the way other fixes do. The external driver can be a
C/C++ or Fortran program or a Python script.

If mode is pf/callback then the fix will make a callback every Ncall timesteps or minimization iterations to the
external program. The external program computes forces on atoms by setting values in an array owned by the
fix. The fix then adds these forces to each atom in the group, once every Napply steps, similar to the way the
fix addforce command works. Note that if Ncall > Napply, the force values produced by one callback will
persist, and be used multiple times to update atom forces.

The callback function "foo" is invoked by the fix as:

foo(void *ptr, bigint timestep, int nlocal, int *ids, double **x, double **fexternal);

The arguments are as follows:

ptr = pointer provided by and simply passed back to external driver•
timestep = current LAMMPS timestep•
nlocal = # of atoms on this processor•
ids = list of atom IDs on this processor•
x = coordinates of atoms on this processor•
fexternal = forces to add to atoms on this processor•

Note that timestep is a "bigint" which is defined in src/lmptype.h, typically as a 64-bit integer.

Fexternal are the forces returned by the driver program.

The fix has a set_callback() method which the external driver can call to pass a pointer to its foo() function.
See the couple/lammps_quest/lmpqst.cpp file in the LAMMPS distribution for an example of how this is
done. This sample application performs classical MD using quantum forces computed by a density functional

LIGGGHTS Users Manual

fix external command 358

http://lammps.sandia.gov

code Quest.

If mode is pf/array then the fix simply stores force values in an array. The fix adds these forces to each atom
in the group, once every Napply steps, similar to the way the fix addforce command works.

The name of the public force array provided by the FixExternal class is

double **fexternal;

It is allocated by the FixExternal class as an (N,3) array where N is the number of atoms owned by a
processor. The 3 corresponds to the fx, fy, fz components of force.

It is up to the external program to set the values in this array to the desired quantities, as often as desired. For
example, the driver program might perform an MD run in stages of 1000 timesteps each. In between calls to
the LAMMPS run command, it could retrieve atom coordinates from LAMMPS, compute forces, set values in
fexternal, etc.

To use this fix during energy minimization, the energy corresponding to the added forces must also be set so
as to be consistent with the added forces. Otherwise the minimization will not converge correctly.

This can be done from the external driver by calling this public method of the FixExternal class:

void set_energy(double eng);

where eng is the potential energy. Eng is an extensive quantity, meaning it should be the sum over per-atom
energies of all affected atoms. It should also be provided in energy units consistent with the simulation. See
the details below for how to insure this energy setting is used appropriately in a minimization.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential "energy" set by the external driver
to the system's potential energy as part of thermodynamic output. This is a fictitious quantity but is needed so
that the minimize command can include the forces added by this fix in a consistent manner. I.e. there is a
decrease in potential energy when atoms move in the direction of the added force.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the
potential energy discussed above. The scalar stored by this fix is "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

IMPORTANT NOTE: If you want the fictitious potential energy associated with the added forces to be
included in the total potential energy of the system (the quantity being minimized), you MUST enable the
fix_modify energy option for this fix.

Restrictions: none

Related commands: none

Default: none

LIGGGHTS Users Manual

fix external command 359

http://dft.sandia.gov/Quest

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix freeze command

fix freeze/cuda command

Syntax:

fix ID group-ID freeze

ID, group-ID are documented in fix command•
freeze = style name of this fix command•

Examples:

fix 2 bottom freeze

Description:

Zero out the force and torque on a granular particle. This is useful for preventing certain particles from
moving in a simulation. The granular pair styles also detect if this fix has been defined and compute
interactions between frozen and non-frozen particles appropriately, as if the frozen particle has infinite mass.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global 3-vector of forces, which can be accessed by various output commands. This is the
total force on the group of atoms before the forces on individual atoms are changed by the fix. The vector
values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the GRANULAR package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

LIGGGHTS Users Manual

fix freeze command 360

http://lammps.sandia.gov

There can only be a single freeze fix defined. This is because other the granular pair styles treat frozen
particles differently and need to be able to reference a single group to which this fix is applied.

Related commands: none

atom_style sphere

Default: none

LIGGGHTS Users Manual

fix freeze/cuda command 361

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix gcmc command

Syntax:

fix ID group-ID gcmc N X M type seed T mu displace keyword values ...

ID, group-ID are documented in fix command•
gcmc = style name of this fix command•
N = invoke this fix every N steps•
X = number of exchanges to attempt every N steps•
M = number of MC displacements to attempt every N steps•
type = atom type or molecule ID of exchanged gas•
seed = random # seed (positive integer)•
T = temperature of the ideal gas reservoir (temperature units)•
mu = chemical potential of the ideal gas reservoir (energy units)•
displace = maximum Monte Carlo displacement distance (length units)•
zero or more keyword/value pairs may be appended to args•
keyword = molecule, region, maxangle, pressure, or fugacity_coeff

molecule value = no or yes
region value = region-ID

 region-ID = ID of region to use as an exchange/move volume
maxangle value = maximum molecular rotation angle (degrees)
pressure value = pressue of the gas reservoir (pressure units)
fugacity_coeff value = fugacity coefficient of the gas reservoir (unitless)

•

Examples:

fix 2 gas gcmc 10 1000 1000 2 29494 298.0 -0.5 0.01
fix 3 Kr gcmc 10 100 100 1 3456543 3.0 -2.5 0.1 molecule yes maxangle 180
fix 4 my_gas gcmc 1 10 10 1 123456543 300.0 -12.5 1.0 region disk

Description:

This fix performs grand canonical Monte Carlo (GCMC) exchanges of atoms or molecules of the given type
with an imaginary ideal gas reservoir at the specified T and chemical potential (mu) as discussed in (Frenkel).
If used with the fix nvt command, simulations in the grand canonical enemble (muVT, constant chemical
potential, constant volume, and constant temperature) can be performed. Specific uses include computing
isotherms in microporous materials, or computing vapor-liquid coexistence curves.

Perform up to X exchanges of gas atoms or molecules of the given type between the simulation domain and
the imaginary reservoir every N timesteps. Also perform M Monte Carlo displacements or rotations (for
molecules) of gas of the given type within the simulation domain. M should typically be chosen to be
approximately equal to the expected number of gas atoms or molecules of the given type within the domain,
which will result in roughly one MC translation per atom or molecule per MC cycle.

For MC moves of molecular gasses, rotations and translations are each attempted with 50% probability. For
MC moves of atomic gasses, translations are attempted 100% of the time. For MC exchanges of either
molecular or atomic gasses, deletions and insertions are each attempted with 50% probability.

This fix cannot be used to perform MC insertions of gas atoms or molecules other than the exchanged type,
but MC deletions, translations, and rotations can be performed on any atom/molecule in the fix group. All
atoms in the simulation domain can be moved using regular time integration displacements, e.g. via fix_nvt,
resulting in a hybrid GCMC+MD simulation. A smaller-than-usual timestep size may be needed when

LIGGGHTS Users Manual

fix gcmc command 362

http://lammps.sandia.gov

running such a hybrid simulation, especially if the inserted molecules are not well equilibrated.

This command may optionally use the region keyword to define an exchange and move volume. The specified
region must have been previously defined with a region command. It must be defined with side = in. Insertion
attempts occur only within the specified region. Move and deletion attempt candidates are selected from gas
atoms or molecules within the region. If no candidate can be found within the specified region after randomly
selecting candidates 1000 times, the move or deletion attempt is considered a failure. Moves must start within
the specified region, but may move the atom or molecule slightly outside of the region.

If used with fix_nvt, the temperature of the imaginary reservoir, T, should be set to be equivalent to the target
temperature used in fix_nvt. Otherwise, the imaginary reservoir will not be in thermal equilibrium with the
simulation domain.

Note that neighbor lists are re-built every timestep that this fix is invoked, so you should not set N to be too
small. However, periodic rebuilds are necessary in order to avoid dangerous rebuilds and missed interactions.
Specifically, avoid performing so many MC displacements per timestep that atoms can move beyond the
neighbor list skin distance. See the neighbor command for details.

When an atom or molecule is to be inserted, its center-of-mass coordinates are chosen as a random position
within the current simulation domain, and new atom velocities are randomly chosen from the specified
temperature distribution given by T. Relative coordinates for atoms in a molecule are taken from the template
molecule provided by the user. A random initial rotation is used in the case of molecule insertions.

If the setting for the molecule keyword is no, then only single atoms are exchanged. In this case, you should
ensure you do not delete only a portion of a molecule (only some of its atoms), or LAMMPS will soon
generate an error when it tries to find those atoms. LAMMPS will warn you if any of the atoms eligible for
deletion have a non-zero molecule ID, but does not check for this at the time of deletion.

If the setting for the molecule keyword is yes, entire molecules are exchanged. The user must supply a model
molecule in the data file to use as a template for exchanges, and that molecule's number must be given in the
fix GCMC command as the "type" of the exchanged gas. Note that the model molecule must be present
whenever the fix is initialized. This is a limitation that will likely be remedied in the not-to-distant future.

Optionally, users may specify the maximum rotation angle for molecular rotations using the maxangle
keyword and specifying the angle in degrees. The specified angle will apply to all three Euler angles used
internally to define the rotation matrix for molecular rotations. The max angle can be set to zero, but rotations
will be pointless. Note that the default is ten degrees for each Euler angle.

For atomic gasses, inserted atoms have the specified atom type, but deleted atoms are any atoms that have
been inserted or that belong to the user-specified fix group. For molecular gasses, exchanged molecules use
the same atom types as in the template molecule supplied by the user. In both cases, exchanged
atoms/molecules are assigned to two groups: the default group "all" and the group specified in the fix gcmc
command (which can also be "all").

The gas reservoir pressure can be specified using the pressure keyword, in which case the user-specified
chemical potential is ignored. For non-ideal gas reservoirs, the user may also specify the fugacity coefficient
using the fugacity_coeff keyword.

Use of this fix typically will cause the number of atoms to fluctuate, therefore, you will want to use the
compute_modify command to insure that the current number of atoms is used as a normalizing factor each
time temperature is computed. Here is the necessary command:

compute_modify thermo_temp dynamic yes

LIGGGHTS Users Manual

fix gcmc command 363

If LJ units are used, note that a value of 0.18292026 is used by this fix as the reduced value for Planck's
constant. This value was derived from LJ paramters for argon, where h* = h/sqrt(sigma^2 * epsilon * mass),
sigma = 3.429 angstroms, epsilon/k = 121.85 K, and mass = 39.948 amu.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the deposition to binary restart files. This includes information about the random
number generator seed, the next timestep for MC exchanges, etc. See the read_restart command for info on
how to re-specify a fix in an input script that reads a restart file, so that the operation of the fix continues in an
uninterrupted fashion.

None of the fix_modify options are relevant to this fix.

This fix computes a global vector of length 6, which can be accessed by various output commands. The vector
values are the following global cummulative quantities:

1 = displacement attempts•
2 = displacement successes•
3 = insertion attempts•
4 = insertion successes•
5 = deletion attempts•
6 = deletion successes•
7 = rotation attempts•
8 = rotation successes•

The vector values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the MC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Do not set "neigh_modify once yes" or else this fix will never be called. Reneighboring is required.

Only pairwise interactions, as defined by the pair_style command, are included in this calculation. Long-range
interactions due to a kspace_style command are not included. Not all pair potentials can be evaluated in a
pairwise mode as required by this fix. For example, 3-body potentials, such as Tersoff and Stillinger-Weber
cannot be used. EAM potentials for metals only include the pair potential portion of the EAM interaction, not
the embedding term.

Can be run in parallel, but aspects of the GCMC part will not scale well in parallel. Only usable for 3D
simulations with orthogonal simulation cells.

Note that very lengthy simulations involving insertions/deletions of billions of gas molecules may run out of
atom or molecule IDs and trigger an error, so it is better to run multiple shorter-duration simulations.
Likewise, very large molecules have not been tested and may turn out to be problematic.

Use of multiple fix gcmc commands in the same input script can be problematic if using a template molecule.
The issue is that the user-referenced template molecule in the second fix gcmc command may no longer exist
since it might have been deleted by the first fix gcmc command. An existing template molecule will need to
be referenced by the user for each subsequent fix gcmc command.

LIGGGHTS Users Manual

fix gcmc command 364

Related commands:

fix_nvt, neighbor, fix_deposit, fix_evaporate, delete_atoms

Default:

The option defaults are molecule = no, maxangle = 10.

(Frenkel) Frenkel and Smit, Understanding Molecular Simulation, Academic Press, London, 2002.

LIGGGHTS Users Manual

fix gcmc command 365

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix gld command

Syntax:

fix ID group-ID gld Tstart Tstop N_k seed series c_1 tau_1 ... c_N_k tau_N_k keyword values ...

ID, group-ID are documented in fix command•
gld = style name of this fix command•
Tstart,Tstop = desired temperature at start/end of run (temperature units)•
N_k = number of terms in the Prony series representation of the memory kernel•
seed = random number seed to use for white noise (positive integer)•
series = pprony is presently the only available option•
c_k = the weight of the kth term in the Prony series (mass per time units)•
tau_k = the time constant of the kth term in the Prony series (time units)•
zero or more keyword/value pairs may be appended

keyword = frozen or zero
frozen value = no or yes

no = initialize extended variables using values drawn from equilibrium distribution at Tstart
yes = initialize extended variables to zero (i.e., from equilibrium distribution at zero temperature)

zero value = no or yes
no = do not set total random force to zero
yes = set total random force to zero

•

Examples:

fix 1 all gld 1.0 1.0 2 82885 pprony 0.5 1.0 1.0 2.0 frozen yes zero yes
fix 3 rouse gld 7.355 7.355 4 48823 pprony 107.1 0.02415 186.0 0.04294 428.6 0.09661 1714 0.38643

Description:

Applies Generalized Langevin Dynamics to a group of atoms, as described in (Baczewski). This is intended to
model the effect of an implicit solvent with a temporally non-local dissipative force and a colored Gaussian
random force, consistent with the Fluctuation-Dissipation Theorem. The functional form of the memory
kernel associated with the temporally non-local force is constrained to be a Prony series.

IMPORTANT NOTE: While this fix bears many similarities to fix langevin, it has one significant difference.
Namely, fix gld performs time integration, whereas fix langevin does NOT. To this end, the specification of
another fix to perform time integration, such as fix nve, is NOT necessary.

With this fix active, the force on the jth atom is given as

LIGGGHTS Users Manual

fix gld command 366

http://lammps.sandia.gov

Here, the first term is representative of all conservative (pairwise, bonded, etc) forces external to this fix, the
second is the temporally non-local dissipative force given as a Prony series, and the third is the colored
Gaussian random force.

The Prony series form of the memory kernel is chosen to enable an extended variable formalism, with a
number of exemplary mathematical features discussed in (Baczewski). In particular, 3N_k extended variables
are added to each atom, which effect the action of the memory kernel without having to explicitly evaluate the
integral over time in the second term of the force. This also has the benefit of requiring the generation of
uncorrelated random forces, rather than correlated random forces as specified in the third term of the force.

Presently, the Prony series coefficients are limited to being greater than or equal to zero, and the time
constants are limited to being greater than zero. To this end, the value of series MUST be set to pprony, for
now. Future updates will allow for negative coefficients and other representations of the memory kernel. It is
with these updates in mind that the series option was included.

The units of the Prony series coefficients are chosen to be mass per time to ensure that the numerical
integration scheme stably approaches the Newtonian and Langevin limits. Details of these limits, and the
associated numerical concerns are discussed in (Baczewski).

The desired temperature at each timestep is ramped from Tstart to Tstop over the course of the next run.

The random # seed must be a positive integer. A Marsaglia random number generator is used. Each processor
uses the input seed to generate its own unique seed and its own stream of random numbers. Thus the dynamics
of the system will not be identical on two runs on different numbers of processors.

The keyword/value option pairs are used in the following ways.

The keyword frozen can be used to specify how the extended variables associated with the GLD memory
kernel are initialized. Specifying no (the default), the initial values are drawn at random from an equilibrium
distribution at Tstart, consistent with the Fluctuation-Dissipation Theorem. Specifying yes, initializes the
extended variables to zero.

The keyword zero can be used to eliminate drift due to the thermostat. Because the random forces on different
atoms are independent, they do not sum exactly to zero. As a result, this fix applies a small random force to
the entire system, and the center-of-mass of the system undergoes a slow random walk. If the keyword zero is
set to yes, the total random force is set exactly to zero by subtracting off an equal part of it from each atom in
the group. As a result, the center-of-mass of a system with zero initial momentum will not drift over time.

Restart, run start/stop, minimize info:

LIGGGHTS Users Manual

fix gld command 367

The instantaneous values of the extended variables are written to binary restart files. Because the state of the
random number generator is not saved in restart files, this means you cannot do "exact" restarts with this fix,
where the simulation continues on the same as if no restart had taken place. However, in a statistical sense, a
restarted simulation should produce the same behavior.

None of the fix_modify options are relevant to this fix. No global or per-atom quantities are stored by this fix
for access by various output commands.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

This fix is part of the MISC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:

fix langevin, fix viscous, pair_style dpd/tstat

Default:

The option defaults are frozen = no, zero = no.

(Baczewski) A.D. Baczewski and S.D. Bond, J. Chem. Phys. 139, 044107 (2013).

LIGGGHTS Users Manual

fix gld command 368

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix gravity command

fix gravity/cuda command

fix gravity/omp command

Syntax:

fix ID group gravity magnitude style args

ID, group are documented in fix command•
gravity = style name of this fix command•
magnitude = size of acceleration (force/mass units)•
magnitude can be a variable (see below)•
style = chute or spherical or gradient or vector

chute args = angle
 angle = angle in +x away from -z or -y axis in 3d/2d (in degrees)
 angle can be a variable (see below)

spherical args = phi theta
 phi = azimuthal angle from +x axis (in degrees)
 theta = angle from +z or +y axis in 3d/2d (in degrees)
 phi or theta can be a variable (see below)

vector args = x y z
 x y z = vector direction to apply the acceleration
 x or y or z can be a variable (see below)

•

Examples:

fix 1 all gravity 1.0 chute 24.0
fix 1 all gravity v_increase chute 24.0
fix 1 all gravity 1.0 spherical 0.0 -180.0
fix 1 all gravity 10.0 spherical v_phi v_theta
fix 1 all gravity 100.0 vector 1 1 0

Description:

Impose an additional acceleration on each particle in the group. This fix is typically used with granular
systems to include a "gravity" term acting on the macroscopic particles. More generally, it can represent any
kind of driving field, e.g. a pressure gradient inducing a Poiseuille flow in a fluid. Note that this fix operates
differently than the fix addforce command. The addforce fix adds the same force to each atom, independent of
its mass. This command imparts the same acceleration to each atom (force/mass).

The magnitude of the acceleration is specified in force/mass units. For granular systems (LJ units) this is
typically 1.0. See the units command for details.

Style chute is typically used for simulations of chute flow where the specified angle is the chute angle, with
flow occurring in the +x direction. For 3d systems, the tilt is away from the z axis; for 2d systems, the tilt is
away from the y axis.

Style spherical allows an arbitrary 3d direction to be specified for the acceleration vector. Phi and theta are
defined in the usual spherical coordinates. Thus for acceleration acting in the -z direction, theta would be
180.0 (or -180.0). Theta = 90.0 and phi = -90.0 would mean acceleration acts in the -y direction. For 2d
systems, phi is ignored and theta is an angle in the xy plane where theta = 0.0 is the y-axis.

LIGGGHTS Users Manual

fix gravity command 369

http://lammps.sandia.gov

Style vector imposes an acceleration in the vector direction given by (x,y,z). Only the direction of the vector is
important; it's length is ignored. For 2d systems, the z component is ignored.

Any of the quantities magnitude, angle, phi, theta, x, y, z which define the gravitational magnitude and
direction, can be specified as an equal-style variable. If the value is a variable, it should be specified as
v_name, where name is the variable name. In this case, the variable will be evaluated each timestep, and its
value used to determine the quantity. You should insure that the variable calculates a result in the approriate
units, e.g. force/mass or degrees.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent gravitational field.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the gravitational potential energy of the system
to the system's potential energy as part of thermodynamic output.

This fix computes a global scalar which can be accessed by various output commands. This scalar is the
gravitational potential energy of the particles in the defined field, namely mass * (g dot x) for each particles,
where x and mass are the particles position and mass, and g is the gravitational field. The scalar value
calculated by this fix is "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

atom_style sphere, fix addforce

Default: none

LIGGGHTS Users Manual

fix gravity/omp command 370

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix heat/gran command

fix heat/gran/conduction command

Syntax:

fix ID group-ID heat/gran initial_temperature T0 keyword values

fix ID group-ID heat/gran/conduction initial_temperature T0 keyword values

ID, group-ID are documented in fix command•
heat/gran/conduction or fix heat/gran = style name of this fix command•
initial_temperature = obligatory keyword•
T0 = initial (default) temperature for the particles•
zero or more keyword/value pairs may be appended•
keyword = area_correction

area_correction values = yes or no

Examples:

fix 3 hg heat/gran/conduction temperature 273.15

LIGGGHTS vs. LAMMPS info:

This command is not available in LAMMPS.

Description:

Calculates heat conduction between particles in contact and temperature update according to

It is assumed that the temperature within the particles is uniform. To make particles adiabatic (so they do
not change the temperature), do not include them in the fix group. However, heat transfer is calculated
between particles in the group and particles not in the group (but temperature update is not performed for

•

LIGGGHTS Users Manual

fix heat/gran command 371

http://www.cfdem.com
http://lammps.sandia.gov

particles not in the group). Thermal conductivity and specific thermal capacity must be defined for each
atom type used in the simulation by means of fix property/global commands:

fix id all property/global thermalConductivity peratomtype value_1 value_2 ...
(value_i=value for thermal conductivity of atom type i)

fix id all property/global thermalCapacity peratomtype value_1 value_2 ...
(value_i=value for thermal capacity of atom type i)

To set the temperature for a group of particles, you can use the set command with keyword property/atom
and values Temp T. T is the temperature value you want the particles to have. To set heat sources (or sinks)
for a group of particles, you can also use the set command with the set keyword: property/atom and the set
values: heatSource h where h is the heat source value you want the particles to have (in Energy/time units).
A negative value means it is a heat sink. Examples would be:

set region halfbed property/peratom Temp 800.
set region srcreg property/peratom heatSource 0.5

Area correction:

Fix heat/gran/conduction can perform an area correction via keyword area_correction to account for the
fact that the Young's modulus might have been decreased in order to speed-up the simulation. In this case,
you have to specify the original Young's modulus of each material by means of a fix property/global
command:

fix id all property/global youngsModulusOriginal peratomtype value_1 value_2 ...
(value_i=value for original Young's modulus of atom type i)

This area correction is performed by scaling the contact area with (Y*/Y*,orig)^a, where Y* and Y*,orig
are calculated as defined in pair_style gran . The scaling factor is given as a=1 for pair/gran/hooke/* and
a=2/3 for pair/gran/hertz/*.

Output info:

You can visualize the heat sources by accessing f_heatSource[0], and the heatFluxes by f_heatFlux[0] .
With f_directionalHeatFlux[0], f_directionalHeatFlux[1] and f_directionalHeatFlux[2] you can access the
conductive heat fluxes in x,y,z directions. The conductive heat fluxes are calculated per-contact and half the
value is stored in each atom participating in the contact. With f_Temp[0] you can access the per-particle
temperature. You can also access the total thermal energy of the fix group (useful for the thermo command)
with f_id .

Restart, fix_modify, run start/stop, minimize info:

The particle temperature and heat source is written is written to binary restart files so simulations can
continue properly. None of the fix_modify options are relevant to this fix.

This fix computes a scalar which can be accessed by various output commands. This scalar is the total
thermal energy of the fix group

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions:

Area correction currently only works with pair styles pair/gran/hooke/* and pair/gran/hertz/*

LIGGGHTS Users Manual

fix heat/gran/conduction command 372

Related commands:

compute temp, compute temp/region

Default: area_correction = off

LIGGGHTS Users Manual

fix heat/gran/conduction command 373

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix heat command

Syntax:

fix ID group-ID heat N eflux

ID, group-ID are documented in fix command•
heat = style name of this fix command•
N = add/subtract heat every this many timesteps•
eflux = rate of heat addition or subtraction (energy/time units)•
eflux can be a variable (see below)•
zero or more keyword/value pairs may be appended to args•
keyword = region

region value = region-ID
 region-ID = ID of region atoms must be in to have added force

•

Examples:

fix 3 qin heat 1 1.0
fix 3 qin heat 10 v_flux
fix 4 qout heat 1 -1.0 region top

Description:

Add non-translational kinetic energy (heat) to a group of atoms in a manner that conserves their aggregate
momentum. Two of these fixes can be used to establish a temperature gradient across a simulation domain by
adding heat (energy) to one group of atoms (hot reservoir) and subtracting heat from another (cold reservoir).
E.g. a simulation sampling from the McDLT ensemble.

If the region keyword is used, the atom must be in both the group and the specified geometric region in order
to have energy added or subtracted to it. If not specified, then the atoms in the group are affected wherever
they may move to.

Heat addition/subtraction is performed every N timesteps. The eflux parameter can be specified as a numeric
constant or as a variable (see below). If it is a numeric constant or equal-style variable which evaluates to a
scalar value, then the eflux determines the change in aggregate energy of the entire group of atoms per unit
time, e.g. in eV/psec for metal units. In this case it is an "extensive" quantity, meaning its magnitude should
be scaled with the number of atoms in the group. Note that since eflux has per-time units (i.e. it is a flux), this
means that a larger value of N will add/subtract a larger amount of energy each time the fix is invoked.

If eflux is specified as an atom-style variable (see below), then the variable computes one value per atom. In
this case, each value is the energy flux for a single atom, again in units of energy per unit time. In this case,
each value is an "intensive" quantity, which need not be scaled with the number of atoms in the group.

As mentioned above, the eflux parameter can be specified as an equal-style or atom_style variable. If the value
is a variable, it should be specified as v_name, where name is the variable name. In this case, the variable will
be evaluated each timestep, and its value(s) used to determine the flux.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent flux.

LIGGGHTS Users Manual

fix heat command 374

http://lammps.sandia.gov

Atom-style variables can specify the same formulas as equal-style variables but can also include per-atom
values, such as atom coordinates. Thus it is easy to specify a spatially-dependent flux with optional
time-dependence as well.

IMPORTANT NOTE: If heat is subtracted from the system too aggressively so that the group's kinetic energy
would go to zero, or any individual atom's kinetic energy would go to zero for the case where eflux is an
atom-style variable, then LAMMPS will halt with an error message.

Fix heat is different from a thermostat such as fix nvt or fix temp/rescale in that energy is added/subtracted
continually. Thus if there isn't another mechanism in place to counterbalance this effect, the entire system will
heat or cool continuously. You can use multiple heat fixes so that the net energy change is 0.0 or use fix
viscous to drain energy from the system.

This fix does not change the coordinates of its atoms; it only scales their velocities. Thus you must still use an
integration fix (e.g. fix nve) on the affected atoms. This fix should not normally be used on atoms that have
their temperature controlled by another fix - e.g. fix nvt or fix langevin fix.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global scalar which can be accessed by various output commands. This scalar is the most
recent value by which velocites were scaled. The scalar value calculated by this fix is "intensive". If eflux is
specified as an atom-style variable, this fix computes the average value by which the velocities were scaled
for all of the atoms that had their velocities scaled.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

compute temp, compute temp/region

Default: none

LIGGGHTS Users Manual

fix heat command 375

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix command

Syntax:

fix ID group-ID style args

ID = user-assigned name for the fix•
group-ID = ID of the group of atoms to apply the fix to•
style = one of a long list of possible style names (see below)•
args = arguments used by a particular style•

Examples:

fix 1 all nve
fix 3 all nvt temp 300.0 300.0 0.01
fix mine top setforce 0.0 NULL 0.0

Description:

Set a fix that will be applied to a group of atoms. In LAMMPS, a "fix" is any operation that is applied to the
system during timestepping or minimization. Examples include updating of atom positions and velocities due
to time integration, controlling temperature, applying constraint forces to atoms, enforcing boundary
conditions, computing diagnostics, etc. There are dozens of fixes defined in LAMMPS and new ones can be
added; see this section for a discussion.

Fixes perform their operations at different stages of the timestep. If 2 or more fixes operate at the same stage
of the timestep, they are invoked in the order they were specified in the input script.

The ID of a fix can only contain alphanumeric characters and underscores.

Fixes can be deleted with the unfix command.

IMPORTANT NOTE: The unfix command is the only way to turn off a fix; simply specifying a new fix with
a similar style will not turn off the first one. This is especially important to realize for integration fixes. For
example, using a fix nve command for a second run after using a fix nvt command for the first run, will not
cancel out the NVT time integration invoked by the "fix nvt" command. Thus two time integrators would be
in place!

If you specify a new fix with the same ID and style as an existing fix, the old fix is deleted and the new one is
created (presumably with new settings). This is the same as if an "unfix" command were first performed on
the old fix, except that the new fix is kept in the same order relative to the existing fixes as the old one
originally was. Note that this operation also wipes out any additional changes made to the old fix via the
fix_modify command.

The fix modify command allows settings for some fixes to be reset. See the doc page for individual fixes for
details.

Some fixes store an internal "state" which is written to binary restart files via the restart or write_restart
commands. This allows the fix to continue on with its calculations in a restarted simulation. See the
read_restart command for info on how to re-specify a fix in an input script that reads a restart file. See the doc
pages for individual fixes for info on which ones can be restarted.

LIGGGHTS Users Manual

fix command 376

http://lammps.sandia.gov

Some fixes calculate one of three styles of quantities: global, per-atom, or local, which can be used by other
commands or output as described below. A global quantity is one or more system-wide values, e.g. the energy
of a wall interacting with particles. A per-atom quantity is one or more values per atom, e.g. the displacement
vector for each atom since time 0. Per-atom values are set to 0.0 for atoms not in the specified fix group.
Local quantities are calculated by each processor based on the atoms it owns, but there may be zero or more
per atoms.

Note that a single fix may produces either global or per-atom or local quantities (or none at all), but never
more than one of these.

Global, per-atom, and local quantities each come in three kinds: a single scalar value, a vector of values, or a
2d array of values. The doc page for each fix describes the style and kind of values it produces, e.g. a
per-atom vector. Some fixes produce more than one kind of a single style, e.g. a global scalar and a global
vector.

When a fix quantity is accessed, as in many of the output commands discussed below, it can be referenced via
the following bracket notation, where ID is the ID of the fix:

f_ID entire scalar, vector, or array
f_ID[I] one element of vector, one column of array
f_ID[I][J] one element of array

In other words, using one bracket reduces the dimension of the quantity once (vector -> scalar, array ->
vector). Using two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar
fix values as input can also process elements of a vector or array.

Note that commands and variables which use fix quantities typically do not allow for all kinds, e.g. a
command may require a vector of values, not a scalar. This means there is no ambiguity about referring to a
fix quantity as f_ID even if it produces, for example, both a scalar and vector. The doc pages for various
commands explain the details.

In LAMMPS, the values generated by a fix can be used in several ways:

Global values can be output via the thermo_style custom or fix ave/time command. Or the values can
be referenced in a variable equal or variable atom command.

•

Per-atom values can be output via the dump custom command or the fix ave/spatial command. Or
they can be time-averaged via the fix ave/atom command or reduced by the compute reduce
command. Or the per-atom values can be referenced in an atom-style variable.

•

Local values can be reduced by the compute reduce command, or histogrammed by the fix ave/histo
command.

•

See this howto section for a summary of various LAMMPS output options, many of which involve fixes.

The results of fixes that calculate global quantities can be either "intensive" or "extensive" values. Intensive
means the value is independent of the number of atoms in the simulation, e.g. temperature. Extensive means
the value scales with the number of atoms in the simulation, e.g. total rotational kinetic energy.
Thermodynamic output will normalize extensive values by the number of atoms in the system, depending on
the "thermo_modify norm" setting. It will not normalize intensive values. If a fix value is accessed in another
way, e.g. by a variable, you may want to know whether it is an intensive or extensive value. See the doc page
for individual fixes for further info.

Each fix style has its own documentation page which describes its arguments and what it does, as listed
below. Here is an alphabetic list of fix styles available in LAMMPS:

adapt - change a simulation parameter over time•

LIGGGHTS Users Manual

fix command 377

addforce - add a force to each atom•
append/atoms - append atoms to a running simulation•
aveforce - add an averaged force to each atom•
ave/atom - compute per-atom time-averaged quantities•
ave/histo - compute/output time-averaged histograms•
ave/spatial - compute/output time-averaged per-atom quantities by layer•
ave/time - compute/output global time-averaged quantities•
bond/break - break bonds on the fly•
bond/create - create bonds on the fly•
bond/swap - Monte Carlo bond swapping•
box/relax - relax box size during energy minimization•
deform - change the simulation box size/shape•
deposit - add new atoms above a surface•
drag - drag atoms towards a defined coordinate•
dt/reset - reset the timestep based on velocity, forces•
efield - impose electric field on system•
enforce2d - zero out z-dimension velocity and force•
evaporate - remove atoms from simulation periodically•
external - callback to an external driver program•
freeze - freeze atoms in a granular simulation•
gravity - add gravity to atoms in a granular simulation•
gcmc - grand canonical insertions/deletions•
heat - add/subtract momentum-conserving heat•
indent - impose force due to an indenter•
langevin - Langevin temperature control•
lineforce - constrain atoms to move in a line•
momentum - zero the linear and/or angular momentum of a group of atoms•
move - move atoms in a prescribed fashion•
msst - multi-scale shock technique (MSST) integration•
neb - nudged elastic band (NEB) spring forces•
nph - constant NPH time integration via Nose/Hoover•
nph/asphere - NPH for aspherical particles•
nph/sphere - NPH for spherical particles•
nphug - constant-stress Hugoniostat integration•
npt - constant NPT time integration via Nose/Hoover•
npt/asphere - NPT for aspherical particles•
npt/sphere - NPT for spherical particles•
nve - constant NVE time integration•
nve/asphere - NVE for aspherical particles•
nve/asphere/noforce - NVE for aspherical particles without forces"•
nve/body - NVE for body particles•
nve/limit - NVE with limited step length•
nve/line - NVE for line segments•
nve/noforce - NVE without forces (v only)•
nve/sphere - NVE for spherical particles•
nve/tri - NVE for triangles•
nvt - constant NVT time integration via Nose/Hoover•
nvt/asphere - NVT for aspherical particles•
nvt/sllod - NVT for NEMD with SLLOD equations•
nvt/sphere - NVT for spherical particles•
orient/fcc - add grain boundary migration force•
planeforce - constrain atoms to move in a plane•
poems - constrain clusters of atoms to move as coupled rigid bodies•
pour - pour new atoms into a granular simulation domain•

LIGGGHTS Users Manual

fix command 378

press/berendsen - pressure control by Berendsen barostat•
print - print text and variables during a simulation•
property/atom - add customized per-atom values•
reax/bonds - write out ReaxFF bond information recenter - constrain the center-of-mass position of a
group of atoms

•

restrain - constrain a bond, angle, dihedral•
rigid - constrain one or more clusters of atoms to move as a rigid body with NVE integration•
rigid/nph - constrain one or more clusters of atoms to move as a rigid body with NPH integration•
rigid/npt - constrain one or more clusters of atoms to move as a rigid body with NPT integration•
rigid/nve - constrain one or more clusters of atoms to move as a rigid body with alternate NVE
integration

•

rigid/nvt - constrain one or more clusters of atoms to move as a rigid body with NVT integration•
rigid - constrain many small clusters of atoms to move as a rigid body with NVE integration•
setforce - set the force on each atom•
shake - SHAKE constraints on bonds and/or angles•
spring - apply harmonic spring force to group of atoms•
spring/rg - spring on radius of gyration of group of atoms•
spring/self - spring from each atom to its origin•
srd - stochastic rotation dynamics (SRD)•
store/force - store force on each atom•
store/state - store attributes for each atom•
temp/berendsen - temperature control by Berendsen thermostat•
temp/rescale - temperature control by velocity rescaling•
thermal/conductivity - Muller-Plathe kinetic energy exchange for thermal conductivity calculation•
tmd - guide a group of atoms to a new configuration•
ttm - two-temperature model for electronic/atomic coupling•
viscosity - Muller-Plathe momentum exchange for viscosity calculation•
viscous - viscous damping for granular simulations•
wall/colloid - Lennard-Jones wall interacting with finite-size particles•
wall/gran - frictional wall(s) for granular simulations•
wall/harmonic - harmonic spring wall•
wall/lj126 - Lennard-Jones 12-6 wall•
wall/lj93 - Lennard-Jones 9-3 wall•
wall/piston - moving reflective piston wall•
wall/reflect - reflecting wall(s)•
wall/region - use region surface as wall•
wall/srd - slip/no-slip wall for SRD particles•

There are also additional fix styles submitted by users which are included in the LAMMPS distribution. The
list of these with links to the individual styles are given in the fix section of this page.

There are also additional accelerated fix styles included in the LAMMPS distribution for faster performance
on CPUs and GPUs. The list of these with links to the individual styles are given in the pair section of this
page.

Restrictions:

Some fix styles are part of specific packages. They are only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info on packages. The doc pages for individual fixes tell if it is
part of a package.

Related commands:

unfix, fix_modify

LIGGGHTS Users Manual

fix command 379

Default: none

LIGGGHTS Users Manual

fix command 380

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix imd command

Syntax:

fix ID group-ID imd trate port keyword values ...

ID, group-ID are documented in fix command•
imd = style name of this fix command•
port = port number on which the fix listens for an IMD client•
keyword = unwrap or fscale or trate

unwrap arg = on or off
 off = coordinates are wrapped back into the principal unit cell (default)
 on = "unwrapped" coordinates using the image flags used

fscale arg = factor
 factor = floating point number to scale IMD forces (default: 1.0)

trate arg = transmission rate of coordinate data sets (default: 1)
nowait arg = on or off

 off = LAMMPS waits to be connected to an IMD client before continuing (default)
 on = LAMMPS listens for an IMD client, but continues with the run

•

Examples:

fix vmd all imd 5678
fix comm all imd 8888 trate 5 unwrap on fscale 10.0

Description:

This fix implements the "Interactive MD" (IMD) protocol which allows realtime visualization and
manipulation of MD simulations through the IMD protocol, as initially implemented in VMD and NAMD.
Specifically it allows LAMMPS to connect an IMD client, for example the VMD visualization program, so
that it can monitor the progress of the simulation and interactively apply forces to selected atoms.

If LAMMPS is compiled with the preprocessor flag -DLAMMPS_ASYNC_IMD then fix imd will use POSIX
threads to spawn a IMD communication thread on MPI rank 0 in order to offload data reading and writing
from the main execution thread and potentially lower the inferred latencies for slow communication links.
This feature has only been tested under linux.

There are example scripts for using this package with LAMMPS in examples/USER/imd. Additional
examples and a driver for use with the Novint Falcon game controller as haptic device can be found at:
http://sites.google.com/site/akohlmey/software/vrpn-icms.

The source code for this fix includes code developed by the Theoretical and Computational Biophysics Group
in the Beckman Institute for Advanced Science and Technology at the University of Illinois at
Urbana-Champaign. We thank them for providing a software interface that allows codes like LAMMPS to
hook to VMD.

Upon initialization of the fix, it will open a communication port on the node with MPI task 0 and wait for an
incoming connection. As soon as an IMD client is connected, the simulation will continue and the fix will
send the current coordinates of the fix's group to the IMD client at every trate MD step. When using r-RESPA,
trate applies to the steps of the outmost RESPA level. During a run with an active IMD connection also the
IMD client can request to apply forces to selected atoms of the fix group.

LIGGGHTS Users Manual

fix imd command 381

http://lammps.sandia.gov
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd

The port number selected must be an available network port number. On many machines, port numbers <
1024 are reserved for accounts with system manager privilege and specific applications. If multiple imd fixes
would be active at the same time, each needs to use a different port number.

The nowait keyword controls the behavior of the fix when no IMD client is connected. With the default
setting of off, LAMMPS will wait until a connection is made before continuing with the execution. Setting
nowait to on will have the LAMMPS code be ready to connect to a client, but continue with the simulation.
This can for example be used to monitor the progress of an ongoing calculation without the need to be
permanently connected or having to download a trajectory file.

The trate keyword allows to select how often the coordinate data is sent to the IMD client. It can also be
changed on request of the IMD client through an IMD protocol message. The unwrap keyword allows to send
"unwrapped" coordinates to the IMD client that undo the wrapping back of coordinates into the principle unit
cell, as done by default in LAMMPS. The fscale keyword allows to apply a scaling factor to forces
transmitted by the IMD client. The IMD protocols stipulates that forces are transferred in kcal/mol/angstrom
under the assumption that coordinates are given in angstrom. For LAMMPS runs with different units or as a
measure to tweak the forces generated by the manipulation of the IMD client, this option allows to make
adjustments.

To connect VMD to a listening LAMMPS simulation on the same machine with fix imd enabled, one needs to
start VMD and load a coordinate or topology file that matches the fix group. When the VMD command
prompts appears, one types the command line:

imd connect localhost 5678

This assumes that fix imd was started with 5678 as a port number for the IMD protocol.

The steps to do interactive manipulation of a running simulation in VMD are the following:

In the Mouse menu of the VMD Main window, select "Mouse -> Force -> Atom". You may alternately select
"Residue", or "Fragment" to apply forces to whole residues or fragments. Your mouse can now be used to
apply forces to your simulation. Click on an atom, residue, or fragment and drag to apply a force. Click
quickly without moving the mouse to turn the force off. You can also use a variety of 3D position trackers to
apply forces to your simulation. Game controllers or haptic devices with force-feedback such as the Novint
Falcon or Sensable PHANTOM allow you to feel the resistance due to inertia or interactions with neighbors
that the atoms experience you are trying to move, as if they were real objects. See the VMD IMD Homepage
and the VRPN-ICMS Homepage for more details.

If IMD control messages are received, a line of text describing the message and its effect will be printed to the
LAMMPS output screen, if screen output is active.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global scalar or vector or per-atom quantities are stored by this fix for access by various output
commands. No parameter of this fix can be used with the start/stop keywords of the run command. This fix is
not invoked during energy minimization.

Restrictions:

This fix is part of the USER-MISC package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

When used in combination with VMD, a topology or coordinate file has to be loaded, which matches (in
number and ordering of atoms) the group the fix is applied to. The fix internally sorts atom IDs by ascending

LIGGGHTS Users Manual

fix imd command 382

http://www.ks.uiuc.edu/Research/vmd/imd/
http://sites.google.com/site/akohlmey/software/vrpn-icms

integer value; in VMD (and thus the IMD protocol) those will be assigned 0-based consecutive index
numbers.

When using multiple active IMD connections at the same time, each needs to use a different port number.

Related commands: none

Default: none

LIGGGHTS Users Manual

fix imd command 383

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix indent command

Syntax:

fix ID group-ID indent K keyword values ...

ID, group-ID are documented in fix command•
indent = style name of this fix command•
K = force constant for indenter surface (force/distance^2 units)•
one or more keyword/value pairs may be appended•
keyword = sphere or cylinder or plane or side or units

sphere args = x y z R
 x,y,z = initial position of center of indenter (distance units)
 R = sphere radius of indenter (distance units)
 any of x,y,z,R can be a variable (see below)

cylinder args = dim c1 c2 R
 dim = x or y or z = axis of cylinder
 c1,c2 = coords of cylinder axis in other 2 dimensions (distance units)
 R = cylinder radius of indenter (distance units)
 any of c1,c2,R can be a variable (see below)

plane args = dim pos side
 dim = x or y or z = plane perpendicular to this dimension
 pos = position of plane in dimension x, y, or z (distance units)
 pos can be a variable (see below)
 side = lo or hi

side value = in or out
in = the indenter acts on particles inside the sphere or cylinder
out = the indenter acts on particles outside the sphere or cylinder

units value = lattice or box
 lattice = the geometry is defined in lattice units
 box = the geometry is defined in simulation box units

•

Examples:

fix 1 all indent 10.0 sphere 0.0 0.0 15.0 3.0
fix 1 all indent 10.0 sphere v_x v_y 0.0 v_radius side in
fix 2 flow indent 10.0 cylinder z 0.0 0.0 10.0 units box

Description:

Insert an indenter within a simulation box. The indenter repels all atoms that touch it, so it can be used to push
into a material or as an obstacle in a flow. Or it can be used as a constraining wall around a simulation; see the
discussion of the side keyword below.

The indenter can either be spherical or cylindrical or planar. You must set one of those 3 keywords.

A spherical indenter exerts a force of magnitude

F(r) = - K (r - R)^2

on each atom where K is the specified force constant, r is the distance from the atom to the center of the
indenter, and R is the radius of the indenter. The force is repulsive and F(r) = 0 for r > R.

A cylindrical indenter exerts the same force, except that r is the distance from the atom to the center axis of
the cylinder. The cylinder extends infinitely along its axis.

LIGGGHTS Users Manual

fix indent command 384

http://lammps.sandia.gov

Spherical and cylindrical indenters account for periodic boundaries in two ways. First, the center point of a
spherical indenter (x,y,z) or axis of a cylindrical indenter (c1,c2) is remapped back into the simulation box, if
the box is periodic in a particular dimension. This occurs every timestep if the indenter geometry is specified
with a variable (see below), e.g. it is moving over time. Second, the calculation of distance to the indenter
center or axis accounts for periodic boundaries. Both of these mean that an indenter can effectively move
through and straddle one or more periodic boundaries.

A planar indenter is really an axis-aligned infinite-extent wall exerting the same force on atoms in the system,
where R is the position of the plane and r-R is the distance from the plane. If the side parameter of the plane is
specified as lo then it will indent from the lo end of the simulation box, meaning that atoms with a coordinate
less than the plane's current position will be pushed towards the hi end of the box and atoms with a coordinate
higher than the plane's current position will feel no force. Vice versa if side is specified as hi.

Any of the 4 quantities defining a spherical indenter's geometry can be specified as an equal-style variable,
namely x, y, z, or R. Similarly, for a cylindrical indenter, any of c1, c2, or R, can be a variable. For a planar
indenter, pos can be a variable. If the value is a variable, it should be specified as v_name, where name is the
variable name. In this case, the variable will be evaluated each timestep, and its value used to define the
indenter geometry.

Note that equal-style variables can specify formulas with various mathematical functions, and include
thermo_style command keywords for the simulation box parameters and timestep and elapsed time. Thus it is
easy to specify indenter properties that change as a function of time or span consecutive runs in a continuous
fashion. For the latter, see the start and stop keywords of the run command and the elaplong keyword of
thermo_style custom for details.

For example, if a spherical indenter's x-position is specfied as v_x, then this variable definition will keep it's
center at a relative position in the simulation box, 1/4 of the way from the left edge to the right edge, even if
the box size changes:

variable x equal "xlo + 0.25*lx"

Similarly, either of these variable definitions will move the indenter from an initial position at 2.5 at a
constant velocity of 5:

variable x equal "2.5 + 5*elaplong*dt"
variable x equal vdisplace(2.5,5)

If a spherical indenter's radius is specified as v_r, then these variable definitions will grow the size of the
indenter at a specfied rate.

variable r0 equal 0.0
variable rate equal 1.0
variable r equal "v_r0 + step*dt*v_rate"

If the side keyword is specified as out, which is the default, then particles outside the indenter are pushded
away from its outer surface, as described above. This only applies to spherical or cylindrical indenters. If the
side keyword is specified as in, the action of the indenter is reversed. Particles inside the indenter are pushed
away from its inner surface. In other words, the indenter is now a containing wall that traps the particles inside
it. If the radius shrinks over time, it will squeeze the particles.

The units keyword determines the meaning of the distance units used to define the indenter geometry. A box
value selects standard distance units as defined by the units command, e.g. Angstroms for units = real or
metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing. The (x,y,z) coords of the indenter position are scaled by the x,y,z
lattice spacings respectively. The radius of a spherical or cylindrical indenter is scaled by the x lattice spacing.

LIGGGHTS Users Manual

fix indent command 385

Note that the units keyword only affects indenter geometry parameters specified directly with numbers, not
those specified as variables. In the latter case, you should use the xlat, ylat, zlat keywords of the thermo_style
command if you want to include lattice spacings in a variable formula.

The force constant K is not affected by the units keyword. It is always in force/distance^2 units where force
and distance are defined by the units command. If you wish K to be scaled by the lattice spacing, you can
define K with a variable whose formula contains xlat, ylat, zlat keywords of the thermo_style command, e.g.

variable k equal 100.0/xlat/xlat
fix 1 all indent $k sphere ...

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the energy of interaction between atoms and the
indenter to the system's potential energy as part of thermodynamic output. The energy of each particle
interacting with the indenter is K/3 (r - R)^3.

This fix computes a global scalar energy and a global 3-vector of forces (on the indenter), which can be
accessed by various output commands. The scalar and vector values calculated by this fix are "extensive".

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
Note that if you define the indenter geometry with a variable using a time-dependent formula, LAMMPS uses
the iteration count in the minimizer as the timestep. But it is almost certainly a bad idea to have the indenter
change its position or size during a minimization. LAMMPS does not check if you have done this.

IMPORTANT NOTE: If you want the atom/indenter interaction energy to be included in the total potential
energy of the system (the quantity being minimized), you must enable the fix_modify energy option for this
fix.

Restrictions: none

Related commands: none

Default:

The option defaults are side = out and units = lattice.

LIGGGHTS Users Manual

fix indent command 386

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix insert/pack command

Syntax:

fix ID group-ID insert/pack seed seed_value distributiontemplate dist-ID general_keywords general_values pack_keywords pack_values ...

ID, group-ID are documented in fix command•
insert/pack = style names of this fix command•
seed = obligatory keyword•
seed_value = random # seed (positive integer)•
distributiontemplate = obligatory keyword•
dist-ID = ID of a fix_particledistribution_discrete to be used for particle insertion•
one or more general keyword/value pairs can be appended•
general_keywords = verbose or maxattampt or insert_every or overlapcheck or all_in or
random_distribute or vel constant or vel uniform or vel gaussian or orientation or omega

verbose = yes or no
maxattempt value = ma

 ma = max # of insertion attempts per atom (positive integer)
insert_every value = once or ie

 once = value to signalise that isertion takes place only once (the step after the fix is issued)
 ie = every how many time-steps particles are inserted - insertion happens periodically (positive integer)

start value = ts
 ts = time-step at which insertion should start (positive integer larger than current time-step)

overlapcheck value = yes or no
all_in value = yes or no
random_distribute value = exact or uncorrelated
vel constant values = vx vy vz

 vx = x-velocity at insertion (velocity units)
 vy = y-velocity at insertion (velocity units)
 vz = z-velocity at insertion (velocity units)

vel uniform values = vx vy vz vFluctx vFlucty vFluctz
 vx = mean x-velocity at insertion (velocity units)
 vy = mean y-velocity at insertion (velocity units)
 vz = mean z-velocity at insertion (velocity units)
 vFluctx = amplitude of uniform x-velocity fluctuation at insertion (velocity units)
 vFlucty = amplitude of uniform y-velocity fluctuation at insertion (velocity units)
 vFluctz = amplitude of uniform z-velocity fluctuation at insertion (velocity units)

vel gaussian values = vx vy vz vFluctx vFlucty vFluctz
 vx = mean x-velocity at insertion (velocity units)
 vy = mean y-velocity at insertion (velocity units)
 vz = mean z-velocity at insertion (velocity units)
 vFluctx = standard deviation of Gaussian x-velocity fluctuation at insertion (velocity units)
 vFlucty = standard deviation of Gaussian y-velocity fluctuation at insertion (velocity units)
 vFluctz = standard deviation of Gaussian z-velocity fluctuation at insertion (velocity units)

orientation values = random or template
 random = randomize rotational orientation
 template = use orientation from particle template

omega values = constant omegax omegay omegaz
 constant = obligatory word
 omegax = x-comonent of angular velocity (1/time units)
 omegay = y-comonent of angular velocity (1/time units)
 omegaz = z-comonent of angular velocity (1/time units)

•

following the general keyword/value section, one or more pack keyword/value pairs can be appended
for the fix insert/pack command

•

pack_keywords = region or volumefraction_region or particles_in_region or mass_in_region or
ntry_mc

pack_keywords = where exactly one out of volumefraction_region or particles_in_region or mass_in_region has to be defined:l

•

LIGGGHTS Users Manual

fix insert/pack command 387

http://www.cfdem.com
http://lammps.sandia.gov

region value = region-ID
 region-ID = ID of the region where the particles will be generated (positive integer)

volumefraction_region values = vol
 vol = desired volume fraction for the region (positive float, 0 <vol <1)

particles_in_region values = np
 np = desired number of particles in the region (positive integer)

mass_in_region values = m
 m = desired mass in the region (positive float, m > 0)

ntry_mc values = n
 n = number of Monte-Carlo steps for calculating the region's volume (positive integer)

Examples:

fix ins all insert/pack seed 1001 distributiontemplate pdd1 insert_every once overlapcheck yes volumefraction_region 0.3 region mysphere ntry_mc 10000

Description:

Insert particles into a granular run either once or every few timesteps within the specified region, as defined
via the region keyword.

The verbose keyword controlls whether statistics about particle insertion is output to the screen each time
particles are inserted.

This command must use the distributiontemplate keyword to refer to a fix_particledistribution_discrete
(defined by dist-fix-ID) that defines the properties of the inserted particles.

At each insertion step, fix insert/pack tries inserts as many particles as needed to reach a defined target, which
can be either a region volume fraction (keyword volumefraction_region), the total number of particles in the
region (keyword particles_in_region), or the total particle mass in the region (keyword mass_in_region).
Exactly one out of the keywords volumefraction_region, particles_in_region, mass_in_region must be
defined.

The frequency of the particle insertion can be controlled by the keyword insert_every, which defines the
number of time-steps between two insertions. Alternatively, by specifying insert_every once, particles are
inserted only once.

The start keyword can be used to set the time-step at which the insertion should start.

Inserted particles are assigned the atom type specified by the particledistribution defined via the
fix_particledistribution_discrete and are assigned to 4 groups: the default group "all" and the group specified
in the fix insert command, as well as the groups specified in the fix_particledistribution_discrete and
fix_particletemplate_sphere command (all of which can also be "all").

The keyword overlapcheck controls if overlap is checked for at insertion, both within the inserted particle
package and with other existig particles. If this option is turned off, insertion will scale very well in parallel,
otherwise not. Be aware that in case of no overlap check, highly overlapping configurations will be produced,
so you will have to relax these configurations.

If overlapcheck if performed, the number of insertion attempts per particle can be specified via the
maxattempt keyword. Each timestep particles are inserted, the command will make up to a total of M tries to
insert the new particles without overlaps, where M = # of inserted particles * ma. If unsuccessful at
completing all insertions, a warning will be printed.

The all_in flag determines if the particle is completely contained in the insertion region (all_in yes) or only
the particle center (all_in no). Currently all_in yes is not yet supported for all types of insertion.

LIGGGHTS Users Manual

fix insert/pack command 388

Keyword random_distribute controls how the number of particles to be inserted is distributed among parallel
processors and among the particle templates in the particle distribution. For style exact, the number of
particles to be inserted each step is matched exactly. For style uncorrelated, the number of particles to be
inserted for each particle template will be rounded in an uncorrelated way, so the total number of inserted
particles may vary for each insertion step. However, statistically both ways should produce the same result.
Style uncorrelated may be faster in parallel since it does not need global MPI operations. Please note that if
the # of particles to be inserted is calculated e.g. from a particle mass to be inserted, the number of particles to
be inserted each insertion step will vary by 1, irrespective of the random_distribute settings. This is because in
this case the # of particles to insert in each step will be a floating point number, and applying a simple
floor/ceil rounding operation would lead to a statistical bias.

The initial velocity and rotational velocity can be controlled via the vel and omega keywords. vel constant
simply patches a constant velocity to the inserted particles, vel uniform sets uniformly distributed velocities
with mean and amplitude. vel gaussian sets Gaussian distributed particle velocities with mean and std.
deviation.

Description for fix insert/pack:

This command must use the region keyword to define an insertion volume. The specified region must have
been previously defined with a region command. Dynamic regions are not supported as insertion region. Each
timestep particles are inserted, they are placed randomly inside the insertion volume.

The volumefraction option specifies what volume fraction of the insertion volume will be filled with particles.
The higher the value, the more particles are inserted each timestep. Since inserted particles should not overlap,
the maximum volume fraction should be no higher than about 0.6.

To determine the volume of the insertion region, a Monte Carlo approach might be used for some cases where
the volume is difficult to calculate or where the volume calculation is simply not implemented by the region.
The ntry_mc keyword is used to control the number of MC tries that are used for the volume calculation.

Restart, fix_modify, output, run start/stop, minimize info:

Information about this fix is written to binary restart files. This means you can restart a simulation while
inserting particles, when the restart file was written during the insertion operation.

None of the fix_modify options are relevant to this fix. A global vector is stored by this fix for access by
various output commands. The first component of the vector is the number of particles already inserted, the
second component is the mass of particles already inserted. No parameter of this fix can be used with the
start/stop keywords of the run command. This fix is not invoked during energy minimization.

Restrictions:

The overlapcheck = 'yes' option performs an inherently serial operation and will thus not scale well in parallel.
For this reason, if you want to generate large systems, you are advised to turn overlapcheck off and let the
packing relax afterwards to generate a valid packing.

Keywords duration and extrude_length can not be used together.

Currently all_in yes is not yet supported for all types of insertion.

Dynamic regions are not supported as insertion region.

Related commands:

LIGGGHTS Users Manual

fix insert/pack command 389

fix_insert_stream, fix_insert_rate_region, fix_deposit, region, fix_pour

Default:

The defaults are maxattempt = 50, all_in = no, overlapcheck = yes vel = 0.0 0.0 0.0, omega = 0.0 0.0 0.0, start
= next time-step, duration = insert_every, ntry_mc = 100000, random_distribute = exact

LIGGGHTS Users Manual

fix insert/pack command 390

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix insert/rate/region command

Syntax:

fix ID group-ID insert/rate/region seed seed_value distributiontemplate dist-ID general_keywords general_values insert_rate_keywords insert_rate_values

ID, group-ID are documented in fix command•
insert/pack and insert/stream = style names of these fix commands•
seed = obligatory keyword•
seed_value = random # seed (positive integer)•
distributiontemplate = obligatory keyword•
dist-ID = ID of a fix_particledistribution_discrete to be used for particle insertion•
one or more general keyword/value pairs can be appended•
general_keywords = verbose or maxattampt or nparticles or mass or particlerate or massrate or
insert_every or overlapcheck or all_in or random_distribute or vel constant or vel uniform or vel
gaussian or orientation or omega

verbose = yes or no
maxattempt value = ma

 ma = max # of insertion attempts per atom (positive integer)
nparticles values = np or INF

 np = number of particles to insert (positive integer)
 INF = insert as many particles as possible

mass values = mp
 mp = mass of particles to be inserted (positive float)
 INF = insert as many particles as possible

particlerate values = pr
 pr = particle inseration rate (particles/time units)

massrate values = mr
 mr = mass inseration rate (mass/time units)

insert_every value = once or ie
 once = value to signalise that isertion takes place only once (the step after the fix is issued)
 ie = every how many time-steps particles are inserted - insertion happens periodically (positive integer)

start value = ts
 ts = time-step at which insertion should start (positive integer larger than current time-step)

overlapcheck value = yes or no
all_in value = yes or no
random_distribute value = exact or uncorrelated
vel constant values = vx vy vz

 vx = x-velocity at insertion (velocity units)
 vy = y-velocity at insertion (velocity units)
 vz = z-velocity at insertion (velocity units)

vel uniform values = vx vy vz vFluctx vFlucty vFluctz
 vx = mean x-velocity at insertion (velocity units)
 vy = mean y-velocity at insertion (velocity units)
 vz = mean z-velocity at insertion (velocity units)
 vFluctx = amplitude of uniform x-velocity fluctuation at insertion (velocity units)
 vFlucty = amplitude of uniform y-velocity fluctuation at insertion (velocity units)
 vFluctz = amplitude of uniform z-velocity fluctuation at insertion (velocity units)

vel gaussian values = vx vy vz vFluctx vFlucty vFluctz
 vx = mean x-velocity at insertion (velocity units)
 vy = mean y-velocity at insertion (velocity units)
 vz = mean z-velocity at insertion (velocity units)
 vFluctx = standard deviation of Gaussian x-velocity fluctuation at insertion (velocity units)
 vFlucty = standard deviation of Gaussian y-velocity fluctuation at insertion (velocity units)
 vFluctz = standard deviation of Gaussian z-velocity fluctuation at insertion (velocity units)

orientation values = random or template
 random = randomize rotational orientation
 template = use orientation from particle template

omega values = constant omegax omegay omegaz

•

LIGGGHTS Users Manual

fix insert/rate/region command 391

http://www.cfdem.com
http://lammps.sandia.gov

 constant = obligatory word
 omegax = x-comonent of angular velocity (1/time units)
 omegay = y-comonent of angular velocity (1/time units)
 omegaz = z-comonent of angular velocity (1/time units)

following the general keyword/value section, one or more rate_region keyword/value pairs can be
appended for the fix insert/rate/region command

•

rate_region keywords = region or ntry_mc

region value = region-ID
 region-ID = ID of the region where the particles will be generated (positive integer)

ntry_mc values = n
 n = number of Monte-Carlo steps for calculating the region's volume (positive integer)

•

Examples:

fix ins all insert/rate/region seed 1001 distributiontemplate pdd1 nparticles 1000 particlerate 5000 insert_every 1000 overlapcheck yes region mysphere ntry_mc 10000

General description:

Insert particles into a granular run every few timesteps within a specified region at a specified rate.

The verbose keyword controlls whether statistics about particle insertion is output to the screen each time
particles are inserted.

This command must use the region keyword to define an insertion volume. The specified region must have
been previously defined with a region command. Dynamic regions are not supported as insertion region. Each
timestep particles are inserted, they are placed randomly inside the insertion volume.

To specify the number of particles to be inserted, you must use either the nparticles or the mass keyword (but
not both). In the latter case, the number of particles to be inserted is calculated from the mass expectancy
given by the particle distribution.

Likewise, you can use the particlerate or the massrate keyword (but not both) to control the insertion rate.

The frequency of the particle insertion is controlled by the keyword insert_every, which defines the number of
time-steps between two insertions. The number of particles to be inserted at each insertion event is calculated
from the insertion rate and insert_every. The start keyword can be used to set the time-step at which the
insertion should start.

This command must use the distributiontemplate keyword to refer to a fix_particledistribution_discrete
(defined by dist-fix-ID) that defines the properties of the inserted particles.

Inserted particles are assigned the atom type specified by the particledistribution defined via the
fix_particledistribution_discrete and are assigned to 4 groups: the default group "all" and the group specified
in the fix insert command, as well as the groups specified in the fix_particledistribution_discrete and
fix_particletemplate_sphere command (all of which can also be "all").

The keyword overlapcheck controls if overlap is checked for at insertion, both within the inserted particle
package and with other existig particles. If this option is turned off, insertion will scale very well in parallel,
otherwise not. Be aware that in case of no overlap check, highly overlapping configurations will be produced,
so you will have to relax these configurations.

If overlapcheck if performed, the number of insertion attempts per particle can be specified via the
maxattempt keyword. Each timestep particles are inserted, the command will make up to a total of M tries to
insert the new particles without overlaps, where M = # of inserted particles * ma. If unsuccessful at
completing all insertions, a warning will be printed.

LIGGGHTS Users Manual

fix insert/rate/region command 392

The all_in flag determines if the particle is completely contained in the insertion region (all_in yes) or only
the particle center (all_in no). Currently all_in yes is not yet supported for all types of insertion.

Keyword random_distribute controls how the number of particles to be inserted is distributed among parallel
processors and among the particle templates in the particle distribution. For style exact, the number of
particles to be inserted each step is matched exactly. For style uncorrelated, the number of particles to be
inserted for each particle template will be rounded in an uncorrelated way, so the total number of inserted
particles may vary for each insertion step. However, statistically both ways should produce the same result.
Style uncorrelated may be faster in parallel since it does not need global MPI operations. Please note that if
the # of particles to be inserted is calculated e.g. from a particle mass to be inserted, the number of particles to
be inserted each insertion step will vary by 1, irrespective of the random_distribute settings. This is because in
this case the # of particles to insert in each step will be a floating point number, and applying a simple
floor/ceil rounding operation would lead to a statistical bias.

The initial velocity and rotational velocity can be controlled via the vel and omega keywords. vel constant
simply patches a constant velocity to the inserted particles, vel uniform sets uniformly distributed velocities
with mean and amplitude. vel gaussian sets Gaussian distributed particle velocities with mean and std.
deviation.

Restart, fix_modify, output, run start/stop, minimize info:

Information about this fix is written to binary restart files. This means you can restart a simulation simulation
while inserting particles, when the restart file was written during the insertion operation.

None of the fix_modify options are relevant to this fix. A global vector is stored by this fix for access by
various output commands. The first component of the vector is the number of particles already inserted, the
second component is the mass of particles already inserted. No parameter of this fix can be used with the
start/stop keywords of the run command. This fix is not invoked during energy minimization.

Restrictions:

The overlapcheck = 'yes' option performs an inherently serial operation and will thus not scale well in parallel.
For this reason, if you want to generate large systems, you are advised to turn overlapcheck off and let the
packing relax afterwards to generate a valid packing.

Keywords duration and extrude_length can not be used together.

Currently all_in yes is not yet supported for all types of insertion.

Dynamic regions are not supported as insertion region.

Related commands:

fix_insert_stream, fix_insert_pack, fix_deposit, fix_gravity, region, fix_pour_dev, fix_pour

Default:

The defaults are maxattempt = 50, all_in = no, overlapcheck = yes vel = 0.0 0.0 0.0, omega = 0.0 0.0 0.0, start
= next time-step, duration = insert_every, ntry_mc = 100000, random_distribute = exact

LIGGGHTS Users Manual

fix insert/rate/region command 393

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix insert/stream command

Syntax:

fix ID group-ID insert/stream seed seed_value distributiontemplate dist-ID general_keywords general_values stream_keywords stream_values ...

ID, group-ID are documented in fix command•
insert/stream = style name of this fix command•
seed = obligatory keyword•
seed_value = random # seed (positive integer)•
distributiontemplate = obligatory keyword•
dist-ID = ID of a fix_particledistribution_discrete to be used for particle insertion•
one or more general keyword/value pairs can be appended•
general_keywords = verbose or maxattampt or nparticles or mass or particlerate or massrate or
insert_every or overlapcheck or all_in or random_distribute orvel constant or vel uniform or vel
gaussian or orientation or omega

verbose = yes or no
maxattempt value = ma

 ma = max # of insertion attempts per atom (positive integer)
nparticles values = np or INF

 np = number of particles to insert (positive integer)
 INF = insert as many particles as possible

mass values = mp
 mp = mass of particles to be inserted (positive float)
 INF = insert as many particles as possible

particlerate values = pr
 pr = particle inseration rate (particles/time units)

massrate values = mr
 mr = mass inseration rate (mass/time units)

insert_every value = ie
 ie = every how many time-steps particles are inserted - insertion happens periodically (positive integer)

start value = ts
 ts = time-step at which insertion should start (positive integer larger than current time-step)

all_in value = yes or no
random_distribute value = exact or uncorrelated
vel constant values = vx vy vz

 vx = x-velocity at insertion (velocity units)
 vy = y-velocity at insertion (velocity units)
 vz = z-velocity at insertion (velocity units)

vel uniform values = vx vy vz vFluctx vFlucty vFluctz
 vx = mean x-velocity at insertion (velocity units)
 vy = mean y-velocity at insertion (velocity units)
 vz = mean z-velocity at insertion (velocity units)
 vFluctx = amplitude of uniform x-velocity fluctuation at insertion (velocity units)
 vFlucty = amplitude of uniform y-velocity fluctuation at insertion (velocity units)
 vFluctz = amplitude of uniform z-velocity fluctuation at insertion (velocity units)

vel gaussian values = vx vy vz vFluctx vFlucty vFluctz
 vx = mean x-velocity at insertion (velocity units)
 vy = mean y-velocity at insertion (velocity units)
 vz = mean z-velocity at insertion (velocity units)
 vFluctx = standard deviation of Gaussian x-velocity fluctuation at insertion (velocity units)
 vFlucty = standard deviation of Gaussian y-velocity fluctuation at insertion (velocity units)
 vFluctz = standard deviation of Gaussian z-velocity fluctuation at insertion (velocity units)

orientation values = random or template
 random = randomize rotational orientation
 template = use orientation from particle template

omega values = constant omegax omegay omegaz
 constant = obligatory word
 omegax = x-comonent of angular velocity (1/time units)

•

LIGGGHTS Users Manual

fix insert/stream command 394

http://www.cfdem.com
http://lammps.sandia.gov

 omegay = y-comonent of angular velocity (1/time units)
 omegaz = z-comonent of angular velocity (1/time units)

following the general keyword/value section, one or more stream keyword/value pairs can be
appended for the fix insert/stream command

•

stream_keywords = duration or parallel or insertion_face or extrude_length

insertion_face value = mesh-ID
 mesh-ID = ID of the fix mesh/surface or fix mesh/surface/planar to use as starting face for particle generation

extrude_length values = L
 L = length for extruding the insertion face in normal direction so to generate in insertion volume

parallel values = yes or no
 yes, no = pre-calculate location of overlap of processor subdomains and extrusion volume to some extent

duration values = du
 du = duration of insertion in time-steps

•

Examples:

fix ins all insert/stream seed 1001 distributiontemplate pdd1 nparticles 5000 vel constant 0. -0.5 -2.
particlerate 1000 overlapcheck yes insertion_face ins_mesh extrude_length 0.6

Description:

Insert particles into a granular run either once or every few timesteps within a specified region until either np
particles have been inserted or the desired particle mass (mp) has been reached.

The verbose keyword controlls whether statistics about particle insertion is output to the screen each time
particles are inserted.

Each timestep particles are inserted, they are placed randomly inside the insertion volume so as to mimic a
stream of poured particles. The insertion volume is generated by extruding the insertion face as specified via
insertion_face in the direction of the face normal. The sign of this face normal is automatically flipped so that
it is opposite to the normal component of the insertion velocity.

To specify the number of particles to be inserted, you must use either the nparticles or the mass keyword (but
not both). In the latter case, the number of particles to be inserted is calculated from the mass expectancy
given by the particle distribution. The start keyword can be used to set the time-step at which the insertion
should start.

Likewise, you can use the particlerate or the massrate keyword (but not both) to control the insertion rate.
Particles are not inserted continuously, but in packets (for efficiency reasons). Particles are inserted again after
enough time has elapsed that the previously inserted particles have left the insertion volume.

One of the two keywords insert_every and extrude_length must be provided by the user (but not both).

In case insert_every is defined, this sets the frequency of the particle insertion directly, i.e. the number of
time-steps between two insertions. The number of particles to be inserted at each insertion event is calculated
from the insertion rate and insert_every.

If extrude_length is specified, the amount of extrusion is fixed and the insertion frequency is calculated from
extrude_length and the insertion velocity normal to the insertion face.

When defining insert_every, you have the possibility to define the duration of each insertion via the duration
keyword. duration < insert_every will generate a "pulsed" stream as opposed to a continuous stream.
Example: Setting insert_every = 1000 and duration = 600 will produce a stream that pours material for 600
time-steps, will pause for 400 time-steps, pour for another 600 time-steps etc.

LIGGGHTS Users Manual

fix insert/stream command 395

As mentioned above, particles are inserted again after enough time has elapsed that the previously inserted
particles have left the insertion volume. Until the time these particles reach the insertion face, no other forces
affect the particles (pair forces, gravity etc.). Fix insert/stream internally issues a special integrator to take care
of this. This procedure guarantees that the specified velocity, omega etc. values are perfectly met at the
specified insertion face.

The larger the volume, the more particles that can be inserted at one insertion step. Insertions will continue
until the desired # of particles has been inserted.

NOTE: The insertion face must be a planar face, and the insertion velocity projected on the face normal must
be non-zero.

NOTE: Keywords insert_every and extrude_length may not be used together

NOTE: Keywords duration and extrude_length cannot be used together.

This command must use the distributiontemplate keyword to refer to a fix_particledistribution_discrete
(defined by dist-fix-ID) that defines the properties of the inserted particles.

Inserted particles are assigned the atom type specified by the particledistribution defined via the
fix_particledistribution_discrete and are assigned to 4 groups: the default group "all" and the group specified
in the fix insert command, as well as the groups specified in the fix_particledistribution_discrete and
fix_particletemplate_sphere command (all of which can also be "all").

If overlapcheck if performed, the number of insertion attempts per particle can be specified via the
maxattempt keyword. Each timestep particles are inserted, the command will make up to a total of M tries to
insert the new particles without overlaps, where M = # of inserted particles * ma. If unsuccessful at
completing all insertions, a warning will be printed.

The all_in flag determines if the particle is completely contained in the insertion region (all_in = yes) or only
the particle center (all_in = no).Using all_in = yes requires you to use an insertion face of style fix
mesh/surface/planar

NOTE: You also have to use fix mesh/surface/planar if there is a run command between the definition of the
insertion face and the fix insert/stream command. Otherwise, a fix mesh/surface/planar will do.

Keyword random_distribute controls how the number of particles to be inserted is distributed among parallel
processors and among the particle templates in the particle distribution. For style exact, the number of
particles to be inserted each step is matched exactly. For style uncorrelated, the number of particles to be
inserted for each particle template will be rounded in an uncorrelated way, so the total number of inserted
particles may vary for each insertion step. However, statistically both ways should produce the same result.
Style uncorrelated may be faster in parallel since it does not need global MPI operations. Please note that if
the # of particles to be inserted is calculated e.g. from a particle mass to be inserted, the number of particles to
be inserted each insertion step will vary by 1, irrespective of the random_distribute settings. This is because in
this case the # of particles to insert in each step will be a floating point number, and applying a simple
floor/ceil rounding operation would lead to a statistical bias.

If keyword parallel is set to 'yes', LIGGGHTS tries to pre-calculate more accurately the overlap of process
subdomains and extrusion volume. For cases where the insertion volume is highly divided between different
processes, this can lead to a speed-up of insertion as random number generation is more efficient. For cases
where the extrusion volume is divided among few processes this will impose a small computation overhead.

The initial velocity and rotational velocity can be controlled via the vel and omega keywords. vel constant
simply patches a constant velocity to the inserted particles, vel uniform sets uniformly distributed velocities

LIGGGHTS Users Manual

fix insert/stream command 396

with mean and amplitude. vel gaussian sets Gaussian distributed particle velocities with mean and std.
deviation. The insertion velocity must be non-zero.

Restart, fix_modify, output, run start/stop, minimize info:

Information about this fix is written to binary restart files. This means you can restart a simulation simulation
while inserting particles, when the restart file was written during the insertion operation.

None of the fix_modify options are relevant to this fix. A global vector is stored by this fix for access by
various output commands. The first component of the vector is the number of particles already inserted, the
second component is the mass of particles already inserted. No parameter of this fix can be used with the
start/stop keywords of the run command. This fix is not invoked during energy minimization.

Restrictions:

Keywords duration and extrude_length can not be used together. The insertion face cannot move.

Related commands:

fix_insert_pack, fix_insert_rate_region, fix_deposit, fix_pour_dev, fix_pour

Default:

The defaults are maxattempt = 50, all_in = no, overlapcheck = yes vel = 0.0 0.0 0.0, omega = 0.0 0.0 0.0, start
= next time-step, duration = insert_every, random_distribute = exact, parallel = no

LIGGGHTS Users Manual

fix insert/stream command 397

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix langevin/eff command

Syntax:

fix ID group-ID langevin/eff Tstart Tstop damp seed keyword values ...

ID, group-ID are documented in fix command•
langevin/eff = style name of this fix command•
Tstart,Tstop = desired temperature at start/end of run (temperature units)•
damp = damping parameter (time units)•
seed = random number seed to use for white noise (positive integer)•
zero or more keyword/value pairs may be appended

keyword = scale or tally or zero
scale values = type ratio

 type = atom type (1-N)
 ratio = factor by which to scale the damping coefficient

tally values = no or yes
no = do not tally the energy added/subtracted to atoms
yes = do tally the energy added/subtracted to atoms

zero value = no or yes
no = do not set total random force to zero
yes = set total random force to zero

•

Examples:

fix 3 boundary langevin/eff 1.0 1.0 10.0 699483
fix 1 all langevin/eff 1.0 1.1 10.0 48279 scale 3 1.5

Description:

Apply a Langevin thermostat as described in (Schneider) to a group of nuclei and electrons in the electron
force field model. Used with fix nve/eff, this command performs Brownian dynamics (BD), since the total
force on each atom will have the form:

F = Fc + Ff + Fr
Ff = - (m / damp) v
Fr is proportional to sqrt(Kb T m / (dt damp))

Fc is the conservative force computed via the usual inter-particle interactions (pair_style).

The Ff and Fr terms are added by this fix on a per-particle basis.

The operation of this fix is exactly like that described by the fix langevin command, except that the
thermostatting is also applied to the radial electron velocity for electron particles.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. Because the state of the random number
generator is not saved in restart files, this means you cannot do "exact" restarts with this fix, where the
simulation continues on the same as if no restart had taken place. However, in a statistical sense, a restarted
simulation should produce the same behavior.

LIGGGHTS Users Manual

fix langevin/eff command 398

http://lammps.sandia.gov

The fix_modify temp option is supported by this fix. You can use it to assign a temperature compute you have
defined to this fix which will be used in its thermostatting procedure, as described above. For consistency, the
group used by this fix and by the compute should be the same.

The fix_modify energy option is supported by this fix to add the energy change induced by Langevin
thermostatting to the system's potential energy as part of thermodynamic output. Note that use of this option
requires setting the tally keyword to yes.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the
cummulative energy change due to this fix. The scalar value calculated by this fix is "extensive". Note that
calculation of this quantity requires setting the tally keyword to yes.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions: none

This fix is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:

fix langevin

Default:

The option defaults are scale = 1.0 for all types and tally = no.

(Dunweg) Dunweg and Paul, Int J of Modern Physics C, 2, 817-27 (1991).

(Schneider) Schneider and Stoll, Phys Rev B, 17, 1302 (1978).

LIGGGHTS Users Manual

fix langevin/eff command 399

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix langevin command

Syntax:

fix ID group-ID langevin Tstart Tstop damp seed keyword values ...

ID, group-ID are documented in fix command•
langevin = style name of this fix command•
Tstart,Tstop = desired temperature at start/end of run (temperature units)•
Tstart can be a variable (see below)•
damp = damping parameter (time units)•
seed = random number seed to use for white noise (positive integer)•
zero or more keyword/value pairs may be appended•
keyword = angmom or omega or scale or tally or zero

angmom value = no or scale
no = do not thermostat rotational degrees of freedom via the angular momentum

 factor = do thermostat rotational degrees of freedom via the angular momentum and apply numeric factor as discussed below
gjf value = no or yes

no = use standard formulation
yes = use Gronbech-Jensen/Farago formulation

omega value = no or yes
no = do not thermostat rotational degrees of freedom via the angular velocity
yes = do thermostat rotational degrees of freedom via the angular velocity

scale values = type ratio
 type = atom type (1-N)
 ratio = factor by which to scale the damping coefficient

tally value = no or yes
no = do not tally the energy added/subtracted to atoms
yes = do tally the energy added/subtracted to atoms

zero value = no or yes
no = do not set total random force to zero
yes = set total random force to zero

•

Examples:

fix 3 boundary langevin 1.0 1.0 1000.0 699483
fix 1 all langevin 1.0 1.1 100.0 48279 scale 3 1.5
fix 1 all langevin 1.0 1.1 100.0 48279 angmom 3.333

Description:

Apply a Langevin thermostat as described in (Schneider) to a group of atoms which models an interaction
with a background implicit solvent. Used with fix nve, this command performs Brownian dynamics (BD),
since the total force on each atom will have the form:

F = Fc + Ff + Fr
Ff = - (m / damp) v
Fr is proportional to sqrt(Kb T m / (dt damp))

Fc is the conservative force computed via the usual inter-particle interactions (pair_style, bond_style, etc).

The Ff and Fr terms are added by this fix on a per-particle basis. See the pair_style dpd/tstat command for a
thermostatting option that adds similar terms on a pairwise basis to pairs of interacting particles.

Ff is a frictional drag or viscous damping term proportional to the particle's velocity. The proportionality
constant for each atom is computed as m/damp, where m is the mass of the particle and damp is the damping

LIGGGHTS Users Manual

fix langevin command 400

http://lammps.sandia.gov

factor specified by the user.

Fr is a force due to solvent atoms at a temperature T randomly bumping into the particle. As derived from the
fluctuation/dissipation theorem, its magnitude as shown above is proportional to sqrt(Kb T m / dt damp),
where Kb is the Boltzmann constant, T is the desired temperature, m is the mass of the particle, dt is the
timestep size, and damp is the damping factor. Random numbers are used to randomize the direction and
magnitude of this force as described in (Dunweg), where a uniform random number is used (instead of a
Gaussian random number) for speed.

Note that unless you use the omega or angmom keywords, the thermostat effect of this fix is applied to only
the translational degrees of freedom for the particles, which is an important consideration for finite-size
particles, which have rotational degrees of freedom, are being thermostatted. The translational degrees of
freedom can also have a bias velocity removed from them before thermostatting takes place; see the
description below.

IMPORTANT NOTE: Unlike the fix nvt command which performs Nose/Hoover thermostatting AND time
integration, this fix does NOT perform time integration. It only modifies forces to effect thermostatting. Thus
you must use a separate time integration fix, like fix nve to actually update the velocities and positions of
atoms using the modified forces. Likewise, this fix should not normally be used on atoms that also have their
temperature controlled by another fix - e.g. by fix nvt or fix temp/rescale commands.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop.

Tstart can be specified as an equal-style or atom-style variable. In this case, the Tstop setting is ignored. If the
value is a variable, it should be specified as v_name, where name is the variable name. In this case, the
variable will be evaluated each timestep, and its value used to determine the target temperature.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent temperature.

Atom-style variables can specify the same formulas as equal-style variables but can also include per-atom
values, such as atom coordinates. Thus it is easy to specify a spatially-dependent temperature with optional
time-dependence as well.

Like other fixes that perform thermostatting, this fix can be used with compute commands that remove a
"bias" from the atom velocities. E.g. removing the center-of-mass velocity from a group of atoms or removing
the x-component of velocity from the calculation. This is not done by default, but only if the fix_modify
command is used to assign a temperature compute to this fix that includes such a bias term. See the doc pages
for individual compute commands to determine which ones include a bias. In this case, the thermostat works
in the following manner: bias is removed from each atom, thermostatting is performed on the remaining
thermal degrees of freedom, and the bias is added back in.

The damp parameter is specified in time units and determines how rapidly the temperature is relaxed. For
example, a value of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or
fmsec or psec - see the units command). The damp factor can be thought of as inversely related to the
viscosity of the solvent. I.e. a small relaxation time implies a hi-viscosity solvent and vice versa. See the
discussion about gamma and viscosity in the documentation for the fix viscous command for more details.

The random # seed must be a positive integer. A Marsaglia random number generator is used. Each processor
uses the input seed to generate its own unique seed and its own stream of random numbers. Thus the dynamics

LIGGGHTS Users Manual

fix langevin command 401

of the system will not be identical on two runs on different numbers of processors.

The keyword/value option pairs are used in the following ways.

The keyword angmom and omega keywords enable thermostatting of rotational degrees of freedom in
addition to the usual translational degrees of freedom. This can only be done for finite-size particles.

A simulation using atom_style sphere defines an omega for finite-size spheres. A simulation using atom_style
ellipsoid defines a finite size and shape for aspherical particles and an angular momentum. The Langevin
formulas for thermostatting the rotational degrees of freedom are the same as those above, where force is
replaced by torque, m is replaced by the moment of inertia I, and v is replaced by omega (which is derived
from the angular momentum in the case of aspherical particles).

The rotational temperature of the particles can be monitored by the compute temp/sphere and compute
temp/asphere commands with their rotate options.

For the omega keyword there is also a scale factor of 10.0/3.0 that is applied as a multiplier on the Ff
(damping) term in the equation above and of sqrt(10.0/3.0) as a multiplier on the Fr term. This does not affect
the thermostatting behaviour of the Langevin formalism but insures that the randomized rotational diffusivity
of spherical particles is correct.

For the angmom keyword a similar scale factor is needed which is 10.0/3.0 for spherical particles, but is
anisotropic for aspherical particles (e.g. ellipsoids). Currently LAMMPS only applies an isotropic scale factor,
and you can choose its magnitude as the specified value of the angmom keyword. If your aspherical particles
are (nearly) spherical than a value of 10.0/3.0 = 3.333 is a good choice. If they are highly aspherical, a value
of 1.0 is as good a choice as any, since the effects on rotational diffusivity of the particles will be incorrect
regardless. Note that for any reasonable scale factor, the thermostatting effect of the angmom keyword on the
rotational temperature of the aspherical particles should still be valid.

The keyword scale allows the damp factor to be scaled up or down by the specified factor for atoms of that
type. This can be useful when different atom types have different sizes or masses. It can be used multiple
times to adjust damp for several atom types. Note that specifying a ratio of 2 increases the relaxation time
which is equivalent to the solvent's viscosity acting on particles with 1/2 the diameter. This is the opposite
effect of scale factors used by the fix viscous command, since the damp factor in fix langevin is inversely
related to the gamma factor in fix viscous. Also note that the damping factor in fix langevin includes the
particle mass in Ff, unlike fix viscous. Thus the mass and size of different atom types should be accounted for
in the choice of ratio values.

The keyword tally enables the calculation of the cumulative energy added/subtracted to the atoms as they are
thermostatted. Effectively it is the energy exchanged between the infinite thermal reservoir and the particles.
As described below, this energy can then be printed out or added to the potential energy of the system to
monitor energy conservation.

The keyword zero can be used to eliminate drift due to the thermostat. Because the random forces on different
atoms are independent, they do not sum exactly to zero. As a result, this fix applies a small random force to
the entire system, and the center-of-mass of the system undergoes a slow random walk. If the keyword zero is
set to yes, the total random force is set exactly to zero by subtracting off an equal part of it from each atom in
the group. As a result, the center-of-mass of a system with zero initial momentum will not drift over time.

The keyword gjf can be used to run the Gronbech-Jensen/Farago time-discretization of the Langevin model.
The effective random force is composed of the average of two random forces representing half-contributions
from the previous and current time intervals. This discretization has been shown to be consistent with the
underlying physical model of Langevin dynamics and produces the correct Boltzmann distribution of
positions for large timesteps, up to the numerical stability limit. Because the discretized momenta generated

LIGGGHTS Users Manual

fix langevin command 402

by the time integration scheme are not exactly conjugate to the positions, the kinetic energy distribution is
systematically lower than the Boltzmann distribution by an amount that grows with the timestep.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. Because the state of the random number
generator is not saved in restart files, this means you cannot do "exact" restarts with this fix, where the
simulation continues on the same as if no restart had taken place. However, in a statistical sense, a restarted
simulation should produce the same behavior.

The fix_modify temp option is supported by this fix. You can use it to assign a temperature compute you have
defined to this fix which will be used in its thermostatting procedure, as described above. For consistency, the
group used by this fix and by the compute should be the same.

The fix_modify energy option is supported by this fix to add the energy change induced by Langevin
thermostatting to the system's potential energy as part of thermodynamic output. Note that use of this option
requires setting the tally keyword to yes.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the
cummulative energy change due to this fix. The scalar value calculated by this fix is "extensive". Note that
calculation of this quantity requires setting the tally keyword to yes.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions: none

Related commands:

fix nvt, fix temp/rescale, fix viscous, fix nvt, pair_style dpd/tstat

Default:

The option defaults are angmom = no, omega = no, scale = 1.0 for all types, tally = no, zero = no, gjf = no.

(Dunweg) Dunweg and Paul, Int J of Modern Physics C, 2, 817-27 (1991).

(Schneider) Schneider and Stoll, Phys Rev B, 17, 1302 (1978).

(Gronbech-Jensen) Gronbech-Jensen and Farago, Mol Phys, 111, 983 (2013); Gronbech-Jensen, Hayre, and
Farago, arXiv:1303.7011.v2 (2013)

LIGGGHTS Users Manual

fix langevin command 403

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix lb/fluid command

Syntax:

fix ID group-ID lb/fluid nevery LBtype viscosity density keyword values ...

ID, group-ID are documented in fix command•
lb/fluid = style name of this fix command•
nevery = update the lattice-Boltzmann fluid every this many timesteps•
LBtype = 1 to use the standard finite difference LB integrator, 2 to use the LB integrator of Ollila et
al.

•

viscosity = the fluid viscosity (units of mass/(time*length)).•
density = the fluid density.•
zero or more keyword/value pairs may be appended•
keyword = setArea or setGamma or scaleGamma or dx or dm or a0 or noise or calcforce or trilinear
or D3Q19 or read_restart or write_restart or zwall_velocity or bodyforce or printfluid

setArea values = type node_area
 type = atom type (1-N)
 node_area = portion of the surface area of the composite object associated with the particular atom type (used when the force coupling constant is set by default).

setGamma values = gamma
 gamma = user set value for the force coupling constant.

scaleGamma values = type gammaFactor
 type = atom type (1-N)
 gammaFactor = factor to scale the setGamma gamma value by, for the specified atom type.

dx values = dx_LB = the lattice spacing.
dm values = dm_LB = the lattice-Boltzmann mass unit.
a0 values = a_0_real = the square of the speed of sound in the fluid.
noise values = Temperature seed

 Temperature = fluid temperature.
 seed = random number generator seed (positive integer)

calcforce values = N forcegroup-ID
 N = output the force and torque every N timesteps
 forcegroup-ID = ID of the particle group to calculate the force and torque of

trilinear values = none (used to switch from the default Peskin interpolation stencil to the trilinear stencil).
D3Q19 values = none (used to switch from the default D3Q15, 15 velocity lattice, to the D3Q19, 19 velocity lattice).
read_restart values = restart file = name of the restart file to use to restart a fluid run.
write_restart values = N = write a restart file every N MD timesteps.
zwall_velocity values = velocity_bottom velocity_top = velocities along the y-direction of the bottom and top walls (located at z=zmin and z=zmax).
bodyforce values = bodyforcex bodyforcey bodyforcez = the x,y and z components of a constant body force added to the fluid.
printfluid values = N = print the fluid density and velocity at each grid point every N timesteps.

•

Examples:

fix 1 all lb/fluid 1 2 1.0 1.0 setGamma 13.0 dx 4.0 dm 10.0 calcforce sphere1
fix 1 all lb/fluid 1 1 1.0 0.0009982071 setArea 1 1.144592082 dx 2.0 dm 0.3 trilinear noise 300.0 8979873

Description:

Implement a lattice-Boltzmann fluid on a uniform mesh covering the LAMMPS simulation domain. The MD
particles described by group-ID apply a velocity dependent force to the fluid.

The lattice-Boltzmann algorithm solves for the fluid motion governed by the Navier Stokes equations,

LIGGGHTS Users Manual

fix lb/fluid command 404

http://lammps.sandia.gov

with,

where rho is the fluid density, u is the local fluid velocity, sigma is the stress tensor, F is a local external force,
and eta and Lambda are the shear and bulk viscosities respectively. Here, we have implemented

with a_0 set to 1/3 (dx/dt)^2 by default.

The algorithm involves tracking the time evolution of a set of partial distribution functions which evolve
according to a velocity discretized version of the Boltzmann equation,

where the first term on the right hand side represents a single time relaxation towards the equilibrium
distribution function, and tau is a parameter physically related to the viscosity. On a technical note, we have
implemented a 15 velocity model (D3Q15) as default; however, the user can switch to a 19 velocity model
(D3Q19) through the use of the D3Q19 keyword. This fix provides the user with the choice of two algorithms
to solve this equation, through the specification of the keyword LBtype. If LBtype is set equal to 1, the
standard finite difference LB integrator is used. If LBtype is set equal to 2, the algorithm of Ollila et al. is
used.

Physical variables are then defined in terms of moments of the distribution functions,

Full details of the lattice-Boltzmann algorithm used can be found in Mackay et al..

LIGGGHTS Users Manual

fix lb/fluid command 405

The fluid is coupled to the MD particles described by group-ID through a velocity dependent force. The
contribution to the fluid force on a given lattice mesh site j due to MD particle alpha is calculated as:

where v_n is the velocity of the MD particle, u_f is the fluid velocity interpolated to the particle location, and
gamma is the force coupling constant. Zeta is a weight assigned to the grid point, obtained by distributing the
particle to the nearest lattice sites. For this, the user has the choice between a trilinear stencil, which provides
a support of 8 lattice sites, or the immersed boundary method Peskin stencil, which provides a support of 64
lattice sites. While the Peskin stencil is seen to provide more stable results, the trilinear stencil may be better
suited for simulation of objects close to walls, due to its smaller support. Therefore, by default, the Peskin
stencil is used; however the user may switch to the trilinear stencil by specifying the keyword, trilinear.

By default, the force coupling constant, gamma, is calculated according to

Here, m_v is the mass of the MD particle, m_u is a representative fluid mass at the particle location, and
dt_collision is a collision time, chosen such that tau/dt_collision = 1 (see Mackay and Denniston for full
details). In order to calculate m_u, the fluid density is interpolated to the MD particle location, and multiplied
by a volume, node_area*dx_lb, where node_area represents the portion of the surface area of the composite
object associated with a given MD particle. By default, node_area is set equal to dx_lb*dx_lb; however
specific values for given atom types can be set using the setArea keyword.

The user also has the option of specifying their own value for the force coupling constant, for all the MD
particles associated with the fix, through the use of the setGamma keyword. This may be useful when
modelling porous particles. See Mackay et al. for a detailed description of the method by which the user can
choose an appropriate gamma value.

IMPORTANT NOTE: while this fix applies the force of the particles on the fluid, it does not apply the force
of the fluid to the particles. When the force coupling constant is set using the default method, there is only one
option to include this hydrodynamic force on the particles, and that is through the use of the lb/viscous fix.
This fix adds the hydrodynamic force to the total force acting on the particles, after which any of the built-in
LAMMPS integrators can be used to integrate the particle motion. However, if the user specifies their own
value for the force coupling constant, as mentioned in Mackay et al., the built-in LAMMPS integrators may
prove to be unstable. Therefore, we have included our own integrators fix lb/rigid/pc/sphere, and fix lb/pc, to
solve for the particle motion in these cases. These integrators should not be used with the lb/viscous fix, as
they add hydrodynamic forces to the particles directly. In addition, they can not be used if the force coupling
constant has been set the default way.

IMPORTANT NOTE: if the force coupling constant is set using the default method, and the lb/viscous fix is
NOT used to add the hydrodynamic force to the total force acting on the particles, this physically corresponds
to a situation in which an infinitely massive particle is moving through the fluid (since collisions between the
particle and the fluid do not act to change the particle's velocity). Therefore, the user should set the mass of
the particle to be significantly larger than the mass of the fluid at the particle location, in order to approximate
an infinitely massive particle (see the dragforce test run for an example).

LIGGGHTS Users Manual

fix lb/fluid command 406

Inside the fix, parameters are scaled by the lattice-Boltzmann timestep, dt, grid spacing, dx, and mass unit,
dm. dt is set equal to (nevery*dt_MD), where dt_MD is the MD timestep. By default, dm is set equal to 1.0,
and dx is chosen so that tau/(dt) = (3*eta*dt)/(rho*dx^2) is approximately equal to 1. However, the user has
the option of specifying their own values for dm, and dx, by using the optional keywords dm, and dx
respectively.

IMPORTANT NOTE: Care must be taken when choosing both a value for dx, and a simulation domain size.
This fix uses the same subdivision of the simulation domain among processors as the main LAMMPS
program. In order to uniformly cover the simulation domain with lattice sites, the lengths of the individual
LAMMPS subdomains must all be evenly divisible by dx. If the simulation domain size is cubic, with equal
lengths in all dimensions, and the default value for dx is used, this will automatically be satisfied.

Physical parameters describing the fluid are specified through viscosity, density, and a0. If the force coupling
constant is set the default way, the surface area associated with the MD particles is specified using the setArea
keyword. If the user chooses to specify a value for the force coupling constant, this is set using the setGamma
keyword. These parameters should all be given in terms of the mass, distance, and time units chosen for the
main LAMMPS run, as they are scaled by the LB timestep, lattice spacing, and mass unit, inside the fix.

The setArea keyword allows the user to associate a surface area with a given atom type. For example if a
spherical composite object of radius R is represented as a spherical shell of N evenly distributed MD particles,
all of the same type, the surface area per particle associated with that atom type should be set equal to
4*pi*R^2/N. This keyword should only be used if the force coupling constant, gamma, is set the default way.

The setGamma keyword allows the user to specify their own value for the force coupling constant, gamma,
instead of using the default value.

The scaleGamma keyword should be used in conjunction with the setGamma keyword, when the user wishes
to specify different gamma values for different atom types. This keyword allows the user to scale the
setGamma gamma value by a factor, gammaFactor, for a given atom type.

The dx keyword allows the user to specify a value for the LB grid spacing.

The dm keyword allows the user to specify the LB mass unit.

If the a0 keyword is used, the value specified is used for the square of the speed of sound in the fluid. If this
keyword is not present, the speed of sound squared is set equal to (1/3)*(dx/dt)^2. Setting a0 > (dx/dt)^2 is not
allowed, as this may lead to instabilities.

If the noise keyword is used, followed by a a positive temperature value, and a positive integer random
number seed, a thermal lattice-Boltzmann algorithm is used. If LBtype is set equal to 1 (i.e. the standard LB
integrator is chosen), the thermal LB algorithm of Adhikari et al. is used; however if LBtype is set equal to 2
both the LB integrator, and thermal LB algorithm described in Ollila et al. are used.

If the calcforce keyword is used, both the fluid force and torque acting on the specified particle group are
printed to the screen every N timesteps.

If the keyword trilinear is used, the trilinear stencil is used to interpolate the particle nodes onto the fluid
mesh. By default, the immersed boundary method, Peskin stencil is used. Both of these interpolation methods
are described in Mackay et al..

If the keyword D3Q19 is used, the 19 velocity (D3Q19) lattice is used by the lattice-Boltzmann algorithm. By
default, the 15 velocity (D3Q15) lattice is used.

If the keyword write_restart is used, followed by a positive integer, N, a binary restart file is printed every N

LIGGGHTS Users Manual

fix lb/fluid command 407

LB timesteps. This restart file only contains information about the fluid. Therefore, a LAMMPS restart file
should also be written in order to print out full details of the simulation.

IMPORTANT NOTE: When a large number of lattice grid points are used, the restart files may become quite
large.

In order to restart the fluid portion of the simulation, the keyword read_restart is specified, followed by the
name of the binary lb_fluid restart file to be used.

If the zwall_velocity keyword is used y-velocities are assigned to the lower and upper walls. This keyword
requires the presence of walls in the z-direction. This is set by assigning fixed boundary conditions in the
z-direction. If fixed boundary conditions are present in the z-direction, and this keyword is not used, the walls
are assumed to be stationary.

If the bodyforce keyword is used, a constant body force is added to the fluid, defined by it's x, y and z
components.

If the printfluid keyword is used, followed by a positive integer, N, the fluid densities and velocities at each
lattice site are printed to the screen every N timesteps.

For further details, as well as descriptions and results of several test runs, see Mackay et al.. Please include a
citation to this paper if the lb_fluid fix is used in work contributing to published research.

Restart, fix_modify, output, run start/stop, minimize info:

Due to the large size of the fluid data, this fix writes it's own binary restart files, if requested, independent of
the main LAMMPS binary restart files; no information about lb_fluid is written to the main LAMMPS binary
restart files.

None of the fix_modify options are relevant to this fix. No global or per-atom quantities are stored by this fix
for access by various output commands. No parameter of this fix can be used with the start/stop keywords of
the run command. This fix is not invoked during energy minimization.

Restrictions:

This fix is part of the USER-LB package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This fix can only be used with an orthogonal simulation domain.

Walls have only been implemented in the z-direction. Therefore, the boundary conditions, as specified via the
main LAMMPS boundary command must be periodic for x and y, and either fixed or periodic for z.
Shrink-wrapped boundary conditions are not permitted with this fix.

This fix must be used before any of fix lb/viscous, fix lb/momentum, fix lb/rigid/pc/sphere, and/ or fix lb/pc ,
as the fluid needs to be initialized before any of these routines try to access its properties. In addition, in order
for the hydrodynamic forces to be added to the particles, this fix must be used in conjunction with the
lb/viscous fix if the force coupling constant is set by default, or either the lb/viscous fix or one of the
lb/rigid/pc/sphere or lb/pc integrators, if the user chooses to specifiy their own value for the force coupling
constant.

Related commands:

fix lb/viscous, fix lb/momentum, fix lb/rigid/pc/sphere, fix lb/pc

LIGGGHTS Users Manual

fix lb/fluid command 408

Default:

By default, the force coupling constant is set according to

and an area of dx_lb^2 per node, used to calculate the fluid mass at the particle node location, is assumed.

dx is chosen such that tau/(delta t_LB) = (3 eta dt_LB)/(rho dx_lb^2) is approximately equal to 1. dm is set
equal to 1.0. a0 is set equal to (1/3)*(dx_lb/dt_lb)^2. The Peskin stencil is used as the default interpolation
method. The D3Q15 lattice is used for the lattice-Boltzmann algorithm. If walls are present, they are assumed
to be stationary.

(Ollila et al.) Ollila, S.T.T., Denniston, C., Karttunen, M., and Ala-Nissila, T., Fluctuating lattice-Boltzmann
model for complex fluids, J. Chem. Phys. 134 (2011) 064902.

(Mackay et al.) Mackay, F. E., Ollila, S.T.T., and Denniston, C., Hydrodynamic Forces Implemented into
LAMMPS through a lattice-Boltzmann fluid, Computer Physics Communications 184 (2013) 2021-2031.

(Mackay and Denniston) Mackay, F. E., and Denniston, C., Coupling MD particles to a lattice-Boltzmann
fluid through the use of conservative forces, J. Comput. Phys. 237 (2013) 289-298.

(Adhikari et al.) Adhikari, R., Stratford, K., Cates, M. E., and Wagner, A. J., Fluctuating lattice Boltzmann,
Europhys. Lett. 71 (2005) 473-479.

LIGGGHTS Users Manual

fix lb/fluid command 409

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix lb/momentum command

Syntax:

fix ID group-ID lb/momentum nevery keyword values ...

ID, group-ID are documented in the fix command•
lb/momentum = style name of this fix command•
nevery = adjust the momentum every this many timesteps•
zero or more keyword/value pairs may be appended•
keyword = linear

linear values = xflag yflag zflag
 xflag,yflag,zflag = 0/1 to exclude/include each dimension.

•

Examples:

fix 1 sphere lb/momentum
fix 1 all lb/momentum linear 1 1 0

Description:

This fix is based on the fix momentum command, and was created to be used in place of that command, when
a lattice-Boltzmann fluid is present.

Zero the total linear momentum of the system, including both the atoms specified by group-ID and the
lattice-Boltzmann fluid every nevery timesteps. This is accomplished by adjusting the particle velocities and
the fluid velocities at each lattice site.

NOTE: This fix only considers the linear momentum of the system.

By default, the subtraction is performed for each dimension. This can be changed by specifying the keyword
linear, along with a set of three flags set to 0/1 in order to exclude/ include the corresponding dimension.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

Can only be used if a lattice-Boltzmann fluid has been created via the fix lb/fluid command, and must come
after this command.

This fix is part of the USER-LB package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:

fix momentum, fix lb/fluid

LIGGGHTS Users Manual

fix lb/momentum command 410

http://lammps.sandia.gov

Default:

Zeros the total system linear momentum in each dimension.

LIGGGHTS Users Manual

fix lb/momentum command 411

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix lb/pc command

Syntax:

fix ID group-ID lb/pc

ID, group-ID are documented in the fix command•
lb/pc = style name of this fix command•

Examples:

fix 1 all lb/pc

Description:

Update the positions and velocities of the individual particles described by group-ID, experiencing
velocity-dependent hydrodynamic forces, using the integration algorithm described in Mackay et al.. This
integration algorithm should only be used if a user-specified value for the force-coupling constant used in fix
lb/fluid has been set; do not use this integration algorithm if the force coupling constant has been set by
default.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the USER-LB package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Can only be used if a lattice-Boltzmann fluid has been created via the fix lb/fluid command, and must come
after this command.

Related commands:

fix lb/fluid fix lb/rigid/pc/sphere

Default: None.

(Mackay et al.) Mackay, F. E., Ollila, S.T.T., and Denniston, C., Hydrodynamic Forces Implemented into
LAMMPS through a lattice-Boltzmann fluid, Computer Physics Communications 184 (2013) 2021-2031.

LIGGGHTS Users Manual

fix lb/pc command 412

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix lb/rigid/pc/sphere command

Syntax:

fix ID group-ID lb/rigid/pc/sphere bodystyle args keyword values ...

ID, group-ID are documented in fix command•
lb/rigid/pc/sphere = style name of this fix command•
bodystyle = single or molecule or group•
single args = none molecule args = none group args = N groupID1 groupID2 ... N = # of groups zero
or more keyword/value pairs may be appended

•

keyword = force or torque or innerNodes

force values = M xflag yflag zflag
 M = which rigid body from 1-Nbody (see asterisk form below)
 xflag,yflag,zflag = off/on if component of center-of-mass force is active

torque values = M xflag yflag zflag
 M = which rigid body from 1-Nbody (see asterisk form below)
 xflag,yflag,zflag = off/on if component of center-of-mass torque is active

innerNodes values = innergroup-ID
 innergroup-ID = ID of the atom group which does not experience a hydrodynamic force from the lattice-Boltzmann fluid

•

Examples:

fix 1 spheres lb/rigid/pc/sphere
fix 1 all lb/rigid/pc/sphere force 1 0 0 innerNodes ForceAtoms

Description:

This fix is based on the fix rigid command, and was created to be used in place of that fix, to integrate the
equations of motion of spherical rigid bodies when a lattice-Boltzmann fluid is present with a user-specified
value of the force-coupling constant. The fix uses the integration algorithm described in Mackay et al. to
update the positions, velocities, and orientations of a set of spherical rigid bodies experiencing velocity
dependent hydrodynamic forces. The spherical bodies are assumed to rotate as solid, uniform density spheres,
with moments of inertia calculated using the combined sum of the masses of all the constituent particles
(which are assumed to be point particles).

By default, all of the atoms that this fix acts on experience a hydrodynamic force due to the presence of the
lattice-Boltzmann fluid. However, the innerNodes keyword allows the user to specify atoms belonging to a
rigid object which do not interact with the lattice-Boltzmann fluid (i.e. these atoms do not feel a
hydrodynamic force from the lattice-Boltzmann fluid). This can be used to distinguish between atoms on the
surface of a non-porous object, and those on the inside.

This feature can be used, for example, when implementing a hard sphere interaction between two spherical
objects. Instead of interactions occurring between the particles on the surfaces of the two spheres, it is
desirable simply to place an atom at the center of each sphere, which does not contribute to the hydrodynamic
force, and have these central atoms interact with one another.

Apart from the features described above, this fix is very similar to the rigid fix (although it includes fewer
optional arguments, and assumes the constituent atoms are point particles); see fix_rigid for a complete
documentation.

Restart, fix_modify, output, run start/stop, minimize info:

LIGGGHTS Users Manual

fix lb/rigid/pc/sphere command 413

http://lammps.sandia.gov

No information about the rigid and rigid/nve fixes are written to binary restart files.

Similar to the fix_rigid command: " The rigid fix computes a global scalar which can be accessed by various
output commands. The scalar value calculated by these fixes is "intensive". The scalar is the current
temperature of the collection of rigid bodies. This is averaged over all rigid bodies and their translational and
rotational degrees of freedom. The translational energy of a rigid body is 1/2 m v^2, where m = total mass of
the body and v = the velocity of its center of mass. The rotational energy of a rigid body is 1/2 I w^2, where I
= the moment of inertia tensor of the body and w = its angular velocity. Degrees of freedom constrained by
the force and torque keywords are removed from this calculation."

"All of these fixes compute a global array of values which can be accessed by various output commands. The
number of rows in the array is equal to the number of rigid bodies. The number of columns is 15. Thus for
each rigid body, 15 values are stored: the xyz coords of the center of mass (COM), the xyz components of the
COM velocity, the xyz components of the force acting on the COM, the xyz components of the torque acting
on the COM, and the xyz image flags of the COM, which have the same meaning as image flags for atom
positions (see the "dump" command). The force and torque values in the array are not affected by the force
and torque keywords in the fix rigid command; they reflect values before any changes are made by those
keywords.

The ordering of the rigid bodies (by row in the array) is as follows. For the single keyword there is just one
rigid body. For the molecule keyword, the bodies are ordered by ascending molecule ID. For the group
keyword, the list of group IDs determines the ordering of bodies.

The array values calculated by these fixes are "intensive", meaning they are independent of the number of
atoms in the simulation.

No parameter of these fixes can be used with the start/stop keywords of the run command. These fixes are not
invoked during energy minimization. "

Restrictions:

This fix is part of the USER-LB package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Can only be used if a lattice-Boltzmann fluid has been created via the fix lb/fluid command, and must come
after this command. Should only be used if the force coupling constant used in fix lb/fluid has been set by the
user; this integration fix cannot be used if the force coupling constant is set by default.

Related commands:

fix lb/fluid, fix lb/pc

Default:

The defaults are force * on on on, and torque * on on on.

(Mackay et al.) Mackay, F. E., Ollila, S.T.T., and Denniston, C., Hydrodynamic Forces Implemented into
LAMMPS through a lattice-Boltzmann fluid, Computer Physics Communications 184 (2013) 2021-2031.

LIGGGHTS Users Manual

fix lb/rigid/pc/sphere command 414

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix lb/viscous command

Syntax:

fix ID group-ID lb/viscous

ID, group-ID are documented in fix command•
lb/viscous = style name of this fix command•

Examples:

fix 1 flow lb/viscous

Description:

This fix is similar to the fix viscous command, and is to be used in place of that command when a
lattice-Boltzmann fluid is present, and the user wishes to integrate the particle motion using one of the built in
LAMMPS integrators.

This fix adds a force, F = - Gamma*(velocity-fluid_velocity), to each atom, where Gamma is the force
coupling constant described in the fix lb/fluid command (which applies an equal and opposite force to the
fluid).

IMPORTANT NOTE: This fix should only be used in conjunction with one of the built in LAMMPS
integrators; it should not be used with the fix lb/pc or fix lb/rigid/pc/sphere integrators, which already include
the hydrodynamic forces. These latter fixes should only be used if the force coupling constant has been set by
the user (instead of using the default value); if the default force coupling value is used, then this fix provides
the only method for adding the hydrodynamic forces to the particles.

For further details, as well as descriptions and results of several test runs, see Mackay et al.. Please include a
citation to this paper if this fix is used in work contributing to published research.

Restart, fix_modify, output, run start/stop, minimize info:

As described in the fix viscous documentation:

"No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
This fix should only be used with damped dynamics minimizers that allow for non-conservative forces. See
the min_style command for details."

Restrictions:

This fix is part of the USER-LB package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Can only be used if a lattice-Boltzmann fluid has been created via the fix lb/fluid command, and must come
after this command.

LIGGGHTS Users Manual

fix lb/viscous command 415

http://lammps.sandia.gov

This fix should not be used if either the fix lb/pc or fix lb/rigid/pc/sphere integrator is used.

Related commands:

fix lb/fluid, fix lb/pc, fix lb/rigid/pc/sphere

Default: none

(Mackay et al.) Mackay, F. E., Ollila, S.T.T., and Denniston, C., Hydrodynamic Forces Implemented into
LAMMPS through a lattice-Boltzmann fluid, Computer Physics Communications 184 (2013) 2021-2031.

LIGGGHTS Users Manual

fix lb/viscous command 416

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix lineforce command

Syntax:

fix ID group-ID lineforce x y z

ID, group-ID are documented in fix command•
lineforce = style name of this fix command•
x y z = direction of line as a 3-vector•

Examples:

fix hold boundary lineforce 0.0 1.0 1.0

Description:

Adjust the forces on each atom in the group so that only the component of force along the linear direction
specified by the vector (x,y,z) remains. This is done by subtracting out components of force in the plane
perpendicular to the line.

If the initial velocity of the atom is 0.0 (or along the line), then it should continue to move along the line
thereafter.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

Restrictions: none

Related commands:

fix planeforce

Default: none

LIGGGHTS Users Manual

fix lineforce command 417

http://lammps.sandia.gov

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix massflow/mesh command

Syntax:

fix id group massflow/mesh mesh mesh-ID vec_side vx vy vz keyword value ...

ID, group-ID are documented in fix command•
massflow/mesh = style name of this fix command•
mesh = obligatory keyword•
mesh-ID = ID of a fix mesh/surface command•
vec_side = obligatory keyword•
vx, vy, vz = vector components defining the "outside" of the mesh•
zero or more keyword/value pairs may be appended to args•
keywords = count or point_at_outlet or append or file or screen or delete_atoms

count value = once or multiple
 once = count particles only once
 multiple = allow particles to be counted multiple times

point_at_outlet pointX pointY pointZ
 pointX pointY pointZ = coordinates of point on the outlet side of the surface

inside_out
 use this in connection with point_at_outlet to flip direction particle counting

file value = filename
append value = filename

 filename = name of the file to print radius, position and velocity values of the particles
screen value = yes or no
delete_atoms value = yes or no

 yes = to remove the particles that pass through the mesh surface

•

Examples:

fix mass all massflow/mesh mesh inface vec_side 0. 0. -1.

fix mass all massflow/mesh mesh inface count once point_at_outlet 0. 0. 0.

LIGGGHTS vs. LAMMPS Info:

This LIGGGHTS command is not available in LAMMPS.

Description:

Fix massflow/mesh tracks how many particles penetrate through a mesh surface, as defined by a fix
mesh/surface command. It counts the total number of particles and the associated mass. Only particles part of
group are eligible for counting.

Particles are counted if they cross from the inner side of the mesh to the outer side of the mesh. The outer side
can be defined by using the keyword vec_side, by specifying a point at the outlet side of the mesh (keyword
point_at_outlet). Note that the vector defined by vec_side does not necessarily have to be perpendicular to the
mesh face.

The following restrictions apply in case vec_side is specified: (i) the fix mesh/surface has to be planar, and (ii)
the vector defined by vec_side may not lie inside the mesh plane.

The following restriction applies in case point_at_outlet is used: the count value has to be set to once.

LIGGGHTS Users Manual

fix massflow/mesh command 418

http://www.cfdem.com
http://lammps.sandia.gov

The keyword point_at_outlet is especially useful in case a cylindrically-shaped surface is used. The
point_at_outlet value should be on the cylinder axis in this case. If you like to track particles moving away
from the cylinder axis, specify the point_at_outlet on the axis, and use the keyword inside_out to flip the
direction.

When count = once, then each particle is only counted once, for count = multiple a particle contributes to
number and mass count each time it crosses the mesh face. This can happen e.g. in the case of periodic
boundary conditions or in re-circulating flow conditions.

The diameter, position and velocity of the particles can be written into a file using the file keyword, by
specifying a filename.

If the screen keyword is used, output by this fix to the screen and logfile can be turned on or off as desired.

If the delete_atoms keyword is used then the particles passing through the mesh surface are deleted at the next
re-neighboring step.

Restart, fix_modify, output, run start/stop, minimize info:

Information about this fix is written to binary restart files .

This fix computes a per-atom vector (the marker) which can be accessed by various output commands. The
per-atom vector (i.e., the marker) can be accessed by dumps by using "f_massflow_ID", . This fix also
computes a global vector of length 6. This vector can be accessed via "f_ID", where ID is the fix id. The first
vector component is equal to the total mass which has crossed the mesh surface, the second vector component
indicates the particle count. The third vector component is equal to the total mass which has crossed the mesh
surface since the last output divived by the time since the last output (i.e., the mass flow rate), the fourth
vector component indicates the particle count since the last output divived by the time since the last output
(i.e., the number rate of particles). The fifth and sixth vector components are the deleted mass and the number
of deleted particles. This vector can also be accessed by various output commands.

Restrictions:

Currently, this feature does not support multi-sphere particles.

Related commands:

compute nparticles/tracer/region

Default:

count = multiple, inside_out =false, delete_atoms = false

LIGGGHTS Users Manual

fix massflow/mesh command 419

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix mesh/surface command

fix mesh/surface/planar command

Syntax:

fix ID group-ID mesh/surface file filename premesh_keywords premesh_values mesh_keywords mesh_values surface_keywords surface_values
fix ID group-ID mesh/surface/planar file filename premesh_keywords premesh_values mesh_keywords mesh_values surface_keywords surface_values

ID, is documented in fix command, the group-ID is ignored for this command.•
mesh/surface or mesh/surface/planar = style name of this fix command•
file = obligatory keyword•
filename = name of STL or VTK file containing the triangle mesh data•
zero or more premesh_keywords/premesh_value pairs may be appended•
premesh_keyword = type or precision or heal or verbose•
type value = atom type (material type) of the wall imported from the STL file precision value = length
mesh nodes this far away at maximum will be recognized as identical (length units) heal value =
auto_remove_duplicates or no verbose value = yes or no zero or more mesh_keywords/mesh_value
pairs may be appended

•

mesh_keyword = scale or move or rotate or temperature

scale value = factor
 factor = factor to scale the mesh in x-, y-, and z-direction (double value)

move values = mx my mz
 mx my mz = move the mesh by this extent in x-, y-, and z-direction (length units)

rotate values = axis ax ay az angle ang
 axis = obligatory keyword
 ax, ay, az = axis vector for rotation (length units)
 angle = obligatory keyword
 ang = angle to rotate the geometry around the specified axis (in degrees)

temperature value = T0
 T0 = Temperature of the wall (temperature units)

•

zero or more surface_keywords/surface_value pairs may be appended•
surface_keyword = surface_vel or surface_ang_vel or curvature

surface_vel values = vx vy vz
 vx vy vz = conveyor belt surface velocity (velocity units)

surface_ang_vel values = origin ox oy oz axis ax ay az omega om
 origin = mandatory keyword
 ox oy oz = origin of rotation (length units)
 axis = mandatory keyword
 ax ay az = axis vector for rotation (length units)
 omega = mandatory keyword
 om = rotaional velocity around specifyied axis (rad/time units)

curvature value = c
 c = maximum angle between mesh faces belonging to the same surface (in degree)

•

Examples:

fix cad all mesh/surface file mesh.stl type 1

LIGGGHTS vs. LAMMPS Info:

This command is not available in LAMMPS.

Description:

LIGGGHTS Users Manual

fix mesh/surface command 420

http://www.cfdem.com
http://lammps.sandia.gov

This fix allows the import of triangual surfeace mesh wall geometry for granular simulations from ASCII STL
files or legacy ASCII VTK files. Style mesh/surface is a general surface mesh, and mesh/surface/planar
represents a planar mesh. mesh/surface/planar requires the mesh to consist of only 1 planar face.

Generall, you can apply scaling, offset and rotation to the imported mesh via keywords scale, move, rotate.
Operations are applied in the order as they are specified. The group-ID is ignored for this command. For
periodic boundaries, the mesh is mapped.

One fix represents one wall with a specific material, where the material is identified via keyword type. If
multiple meshes with different materials are desired, the respective meshes must be imported with different
fix mesh/surface commands.

With the temperature keyword, you can define a constant temperature for a mesh in conjunction with heat
conduction via fix heat/gran. Note that the actual calculation of the heat transfer happens only if you use the
mesh in conjunction with a granular wall, see fix wall/gran.

With the optional surface_vel keyword, you can specify the imported mesh as conveyor belt. The velocity
direction for each mesh face is given by the projection of the conveyor belt velocity parallel to the mesh face,
the velocity magnitude for each mesh face is equal to the conveyor belt velocity. This ensures the model
makes sense also in case the mesh is curved. Likewise, the optional rotation model activated via keyword
surface_ang_vel mimics rotational motion of the mesh (e.g. for modeling a shear cell)

The precision keyword specifies how far away mesh nodes can be at maximum to be recognized as identical.

If LIGGGHTS stalls because of duplicate elements, you can try setting heal to auto_remove_duplicates.
LIGGGHTS will then try to heal the geometry by removing duplicate elements.

IMPORTANT NOTE: You should check the changes to the geometry, e.g. by using a dump mesh/stl
command.

The curvature keyword lets you specify up to which angle between two triangles the triangles should be
treated as belonging to the same surface (e.g. useful for bends). This angle is used to decide if (a) contact
history is copied from one triangle to the other as the contact point proceeds and (b) if edge and corner
interaction is calculated.

Quality checks / error and warning messages:

LIGGGHTS checks a couple of quality criteria upon loading a mesh. LIGGGHTS tries to give you as much
information about the issue as possible.

Warning messages:

There should be no angle < 0.5Â° in any element•
The number of neighbor elements should be <= 5 for any element•
All nodes should be within the simlation box

If any of the obove rules is not fulfilled, a warning is generated. Keyword verbose controls if details about
the warning are written to the screen.

Error messages:

•

The curvature must not be larger than any angle in any mesh element•
Mesh elements must not be duplicate•
Coplanar mesh elements that share an edge must not overlap•
Mesh elements must not leave the simulation domain•

LIGGGHTS Users Manual

fix mesh/surface/planar command 421

If any of the obove rules is not fulfilled, an error is generated and LIGGGHTS halts. Error messages are
always verbose. If LIGGGHTS halts due to the last error, you might think about (a) changing the mesh
import parameters (scale, move, rotate), (b) changing the mesh dynamics if a fix move/mesh is applied or
using boundary m m m

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the STL data to binary restart files to be able to correctly resume the simulation in case the
mesh is moved. None of the fix_modify options are relevant to this fix. No global scalar or vector or
per-atom quantities are stored by this fix for access by various output commands. No parameter of this fix
can be used with the start/stop keywords of the run command. This fix is not invoked during energy
minimization.

Restrictions:

To date, only ASCII STL and VTK files can be read (binary is not supported). In the current
implementation, each processor allocates memory for the whole geometry, which may lead to memory
issues for very large geometries . It is not supported to use both the moving mesh and the conveyor belt
feature.

Related commands:

fix wall/gran

Default: curvature = 0.256235 degrees, precision = 1e-8, verbose = no, heal = no

LIGGGHTS Users Manual

fix mesh/surface/planar command 422

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix mesh/surface/stress command

Syntax:

fix ID group-ID mesh/surface/stress file filename premesh_keywords premesh_values mesh_keywords mesh_values surface_keyword surface_values stress_keywords stress_values

ID, is documented in fix command, the group-ID is ignored for this command.•
mesh/surface/stress = style name of this fix command•
file filename premesh_keywords premesh_values mesh_keywords mesh_values surface_keyword
surface_values are documented in fix mesh/surface.

•

zero or more stress_keyword/value pairs may be appended•
stress_keyword = stress or wear

stress value = on or off
reference_point values = rx ry rz

 rx, ry, rz = coordinates of reference point
wear value = finnie or off

•

Examples:

fix cad all mesh/surface/stress file mesh.stl type 1 wear finnie

LIGGGHTS vs. LAMMPS Info:

This command is not available in LAMMPS.

Description:

This fix is identical to fix mesh/surface except for the fact that the pressure and shear force that the particles in
the fix group exert on each triangle of the mesh is evaluated (which costs a bit of performance). Also, the total
force and torque on the particle is calculated (see output info). The per-element forces can be dumped into
VTK format using dump mesh/vtk.

With the optional stress keyword, stress tracking can be turned off is desired. The reference point for
calculating the body torque can be controlled via the referece_point keyword. The optional wear keyword can
activates a simple qualitative wear model (finnie) - for details on the model, see the seperate
/doc/finnie-wear.pdf. The finnie constant k in Eqn. (4.23) has to be specified as follows:

fix id all property/global k_finnie peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .

 (value_ij=value for the finnie constant between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)

Restart, fix_modify, output, run start/stop, minimize info:

This fix stores a global vector with 6 components for access by various output commands. The first 3
components are equal to the total force on the mesh, the last 3 components store the total torque on the body
exerted by the particles. Other info see fix mesh.

Related commands:

fix mesh/surface fix wall/gran

Default:

LIGGGHTS Users Manual

fix mesh/surface/stress command 423

http://www.cfdem.com
http://lammps.sandia.gov

stress = on reference_point = 0. 0. 0. wear = off

LIGGGHTS Users Manual

fix mesh/surface/stress command 424

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix mesh/surface/stress/servo command

Syntax:

fix ID group-ID mesh/surface/stress/servo file filename premesh_keywords premesh_values mesh_keywords mesh_values surface_keyword surface_values stress_keywords stress_values servo_keywords servo_values

ID, is documented in fix command, the group-ID is ignored for this command.•
mesh/surface/stress/servo = style name of this fix command•
file filename premesh_keywords premesh_values mesh_keywords mesh_values surface_keyword
surface_values stress_keywords stress_values are documented in fix mesh/surface/stress.

•

zero or more servo_keyword/value pairs may be appended servo keywords = com (obligatory) or dim
(obligatory) or ctrlPV (obligatory) or vel_max (obligatory) or kp or ki or kd

com values = x, y, z
 x, y, z = coordinates of the center of mass of the body (distance units)
ctrlPV values = force or torque
 force = use force as controll process value, i.e. control force
 torque = use torque as controll process value, i.e. control torque
axis args = x y z
 x y z = vector direction to apply the controlled mesh motion
 x or y or z can be a variable (see below)
target_val values = val
 val = target value for the controller (force units or torque units, depending on ctrlPV)
vel_max values = v
 v = maximum velocity magnitude for servo wall (velocity units)
kp values = k
 k = proportional constant for PID controller
ki values = k
 k = integral constant for PID controller
kd values = k
 k = differential constant for PID controller
mode values = auto
 auto = use alternative controller algorithm
ratio values = dr
 dr = constant for the alternative controller approach (mode = auto)

•

Examples:

fix servo all mesh/surface/stress/servo file plate.stl type 1 com 0. 0. 0. ctrlPV force axis 0. 0. 1. target_val 10
vel_max 1. kp 5.

LIGGGHTS vs. LAMMPS Info:

This command is not available in LAMMPS.

Description:

This fix implements the functionality of fix mesh/surface/stress but it additionally assumes the mesh being a
servo wall that compacts a particle packing until either a total force (for ctrlPV = force) or a total torque (for
ctrlPV = torque) is acting on the mesh. The target value is defined via keyword target_val. The servo can act
in any dimension (as specified by the axis keyword). Only the direction of the axis is important; it's length is
ignored. A negative value for target_val leads to a wall motion towards negative axis-direction and vice versa.
The user has to specify the center of mass (keyword com) and the maximum velocity allowed for the servo
wall by keyword vel_max. Note that vel_max < skin /(2* timestep) is required.

LIGGGHTS Users Manual

fix mesh/surface/stress/servo command 425

http://www.cfdem.com
http://lammps.sandia.gov

The controller itself is a proportional-integral-derivative (PID) controller which is controlled by 3 constants
kp, ki, kd:

output = kp * error + ki * errorsum + kd * errorchange

where 'error' is the current devation of the controll process value to the target value, 'errorsum' is the time
integration (sum) of the error values and 'errorchange' its derivative. The controller also includes an
"anti-wind-up scheme" which prohibits accumulation of erroneous controller output caused by the integral
part due to unavoidable long-lasting deviations.

By using the keyword mode = auto an alternative controller approach is applied. It is a pure proportional
controller with gain scheduling. In the absence of neighbour particles the servo wall may move with
maximum velocity (defined by vel_max). Otherwise, the maximum wall velocity is defined by ratio *
min(radius) / dt. Approaching target_val the maximum velocity decreases to 0.1 * radio * min(radius) / dt.

Restart, fix_modify, output, run start/stop, minimize info:

This fix stores a global vector with 9 components for access by various output commands. The first 3
components are equal to the total force on the mesh, the next 3 components store the total torque on the mesh.
The last 3 components output the wall position. Furthermore, this fix writes the state of the servo wall to
binary restart files so that a simulation can continue correctly. This fix supports fix_modify with option
integrate = 'start' or 'stop' to start or stop the servo wall integration inbetween two runs. This fix also supports
fix_modify with option target_val = val to change the target value inbetween two runs. This fix also supports
fix_modify with option ctrlParam = kp ki kd to change the controller params inbetween two runs.

Restrictions:

When using this fix, along with scaling or rotate the body, all the servo_keyword/value pairs have to represent
the state after scaling/rotation. Mesh elements may not be deleted in case due to leaving the simulation box for
a fixed boundary. In this case, an error is generated. See boundary command for details.

Related commands:

fix mesh/surface/stress, fix wall/gran

Default:

kp = 1e-2, ki = 0, kd = 0

LIGGGHTS Users Manual

fix mesh/surface/stress/servo command 426

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix meso command

Syntax:

fix ID group-ID meso

ID, group-ID are documented in fix command•
meso = style name of this fix command•

Examples:

fix 1 all meso

Description:

Perform time integration to update position, velocity, internal energy and local density for atoms in the group
each timestep. This fix is needed to time-integrate mesoscopic systems where particles carry internal variables
such as SPH or DPDE.

See this PDF guide to using SPH in LAMMPS.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:

"fix meso/stationary"

Default: none

LIGGGHTS Users Manual

fix meso command 427

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix meso/stationary command

Syntax:

fix ID group-ID meso/stationary

ID, group-ID are documented in fix command•
meso = style name of this fix command•

Examples:

fix 1 boundary meso/stationary

Description:

Perform time integration to update internal energy and local density, but not position or velocity for atoms in
the group each timestep. This fix is needed for SPH simulations to correctly time-integrate fixed boundary
particles which constrain a fluid to a given region in space.

See this PDF guide to using SPH in LAMMPS.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:

"fix meso"

Default: none

LIGGGHTS Users Manual

fix meso/stationary command 428

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix_modify command

Syntax:

fix_modify fix-ID keyword value ...

fix-ID = ID of the fix to modify•
one or more keyword/value pairs may be appended•
keyword = temp or press or energy

temp value = compute ID that calculates a temperature
press value = compute ID that calculates a pressure
energy value = yes or no

•

Examples:

fix_modify 3 temp myTemp press myPress
fix_modify 1 energy yes

Description:

Modify one or more parameters of a previously defined fix. Only specific fix styles support specific
parameters. See the doc pages for individual fix commands for info on which ones support which fix_modify
parameters.

The temp keyword is used to determine how a fix computes temperature. The specified compute ID must have
been previously defined by the user via the compute command and it must be a style of compute that
calculates a temperature. All fixes that compute temperatures define their own compute by default, as
described in their documentation. Thus this option allows the user to override the default method for
computing T.

The press keyword is used to determine how a fix computes pressure. The specified compute ID must have
been previously defined by the user via the compute command and it must be a style of compute that
calculates a pressure. All fixes that compute pressures define their own compute by default, as described in
their documentation. Thus this option allows the user to override the default method for computing P.

For fixes that calculate a contribution to the potential energy of the system, the energy keyword will include
that contribution in thermodynamic output of potential energy. See the thermo_style command for info on
how potential energy is output. The contribution by itself can be printed by using the keyword f_ID in the
thermo_style custom command, where ID is the fix-ID of the appropriate fix. Note that you must use this
setting for a fix if you are using it when performing an energy minimization and if you want the energy and
forces it produces to be part of the optimization criteria.

Restrictions: none

Related commands:

fix, compute temp, compute pressure, thermo_style

Default:

The option defaults are temp = ID defined by fix, press = ID defined by fix, energy = no.

LIGGGHTS Users Manual

fix_modify command 429

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix momentum command

Syntax:

fix ID group-ID momentum N keyword values ...

ID, group-ID are documented in fix command•
momentum = style name of this fix command•
N = adjust the momentum every this many timesteps one or more keyword/value pairs may be
appended

•

keyword = linear or angular

linear values = xflag yflag zflag
 xflag,yflag,zflag = 0/1 to exclude/include each dimension

angular values = none

•

Examples:

fix 1 all momentum 1 linear 1 1 0
fix 1 all momentum 100 linear 1 1 1 angular

Description:

Zero the linear and/or angular momentum of the group of atoms every N timesteps by adjusting the velocities
of the atoms. One (or both) of the linear or angular keywords must be specified.

If the linear keyword is used, the linear momentum is zeroed by subtracting the center-of-mass velocity of the
group from each atom. This does not change the relative velocity of any pair of atoms. One or more
dimensions can be excluded from this operation by setting the corresponding flag to 0.

If the angular keyword is used, the angular momentum is zeroed by subtracting a rotational component from
each atom.

This command can be used to insure the entire collection of atoms (or a subset of them) does not drift or rotate
during the simulation due to random perturbations (e.g. fix langevin thermostatting).

Note that the velocity command can be used to create initial velocities with zero aggregate linear and/or
angular momentum.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

fix recenter, velocity

Default: none

LIGGGHTS Users Manual

fix momentum command 430

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix move command

Syntax:

fix ID group-ID move style args keyword values ...

ID, group-ID are documented in fix command•
move = style name of this fix command•
style = linear or wiggle or rotate or variable

linear args = Vx Vy Vz
 Vx,Vy,Vz = components of velocity vector (velocity units), any component can be specified as NULL

wiggle args = Ax Ay Az period
 Ax,Ay,Az = components of amplitude vector (distance units), any component can be specified as NULL
 period = period of oscillation (time units)

rotate args = Px Py Pz Rx Ry Rz period
 Px,Py,Pz = origin point of axis of rotation (distance units)
 Rx,Ry,Rz = axis of rotation vector
 period = period of rotation (time units)

variable args = v_dx v_dy v_dz v_vx v_vy v_vz
 v_dx,v_dy,v_dz = 3 variable names that calculate x,y,z displacement as function of time, any component can be specified as NULL
 v_vx,v_vy,v_vz = 3 variable names that calculate x,y,z velocity as function of time, any component can be specified as NULL

•

zero or more keyword/value pairs may be appended•
keyword = units

units value = box or lattice

•

Examples:

fix 1 boundary move wiggle 3.0 0.0 0.0 1.0 units box
fix 2 boundary move rotate 0.0 0.0 0.0 0.0 0.0 1.0 5.0
fix 2 boundary move variable v_myx v_myy NULL v_VX v_VY NULL

Description:

Perform updates of position and velocity for atoms in the group each timestep using the specified settings or
formulas, without regard to forces on the atoms. This can be useful for boundary or other atoms, whose
movement can influence nearby atoms.

IMPORTANT NOTE: The atoms affected by this fix should not normally be time integrated by other fixes
(e.g. fix nve, fix nvt), since that will change their positions and velocities twice.

IMPORTANT NOTE: As atoms move due to this fix, they will pass thru periodic boundaries and be
remapped to the other side of the simulation box, just as they would during normal time integration (e.g. via
the fix nve command). It is up to you to decide whether periodic boundaries are appropriate with the kind of
atom motion you are prescribing with this fix.

IMPORTANT NOTE: As dicsussed below, atoms are moved relative to their initial position at the time the fix
is specified. These initial coordinates are stored by the fix in "unwrapped" form, by using the image flags
associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates. See
the Atoms section of the read_data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this fix by using the set image command.

The linear style moves atoms at a constant velocity, so that their position X = (x,y,z) as a function of time is
given in vector notation as

LIGGGHTS Users Manual

fix move command 431

http://lammps.sandia.gov

X(t) = X0 + V * delta

where X0 = (x0,y0,z0) is their position at the time the fix is specified, V is the specified velocity vector with
components (Vx,Vy,Vz), and delta is the time elapsed since the fix was specified. This style also sets the
velocity of each atom to V = (Vx,Vy,Vz). If any of the velocity components is specified as NULL, then the
position and velocity of that component is time integrated the same as the fix nve command would perform,
using the corresponding force component on the atom.

Note that the linear style is identical to using the variable style with an equal-style variable that uses the
vdisplace() function. E.g.

variable V equal 10.0
variable x equal vdisplace(0.0,$V)
fix 1 boundary move variable v_x NULL NULL v_V NULL NULL

The wiggle style moves atoms in an oscillatory fashion, so that their position X = (x,y,z) as a function of time
is given in vector notation as

X(t) = X0 + A sin(omega*delta)

where X0 = (x0,y0,z0) is their position at the time the fix is specified, A is the specified amplitude vector with
components (Ax,Ay,Az), omega is 2 PI / period, and delta is the time elapsed since the fix was specified. This
style also sets the velocity of each atom to the time derivative of this expression. If any of the amplitude
components is specified as NULL, then the position and velocity of that component is time integrated the
same as the fix nve command would perform, using the corresponding force component on the atom.

Note that the wiggle style is identical to using the variable style with equal-style variables that use the
swiggle() and cwiggle() functions. E.g.

variable A equal 10.0
variable T equal 5.0
variable omega equal 2.0*PI/$T
variable x equal swiggle(0.0,$A,$T)
variable v equal v_omega*($A-cwiggle(0.0,$A,$T))
fix 1 boundary move variable v_x NULL NULL v_v NULL NULL

The rotate style rotates atoms around a rotation axis R = (Rx,Ry,Rz) that goes thru a point P = (Px,Py,Pz).
The period of the rotation is also specified. This style also sets the velocity of each atom to (omega cross
Rperp) where omega is its angular velocity around the rotation axis and Rperp is a perpendicular vector from
the rotation axis to the atom. If the defined atom_style assigns an angular velocity to each atom, then each
atom's angular velocity is also set to omega. Note that the direction of rotation for the atoms around the
rotation axis is consistent with the right-hand rule: if your right-hand's thumb points along R, then your fingers
wrap around the axis in the direction of rotation.

The variable style allows the position and velocity components of each atom to be set by formulas specified
via the variable command. Each of the 6 variables is specified as an argument to the fix as v_name, where
name is the variable name that is defined elsewhere in the input script.

Each variable must be of either the equal or atom style. Equal-style variables compute a single numeric
quantity, that can be a function of the timestep as well as of other simulation values. Atom-style variables
compute a numeric quantity for each atom, that can be a function per-atom quantities, such as the atom's
position, as well as of the timestep and other simulation values. Note that this fix stores the original
coordinates of each atom (see note below) so that per-atom quantity can be used in an atom-style variable
formula. See the variable command for details.

The first 3 variables (v_dx,v_dy,v_dz) specified for the variable style are used to calculate a displacement

LIGGGHTS Users Manual

fix move command 432

from the atom's original position at the time the fix was specified. The second 3 variables (v_vx,v_vy,v_vz)
specified are used to compute a velocity for each atom.

Any of the 6 variables can be specified as NULL. If both the displacement and velocity variables for a
particular x,y,z component are specified as NULL, then the position and velocity of that component is time
integrated the same as the fix nve command would perform, using the corresponding force component on the
atom. If only the velocity variable for a component is specified as NULL, then the displacement variable will
be used to set the position of the atom, and its velocity component will not be changed. If only the
displacement variable for a component is specified as NULL, then the velocity variable will be used to set the
velocity of the atom, and the position of the atom will be time integrated using that velocity.

The units keyword determines the meaning of the distance units used to define the linear velocity and wiggle
amplitude and rotate origin. This setting is ignored for the variable style. A box value selects standard units as
defined by the units command, e.g. velocity in Angstroms/fmsec and amplitude and position in Angstroms for
units = real. A lattice value means the velocity units are in lattice spacings per time and the amplitude and
position are in lattice spacings. The lattice command must have been previously used to define the lattice
spacing. Each of these 3 quantities may be dependent on the x,y,z dimension, since the lattice spacings can be
different in x,y,z.

For rRESPA time integration, this fix adjusts the position and velocity of atoms on the outermost rRESPA
level.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the original coordinates of moving atoms to binary restart files, as well as the initial timestep,
so that the motion can be continuous in a restarted simulation. See the read_restart command for info on how
to re-specify a fix in an input script that reads a restart file, so that the operation of the fix continues in an
uninterrupted fashion.

IMPORTANNT NOTE: Because the move positions are a function of the current timestep and the initial
timestep, you cannot reset the timestep to a different value after reading a restart file, if you expect a fix move
command to work in an uninterrupted fashion.

None of the fix_modify options are relevant to this fix.

This fix produces a per-atom array which can be accessed by various output commands. The number of
columns for each atom is 3, and the columns store the original unwrapped x,y,z coords of each atom. The
per-atom values can be accessed on any timestep.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

fix nve, displace_atoms

Default: none

The option default is units = lattice.

LIGGGHTS Users Manual

fix move command 433

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix move/mesh command

Syntax:

fix ID group-ID move/mesh mesh mesh-ID style args keyword values ...

ID is documented in fix command, group-ID is ignored•
move/mesh = style name of this fix command•
mesh = obligatory keyword•
mesh-ID = ID for the fix mesh that the fix move/mesh is applied to•
style = linear or linear/variable or wiggle or riggle or rotate or rotate/variable or viblin or vibrot

linear args = Vx Vy Vz
 Vx,Vy,Vz = components of velocity vector (velocity units)

linear/variable args = var_Vx var_Vy var_Vz
 var_Vx,var_Vy,var_Vz = variables specifying components of velocity vector (velocity units)

wiggle args = amplitude Ax Ay Az period per
 amplitude = obligatory keyword
 Ax,Ay,Az = components of amplitude vector (distance units)
 period = obligatory keyword
 per = period of oscillation (time units)

riggle args = origin Px Py Pz axis ax ay az period per amplitude ampl
 origin = obligatory keyword
 Px,Py,Pz = origin point of axis of rotation (distance units)
 axis = obligatory keyword
 ax,ay,az = axis of rotation vector (distance units)
 period = obligatory keyword
 per = period of rotation (time units)#
 amplitude = obligatory keyword
 ampl = amplitude of riggle movement (grad)

rotate args = origin Px Py Pz axis ax ay az period per
 origin = obligatory keyword
 Px,Py,Pz = origin point of axis of rotation (distance units)
 ax,ay,az = axis of rotation vector (distance units)
 period = obligatory keyword
 per = period of rotation (time units)

rotate/variable args = origin Px Py Pz axis ax ay az omega var_omega
 origin = obligatory keyword
 Px,Py,Pz = origin point of axis of rotation (distance units)
 ax,ay,az = axis of rotation vector (distance units)
 omega = obligatory keyword
 var_omega = variable specifying angular velocity (rad / time units)

viblin args = axis ax ay az order n amplitude C1 ... Cn phase p1 ... pn period per
 axis = obligatory keyword
 ax,ay,az = components of moving direction vector (distance units)(origin 0 0 0)
 order= obligatory keyword
 n= order of trigonometric series n (from 1 to 10)
 amplitude = obligatory keyword
 C1, ..., Cn = amplitude (distance units)
 phase = obligatory keyword
 p1, ...,pn = phase of functionterm (rad) (number of terms is equivalent to order n)
 period = obligatory keyword
 per = period of rotation (time units)

vibrot args = origin Px Py Pz axis ax ay az order n amplitude C1 ... Cn phase p1 ... pn period per
 origin = obligatory keyword
 Px,Py,Pz = origin point of axis of rotation (distance units)
 axis = obligatory keyword
 ax,ay,az = axis of rotation vector
 order= obligatory keyword
 n= order of trigonometric series (from 1 to 10)
 amplitude = obligatory keyword

•

LIGGGHTS Users Manual

fix move/mesh command 434

http://www.cfdem.com
http://lammps.sandia.gov

 C1, ..., Cn = amplitude (rad)
 phase = obligatory keyword
 p1, ...,pn = phase of functionterm (rad) (number of terms is equivalent to order n)
 period = obligatory keyword
 per = period of rotation (time units)

Examples:

fix move all move/mesh mesh cad1 wiggle amplitude -0.1 0. 0. period 0.02
fix move all move/mesh mesh cad1 rotate origin 0. 0. 0. axis 0. 0. 1. period 0.05
fix move all move/mesh mesh cad1 linear 5. 5. 0.
fix move all move/mesh mesh cad1 viblin axis 0. 0. 1 order 5 amplitude 0.4 0.1 0.3 0.1 0.1 phase 1.3 2 0.4 0.1 0 period 0.02
fix move all move/mesh mesh cad1 vibrot origin 0. 0. 0 axis 0. 0. 1 order 2 amplitude 0.4 0.1 phase 1.3 0 period 0.02

LIGGGHTS vs. LAMMPS Info:

This command is not available in LAMMPS.

Description:

Perform updates of position and velocity for mesh elements which are part of the fix_mesh_surface with ID
mesh-ID using the specified settings or formulas. The fix group is ignored for this command.

The linear style moves mesh elements at a constant velocity, so that their position X = (x,y,z) as a function of
time is given in vector notation as

X(t) = X0 + V * delta

where X0 = (x0,y0,z0) is their position at the time the fix is specified, V is the specified velocity vector with
components (Vx,Vy,Vz), and delta is the time elapsed since the fix was specified. This style also sets the
velocity of each atom to V = (Vx,Vy,Vz).

The linear/variable style does the same as the linear style, but uses three variables so that the velocity can be
time-dependant.

The wiggle style moves atoms in an oscillatory fashion, so that their position X = (x,y,z) as a function of time
is given in vector notation as

X(t) = X0 + A sin(omega*delta)

where X0 = (x0,y0,z0) is their position at the time the fix is specified, A is the specified amplitude vector with
components (Ax,Ay,Az), omega is 2 PI / period, and delta is the time elapsed since the fix was specified. This
style also sets the velocity of each element to the time derivative of this expression.

The rotate style rotates around a rotation axis R = (Rx,Ry,Rz) that goes thru a point P = (Px,Py,Pz). The
period of the rotation is also specified. This style also sets the velocity of each element to (omega cross
Rperp) where omega is its angular velocity around the rotation axis and Rperp is a perpendicular vector from
the rotation axis to the atom. Note that the direction of rotation around the rotation axis is consistent with the
right-hand rule: if your right-hand's thumb points along R, then your fingers wrap around the axis in the
direction of rotation.

The rotate/variable style does the same as the rotate style, but uses a variable for the angular velocity so that
the angular velocity can be time-dependant. IMPORTANT NOTE: style rotate takes the period of the rotation
as input, rotate/variable takes angular velocity as input.

The riggle style imposes an oscillatory rotation around a rotation axis R = (Rx,Ry,Rz) that goes thru a point P
= (Px,Py,Pz). The period of the oscillation is specified as well as the amplitude in grad (Â°). This style also

LIGGGHTS Users Manual

fix move/mesh command 435

sets the velocity of each element accordingly.

The viblin style moves meshes in an oscillatory fashion with an vibration function of higher order, so that
their position X = (x,y,z) as a function of time is given in vector notation as

where X0 = (x0,y0,z0) is their position at the time the fix is specified, n represents the order of the
trigonometric series, Cn is the specified amplitude along the direction given by axis = (ax,ay,az). The vector D
is the unit vector of axis. The angular velocity omega is 2 PI / period, and delta is the time elapsed since the
fix was specified. This style also sets the velocity of each element to the time derivative of this expression.

The vibrot style generates an oscillatory rotation around a rotation axis = (ax,ay,az) that goes thru a point
origin = (Px,Py,Pz). The period of the oscillation is used to calculate omega, the amplitudes Cn and the phase
phase n are given in rad. The change of rotation angle per time gamma(t) is described by trigonometric series
of order n. The formula for this change is

This style also sets the velocity of each element accordingly

NOTE: If a dangerous tri neighbor list build is detected, this may be due to the fact that the geometry is
moved too close to a region where particle insertion is taking place so that initial interpenetration happens
when the particles are inserted.

NOTE: When moving a mesh element, not only the node positions are moved but also a couple of other
vectors. So moving one mesh element is more costly as one particle.

Superposition of multiple fix move/mesh commands:

It is possible to superpose multiple fix move/mesh commands. In this case, the reference frame for the second
move command moves along as the mesh is moved by the first move command etc. E.g. for style rotate, the
origin of the rotation axis would be in local reference frame.

Example: A mesh should rotate around a central axis and additionally revolve around its center of mass. The
first move command should be the rotation around the central axis, the second move command the revolution
around the center of mass of the mesh.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the original coordinates of moving elements to binary restart files, so that the motion can be
continuous in a restarted simulation. See the read_restart command for info on how to re-specify a fix in an
input script that reads a restart file, so that the operation of the fix continues in an uninterrupted fashion.

None of the fix_modify options are relevant to this fix.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

LIGGGHTS Users Manual

fix move/mesh command 436

Restrictions:

If multiple fix move/mesh movements are superposed onto one mesh, they have to be deleted in reverse order
of their creation Mesh elements may not be deleted in case due to leaving the simulation box for a fixed
boundary. In this case, an error is generated. See boundary command for details.

Related commands:

fix mesh/surface

Default: none

LIGGGHTS Users Manual

fix move/mesh command 437

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix msst command

Syntax:

fix ID group-ID msst dir shockvel keyword value ...

ID, group-ID are documented in fix command•
msst = style name of this fix•
dir = x or y or z•
shockvel = shock velocity (strictly positive, distance/time units)•
zero or more keyword value pairs may be appended•
keyword = q or mu or p0 or v0 or e0 or tscale

q value = cell mass-like parameter (mass^2/distance^4 units)
mu value = artificial viscosity (mass/length/time units)
p0 value = initial pressure in the shock equations (pressure units)
v0 value = initial simulation cell volume in the shock equations (distance^3 units)
e0 value = initial total energy (energy units)
tscale value = reduction in initial temperature (unitless fraction between 0.0 and 1.0)

•

Examples:

fix 1 all msst y 100.0 q 1.0e5 mu 1.0e5
fix 2 all msst z 50.0 q 1.0e4 mu 1.0e4 v0 4.3419e+03 p0 3.7797e+03 e0 -9.72360e+02 tscale 0.01

Description:

This command performs the Multi-Scale Shock Technique (MSST) integration to update positions and
velocities each timestep to mimic a compressive shock wave passing over the system. See (Reed) for a
detailed description of this method. The MSST varies the cell volume and temperature in such a way as to
restrain the system to the shock Hugoniot and the Rayleigh line. These restraints correspond to the
macroscopic conservation laws dictated by a shock front. shockvel determines the steady shock velocity that
will be simulated.

To perform a simulation, choose a value of q that provides volume compression on the timescale of 100 fs to
1 ps. If the volume is not compressing, either the shock speed is chosen to be below the material sound speed
or p0 has been chosen inaccurately. Volume compression at the start can be sped up by using a non-zero value
of tscale. Use the smallest value of tscale that results in compression.

Under some special high-symmetry conditions, the pressure (volume) and/or temperature of the system may
oscillate for many cycles even with an appropriate choice of mass-like parameter q. Such oscillations have
physical significance in some cases. The optional mu keyword adds an artificial viscosity that helps break the
system symmetry to equilibrate to the shock Hugoniot and Rayleigh line more rapidly in such cases.

tscale is a factor between 0 and 1 that determines what fraction of thermal kinetic energy is converted to
compressive strain kinetic energy at the start of the simulation. Setting this parameter to a non-zero value may
assist in compression at the start of simulations where it is slow to occur.

If keywords e0, p0,or v0 are not supplied, these quantities will be calculated on the first step, after the energy
specified by tscale is removed. The value of e0 is not used in the dynamical equations, but is used in
calculating the deviation from the Hugoniot.

Values of shockvel less than a critical value determined by the material response will not have compressive
solutions. This will be reflected in lack of significant change of the volume in the MSST.

LIGGGHTS Users Manual

 fix msst command 438

http://lammps.sandia.gov

For all pressure styles, the simulation box stays orthogonal in shape. Parrinello-Rahman boundary conditions
(tilted box) are supported by LAMMPS, but are not implemented for MSST.

This fix computes a temperature and pressure each timestep. To do this, the fix creates its own computes of
style "temp" and "pressure", as if these commands had been issued:

compute fix-ID_temp group-ID temp
compute fix-ID_press group-ID pressure fix-ID_temp

See the compute temp and compute pressure commands for details. Note that the IDs of the new computes are
the fix-ID + underscore + "temp" or fix_ID + underscore + "press". The group for the new computes is "all".

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of all internal variables to binary restart files. See the read_restart command for info
on how to re-specify a fix in an input script that reads a restart file, so that the operation of the fix continues in
an uninterrupted fashion.

The progress of the MSST can be monitored by printing the global scalar and global vector quantities
computed by the fix.

The scalar is the cumulative energy change due to the fix. This is also the energy added to the potential energy
by the fix_modify energy command. With this command, the thermo keyword etotal prints the conserved
quantity of the MSST dynamic equations. This can be used to test if the MD timestep is sufficiently small for
accurate integration of the dynamic equations. See also thermo_style command.

The global vector contains four values in this order:

[dhugoniot, drayleigh, lagrangian_speed, lagrangian_position]

dhugoniot is the departure from the Hugoniot (temperature units).1.
drayleigh is the departure from the Rayleigh line (pressure units).2.
lagrangian_speed is the laboratory-frame Lagrangian speed (particle velocity) of the computational
cell (velocity units).

3.

lagrangian_position is the computational cell position in the reference frame moving at the shock
speed. This is usually a good estimate of distance of the computational cell behind the shock front.

4.

To print these quantities to the log file with descriptive column headers, the following LAMMPS commands
are suggested:

fix msst all msst z
fix_modify msst energy yes
variable dhug equal f_msst[1]
variable dray equal f_msst[2]
variable lgr_vel equal f_msst[3]
variable lgr_pos equal f_msst[4]
thermo_style custom step temp ke pe lz pzz etotal v_dhug v_dray v_lgr_vel v_lgr_pos f_msst

These fixes compute a global scalar and a global vector of 4 quantities, which can be accessed by various
output commands. The scalar values calculated by this fix are "extensive"; the vector values are "intensive".

Restrictions:

This fix style is part of the SHOCK package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

LIGGGHTS Users Manual

 fix msst command 439

All cell dimensions must be periodic. This fix can not be used with a triclinic cell. The MSST fix has been
tested only for the group-ID all.

Related commands:

fix nphug, fix deform

Default:

The keyword defaults are q = 10, mu = 0, tscale = 0.01. p0, v0, and e0 are calculated on the first step.

(Reed) Reed, Fried, and Joannopoulos, Phys. Rev. Lett., 90, 235503 (2003).

LIGGGHTS Users Manual

 fix msst command 440

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix neb command

Syntax:

fix ID group-ID neb Kspring

ID, group-ID are documented in fix command•
neb = style name of this fix command•
Kspring = inter-replica spring constant (force/distance units)•

Examples:

fix 1 active neb 10.0

Description:

Add inter-replica forces to atoms in the group for a multi-replica simulation run via the neb command to
perform a nudged elastic band (NEB) calculation for transition state finding. Hi-level explanations of NEB are
given with the neb command and in Section_howto 5 of the manual. The fix neb command must be used with
the "neb" command to define how inter-replica forces are computed.

Only the N atoms in the fix group experience inter-replica forces. Atoms in the two end-point replicas do not
experience these forces, but those in intermediate replicas do. During the initial stage of NEB, the 3N-length
vector of interatomic forces Fi = -Grad(V) acting on the atoms of each intermediate replica I is altered, as
described in the (Henkelman1) paper, to become:

Fi = -Grad(V) + (Grad(V) dot That) That + Kspring (|Ri+i - Ri| - |Ri - Ri-1|) That

Ri are the atomic coordinates of replica I; Ri-1 and Ri+1 are the coordinates of its neighbor replicas. That (t
with a hat over it) is the unit "tangent" vector for replica I which is a function of Ri, Ri-1, Ri+1, and the
potential energy of the 3 replicas; it points roughly in the direction of (Ri+i - Ri-1); see the (Henkelman1)
paper for details.

The first two terms in the above equation are the component of the interatomic forces perpendicular to the
tangent vector. The last term is a spring force between replica I and its neighbors, parallel to the tangent
vector direction with the specified spring constant Kspring.

The effect of the first two terms is to push the atoms of each replica toward the minimum energy path (MEP)
of conformational states that transition over the energy barrier. The MEP for an energy barrier is defined as a
sequence of 3N-dimensional states which cross the barrier at its saddle point, each of which has a potential
energy gradient parallel to the MEP itself.

The effect of the last term is to push each replica away from its two neighbors in a direction along the MEP,
so that the final set of states are equidistant from each other.

During the second stage of NEB, the forces on the N atoms in the replica nearest the top of the energy barrier
are altered so that it climbs to the top of the barrier and finds the saddle point. The forces on atoms in this
replica are described in the (Henkelman2) paper, and become:

Fi = -Grad(V) + 2 (Grad(V) dot That) That

The inter-replica forces for the other replicas are unchanged from the first equation.

LIGGGHTS Users Manual

fix neb command 441

http://lammps.sandia.gov

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, as invoked by the minimize command
via the neb command.

Restrictions:

This command can only be used if LAMMPS was built with the REPLICA package. See the Making
LAMMPS section for more info on packages.

Related commands:

neb

Default: none

(Henkelman1) Henkelman and Jonsson, J Chem Phys, 113, 9978-9985 (2000).

(Henkelman2) Henkelman, Uberuaga, Jonsson, J Chem Phys, 113, 9901-9904 (2000).

LIGGGHTS Users Manual

fix neb command 442

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nvt/eff command

fix npt/eff command

fix nph/eff command

Syntax:

fix ID group-ID style_name keyword value ...

ID, group-ID are documented in fix command•
style_name = nvt/eff or npt/eff or nph/eff

one or more keyword value pairs may be appended
keyword = temp or iso or aniso or tri or x or y or z or xy or yz or xz or couple or tchain or pchain or mtk or tloop or ploop or nreset or drag or dilate

temp values = Tstart Tstop Tdamp
 Tstart,Tstop = external temperature at start/end of run
 Tdamp = temperature damping parameter (time units)

iso or aniso or tri values = Pstart Pstop Pdamp
 Pstart,Pstop = scalar external pressure at start/end of run (pressure units)
 Pdamp = pressure damping parameter (time units)

x or y or z or xy or yz or xz values = Pstart Pstop Pdamp
 Pstart,Pstop = external stress tensor component at start/end of run (pressure units)
 Pdamp = stress damping parameter (time units)

couple = none or xyz or xy or yz or xz
tchain value = length of thermostat chain (1 = single thermostat)
pchain values = length of thermostat chain on barostat (0 = no thermostat)
mtk value = yes or no = add in MTK adjustment term or not
tloop value = number of sub-cycles to perform on thermostat
ploop value = number of sub-cycles to perform on barostat thermostat
nreset value = reset reference cell every this many timesteps
drag value = drag factor added to barostat/thermostat (0.0 = no drag)
dilate value = all or partial

•

Examples:

fix 1 all nvt/eff temp 300.0 300.0 0.1
fix 1 part npt/eff temp 300.0 300.0 0.1 iso 0.0 0.0 1.0
fix 2 part npt/eff temp 300.0 300.0 0.1 tri 5.0 5.0 1.0
fix 2 ice nph/eff x 1.0 1.0 0.5 y 2.0 2.0 0.5 z 3.0 3.0 0.5 yz 0.1 0.1 0.5 xz 0.2 0.2 0.5 xy 0.3 0.3 0.5 nreset 1000

Description:

These commands perform time integration on Nose-Hoover style non-Hamiltonian equations of motion for
nuclei and electrons in the group for the electron force field model. The fixes are designed to generate
positions and velocities sampled from the canonical (nvt), isothermal-isobaric (npt), and isenthalpic (nph)
ensembles. This is achieved by adding some dynamic variables which are coupled to the particle velocities
(thermostatting) and simulation domain dimensions (barostatting). In addition to basic thermostatting and
barostatting, these fixes can also create a chain of thermostats coupled to the particle thermostat, and another
chain of thermostats coupled to the barostat variables. The barostat can be coupled to the overall box volume,
or to individual dimensions, including the xy, xz and yz tilt dimensions. The external pressure of the barostat
can be specified as either a scalar pressure (isobaric ensemble) or as components of a symmetric stress tensor
(constant stress ensemble). When used correctly, the time-averaged temperature and stress tensor of the
particles will match the target values specified by Tstart/Tstop and Pstart/Pstop.

LIGGGHTS Users Manual

fix nvt/eff command 443

http://lammps.sandia.gov

The operation of these fixes is exactly like that described by the fix nvt, npt, and nph commands, except that
the radius and radial velocity of electrons are also updated. Likewise the temperature and pressure calculated
by the fix, using the computes it creates (as discussed in the fix nvt, npt, and nph doc page), are performed
with computes that include the eFF contribution to the temperature or kinetic energy from the electron radial
velocity.

IMPORTANT NOTE: there are two different pressures that can be reported for eFF when defining the
pair_style (see pair eff/cut to understand these settings), one (default) that considers electrons do not
contribute radial virial components (i.e. electrons treated as incompressible 'rigid' spheres) and one that does.
The radial electronic contributions to the virials are only tallied if the flexible pressure option is set, and this
will affect both global and per-atom quantities. In principle, the true pressure of a system is somewhere in
between the rigid and the flexible eFF pressures, but, for most cases, the difference between these two
pressures will not be significant over long-term averaged runs (i.e. even though the energy partitioning
changes, the total energy remains similar).

IMPORTANT NOTE: currently, there is no available option for the user to set or create temperature
distributions that include the radial electronic degrees of freedom with the velocity command, so the the user
must allow for these degrees of freedom to equilibrate (i.e. equi-partitioning of energy) through time
integration.

Restart, fix_modify, output, run start/stop, minimize info:

See the doc page for the fix nvt, npt, and nph commands for details.

Restrictions:

This fix is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Other restriction discussed on the doc page for the fix nvt, npt, and nph commands also apply.

IMPORTANT NOTE: The temperature for systems (regions or groups) with only electrons and no nuclei is
0.0 (i.e. not defined) in the current temperature calculations, a practical example would be a uniform electron
gas or a very hot plasma, where electrons remain delocalized from the nuclei. This is because, even though
electron virials are included in the temperature calculation, these are averaged over the nuclear degrees of
freedom only. In such cases a corrective term must be added to the pressure to get the correct kinetic
contribution.

Related commands:

fix nvt, fix nph, fix npt, fix_modify, run_style

Default:

The keyword defaults are tchain = 3, pchain = 3, mtk = yes, tloop = ploop = 1, nreset = 0, drag = 0.0, dilate =
all, and couple = none.

(Martyna) Martyna, Tobias and Klein, J Chem Phys, 101, 4177 (1994).

(Parrinello) Parrinello and Rahman, J Appl Phys, 52, 7182 (1981).

LIGGGHTS Users Manual

fix nph/eff command 444

(Tuckerman) Tuckerman, Alejandre, Lopez-Rendon, Jochim, and Martyna, J Phys A: Math Gen, 39, 5629
(2006).

(Shinoda) Shinoda, Shiga, and Mikami, Phys Rev B, 69, 134103 (2004).

LIGGGHTS Users Manual

fix nph/eff command 445

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nvt command

fix nvt/cuda command

fix nvt/omp command

fix npt command

fix npt/cuda command

fix npt/omp command

fix nph command

fix nph/omp command

Syntax:

fix ID group-ID style_name keyword value ...

ID, group-ID are documented in fix command•
style_name = nvt or npt or nph

one or more keyword value pairs may be appended
keyword = temp or iso or aniso or tri or x or y or z or xy or yz or xz or couple or tchain or pchain or mtk or tloop or ploop or nreset or drag or dilate or scalexy or scaleyz or scalexz or flip or fixedpoint

temp values = Tstart Tstop Tdamp
 Tstart,Tstop = external temperature at start/end of run
 Tdamp = temperature damping parameter (time units)

iso or aniso or tri values = Pstart Pstop Pdamp
 Pstart,Pstop = scalar external pressure at start/end of run (pressure units)
 Pdamp = pressure damping parameter (time units)

x or y or z or xy or yz or xz values = Pstart Pstop Pdamp
 Pstart,Pstop = external stress tensor component at start/end of run (pressure units)
 Pdamp = stress damping parameter (time units)

couple = none or xyz or xy or yz or xz
tchain value = N

 N = length of thermostat chain (1 = single thermostat)
pchain values = N

 N length of thermostat chain on barostat (0 = no thermostat)
mtk value = yes or no = add in MTK adjustment term or not
tloop value = M

 M = number of sub-cycles to perform on thermostat
ploop value = M

 M = number of sub-cycles to perform on barostat thermostat
nreset value = reset reference cell every this many timesteps
drag value = Df

 Df = drag factor added to barostat/thermostat (0.0 = no drag)
dilate value = dilate-group-ID

 dilate-group-ID = only dilate atoms in this group due to barostat volume changes
scalexy value = yes or no = scale xy with ly
scaleyz value = yes or no = scale yz with lz
scalexz value = yes or no = scale xz with lz
flip value = yes or no = allow or disallow box flips when it becomes highly skewed
fixedpoint values = x y z

 x,y,z = perform barostat dilation/contraction around this point (distance units)

•

LIGGGHTS Users Manual

fix nvt command 446

http://lammps.sandia.gov

Examples:

fix 1 all nvt temp 300.0 300.0 100.0
fix 1 water npt temp 300.0 300.0 100.0 iso 0.0 0.0 1000.0
fix 2 jello npt temp 300.0 300.0 100.0 tri 5.0 5.0 1000.0
fix 2 ice nph x 1.0 1.0 0.5 y 2.0 2.0 0.5 z 3.0 3.0 0.5 yz 0.1 0.1 0.5 xz 0.2 0.2 0.5 xy 0.3 0.3 0.5 nreset 1000

Description:

These commands perform time integration on Nose-Hoover style non-Hamiltonian equations of motion which
are designed to generate positions and velocities sampled from the canonical (nvt), isothermal-isobaric (npt),
and isenthalpic (nph) ensembles. This updates the position and velocity for atoms in the group each timestep.

The thermostatting and barostatting is achieved by adding some dynamic variables which are coupled to the
particle velocities (thermostatting) and simulation domain dimensions (barostatting). In addition to basic
thermostatting and barostatting, these fixes can also create a chain of thermostats coupled to the particle
thermostat, and another chain of thermostats coupled to the barostat variables. The barostat can be coupled to
the overall box volume, or to individual dimensions, including the xy, xz and yz tilt dimensions. The external
pressure of the barostat can be specified as either a scalar pressure (isobaric ensemble) or as components of a
symmetric stress tensor (constant stress ensemble). When used correctly, the time-averaged temperature and
stress tensor of the particles will match the target values specified by Tstart/Tstop and Pstart/Pstop.

The equations of motion used are those of Shinoda et al in (Shinoda), which combine the hydrostatic
equations of Martyna, Tobias and Klein in (Martyna) with the strain energy proposed by Parrinello and
Rahman in (Parrinello). The time integration schemes closely follow the time-reversible measure-preserving
Verlet and rRESPA integrators derived by Tuckerman et al. in (Tuckerman).

The thermostat parameters for fix styles nvt and npt is specified using the temp keyword. Other
thermostat-related keywords are tchain, tloop and drag, which are discussed below.

The thermostat is applied to only the translational degrees of freedom for the particles. The translational
degrees of freedom can also have a bias velocity removed before thermostatting takes place; see the
description below. The desired temperature at each timestep is a ramped value during the run from Tstart to
Tstop. The Tdamp parameter is specified in time units and determines how rapidly the temperature is relaxed.
For example, a value of 10.0 means to relax the temperature in a timespan of (roughly) 10 time units (e.g. tau
or fmsec or psec - see the units command). The atoms in the fix group are the only ones whose velocities and
positions are updated by the velocity/position update portion of the integration.

IMPORTANT NOTE: A Nose-Hoover thermostat will not work well for arbitrary values of Tdamp. If Tdamp
is too small, the temperature can fluctuate wildly; if it is too large, the temperature will take a very long time
to equilibrate. A good choice for many models is a Tdamp of around 100 timesteps. Note that this is NOT the
same as 100 time units for most units settings.

The barostat parameters for fix styles npt and nph is specified using one or more of the iso, aniso, tri, x, y, z,
xy, xz, yz, and couple keywords. These keywords give you the ability to specify all 6 components of an
external stress tensor, and to couple various of these components together so that the dimensions they
represent are varied together during a constant-pressure simulation.

Other barostat-related keywords are pchain, mtk, ploop, nreset, drag, and dilate, which are discussed below.

Orthogonal simulation boxes have 3 adjustable dimensions (x,y,z). Triclinic (non-orthogonal) simulation
boxes have 6 adjustable dimensions (x,y,z,xy,xz,yz). The create_box, read data, and read_restart commands
specify whether the simulation box is orthogonal or non-orthogonal (triclinic) and explain the meaning of the
xy,xz,yz tilt factors.

LIGGGHTS Users Manual

fix nph/omp command 447

The target pressures for each of the 6 components of the stress tensor can be specified independently via the x,
y, z, xy, xz, yz keywords, which correspond to the 6 simulation box dimensions. For each component, the
external pressure or tensor component at each timestep is a ramped value during the run from Pstart to Pstop.
If a target pressure is specified for a component, then the corresponding box dimension will change during a
simulation. For example, if the y keyword is used, the y-box length will change. If the xy keyword is used, the
xy tilt factor will change. A box dimension will not change if that component is not specified, although you
have the option to change that dimension via the fix deform command.

Note that in order to use the xy, xz, or yz keywords, the simulation box must be triclinic, even if its initial tilt
factors are 0.0.

For all barostat keywords, the Pdamp parameter operates like the Tdamp parameter, determining the time
scale on which pressure is relaxed. For example, a value of 10.0 means to relax the pressure in a timespan of
(roughly) 10 time units (e.g. tau or fmsec or psec - see the units command).

IMPORTANT NOTE: A Nose-Hoover barostat will not work well for arbitrary values of Pdamp. If Pdamp is
too small, the pressure and volume can fluctuate wildly; if it is too large, the pressure will take a very long
time to equilibrate. A good choice for many models is a Pdamp of around 1000 timesteps. Note that this is
NOT the same as 1000 time units for most units settings.

Regardless of what atoms are in the fix group (the only atoms which are time integrated), a global pressure or
stress tensor is computed for all atoms. Similarly, when the size of the simulation box is changed, all atoms
are re-scaled to new positions, unless the keyword dilate is specified with a dilate-group-ID for a group that
represents a subset of the atoms. This can be useful, for example, to leave the coordinates of atoms in a solid
substrate unchanged and controlling the pressure of a surrounding fluid. This option should be used with care,
since it can be unphysical to dilate some atoms and not others, because it can introduce large, instantaneous
displacements between a pair of atoms (one dilated, one not) that are far from the dilation origin. Also note
that for atoms not in the fix group, a separate time integration fix like fix nve or fix nvt can be used on them,
independent of whether they are dilated or not.

The couple keyword allows two or three of the diagonal components of the pressure tensor to be "coupled"
together. The value specified with the keyword determines which are coupled. For example, xz means the Pxx
and Pzz components of the stress tensor are coupled. Xyz means all 3 diagonal components are coupled.
Coupling means two things: the instantaneous stress will be computed as an average of the corresponding
diagonal components, and the coupled box dimensions will be changed together in lockstep, meaning coupled
dimensions will be dilated or contracted by the same percentage every timestep. The Pstart, Pstop, Pdamp
parameters for any coupled dimensions must be identical. Couple xyz can be used for a 2d simulation; the z
dimension is simply ignored.

The iso, aniso, and tri keywords are simply shortcuts that are equivalent to specifying several other keywords
together.

The keyword iso means couple all 3 diagonal components together when pressure is computed (hydrostatic
pressure), and dilate/contract the dimensions together. Using "iso Pstart Pstop Pdamp" is the same as
specifying these 4 keywords:

x Pstart Pstop Pdamp
y Pstart Pstop Pdamp
z Pstart Pstop Pdamp
couple xyz

The keyword aniso means x, y, and z dimensions are controlled independently using the Pxx, Pyy, and Pzz
components of the stress tensor as the driving forces, and the specified scalar external pressure. Using "aniso
Pstart Pstop Pdamp" is the same as specifying these 4 keywords:

LIGGGHTS Users Manual

fix nph/omp command 448

x Pstart Pstop Pdamp
y Pstart Pstop Pdamp
z Pstart Pstop Pdamp
couple none

The keyword tri means x, y, z, xy, xz, and yz dimensions are controlled independently using their individual
stress components as the driving forces, and the specified scalar pressure as the external normal stress. Using
"tri Pstart Pstop Pdamp" is the same as specifying these 7 keywords:

x Pstart Pstop Pdamp
y Pstart Pstop Pdamp
z Pstart Pstop Pdamp
xy 0.0 0.0 Pdamp
yz 0.0 0.0 Pdamp
xz 0.0 0.0 Pdamp
couple none

In some cases (e.g. for solids) the pressure (volume) and/or temperature of the system can oscillate
undesirably when a Nose/Hoover barostat and thermostat is applied. The optional drag keyword will damp
these oscillations, although it alters the Nose/Hoover equations. A value of 0.0 (no drag) leaves the
Nose/Hoover formalism unchanged. A non-zero value adds a drag term; the larger the value specified, the
greater the damping effect. Performing a short run and monitoring the pressure and temperature is the best
way to determine if the drag term is working. Typically a value between 0.2 to 2.0 is sufficient to damp
oscillations after a few periods. Note that use of the drag keyword will interfere with energy conservation and
will also change the distribution of positions and velocities so that they do not correspond to the nominal
NVT, NPT, or NPH ensembles.

An alternative way to control initial oscillations is to use chain thermostats. The keyword tchain determines
the number of thermostats in the particle thermostat. A value of 1 corresponds to the original Nose-Hoover
thermostat. The keyword pchain specifies the number of thermostats in the chain thermostatting the barostat
degrees of freedom. A value of 0 corresponds to no thermostatting of the barostat variables.

The mtk keyword controls whether or not the correction terms due to Martyna, Tuckerman, and Klein are
included in the equations of motion (Martyna). Specifying no reproduces the original Hoover barostat, whose
volume probability distribution function differs from the true NPT and NPH ensembles by a factor of 1/V.
Hence using yes is more correct, but in many cases the difference is negligible.

The keyword tloop can be used to improve the accuracy of integration scheme at little extra cost. The initial
and final updates of the thermostat variables are broken up into tloop substeps, each of length dt/tloop. This
corresponds to using a first-order Suzuki-Yoshida scheme (Tuckerman2006). The keyword ploop does the
same thing for the barostat thermostat.

The keyword nreset controls how often the reference dimensions used to define the strain energy are reset. If
this keyword is not used, or is given a value of zero, then the reference dimensions are set to those of the
initial simulation domain and are never changed. If the simulation domain changes significantly during the
simulation, then the final average pressure tensor will differ significantly from the specified values of the
external stress tensor. A value of nstep means that every nstep timesteps, the reference dimensions are set to
those of the current simulation domain.

The scaleyz, scalexz, and scalexy keywords control whether or not the corresponding tilt factors are scaled
with the associated box dimensions when barostatting triclinic periodic cells. The default values yes will turn
on scaling, which corresponds to adjusting the linear dimensions of the cell while preserving its shape.
Choosing no ensures that the tilt factors are not scaled with the box dimensions. See below for restrictions and
default values in different situations. In older versions of LAMMPS, scaling of tilt factors was not performed.
The old behavior can be recovered by setting all three scale keywords to no.

LIGGGHTS Users Manual

fix nph/omp command 449

The flip keyword allows the tilt factors for a triclinic box to exceed half the distance of the parallel box length,
as discussed below. If the flip value is set to yes, the bound is enforced by flipping the box when it is
exceeded. If the flip value is set to no, the tilt will continue to change without flipping. Note that if applied
stress induces large deformations (e.g. in a liquid), this means the box shape can tilt dramatically and
LAMMPS will run less efficiently, due to the large volume of communication needed to acquire ghost atoms
around a processor's irregular-shaped sub-domain. For extreme values of tilt, LAMMPS may also lose atoms
and generate an error.

The fixedpoint keyword specifies the fixed point for barostat volume changes. By default, it is the center of
the box. Whatever point is chosen will not move during the simulation. For example, if the lower periodic
boundaries pass through (0,0,0), and this point is provided to fixedpoint, then the lower periodic boundaries
will remain at (0,0,0), while the upper periodic boundaries will move twice as far. In all cases, the particle
trajectories are unaffected by the chosen value, except for a time-dependent constant translation of positions.

IMPORTANT NOTE: Using a barostat coupled to tilt dimensions xy, xz, yz can sometimes result in arbitrarily
large values of the tilt dimensions, i.e. a dramatically deformed simulation box. LAMMPS allows the tilt
factors to grow a small amount beyond the normal limit of half the box length (0.6 times the box length), and
then performs a box "flip" to an equivalent periodic cell. See the discussion of the flip keyword above, to
allow this bound to be exceeded, if desired.

The flip operation is described in more detail in the doc page for fix deform. Both the barostat dynamics and
the atom trajectories are unaffected by this operation. However, if a tilt factor is incremented by a large
amount (1.5 times the box length) on a single timestep, LAMMPS can not accomodate this event and will
terminate the simulation with an error. This error typically indicates that there is something badly wrong with
how the simulation was constructed, such as specifying values of Pstart that are too far from the current stress
value, or specifying a timestep that is too large. Triclinic barostatting should be used with care. This also is
true for other barostat styles, although they tend to be more forgiving of insults. In particular, it is important to
recognize that equilibrium liquids can not support a shear stress and that equilibrium solids can not support
shear stresses that exceed the yield stress.

One exception to this rule is if the 1st dimension in the tilt factor (x for xy) is non-periodic. In that case, the
limits on the tilt factor are not enforced, since flipping the box in that dimension does not change the atom
positions due to non-periodicity. In this mode, if you tilt the system to extreme angles, the simulation will
simply become inefficient due to the highly skewed simulation box.

IMPORTANT NOTE: Unlike the fix temp/berendsen command which performs thermostatting but NO time
integration, these fixes perform thermostatting/barostatting AND time integration. Thus you should not use
any other time integration fix, such as fix nve on atoms to which this fix is applied. Likewise, the temp options
for fix nvt and fix npt should not normally be used on atoms that also have their temperature controlled by
another fix - e.g. by fix langevin or fix temp/rescale commands.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting and barostatting.

These fixes compute a temperature and pressure each timestep. To do this, the fix creates its own computes of
style "temp" and "pressure", as if one of these two sets of commands had been issued:

compute fix-ID_temp group-ID temp
compute fix-ID_press group-ID pressure fix-ID_temp

compute fix-ID_temp all temp
compute fix-ID_press all pressure fix-ID_temp

See the compute temp and compute pressure commands for details. Note that the IDs of the new computes are
the fix-ID + underscore + "temp" or fix_ID + underscore + "press". For fix nvt, the group for the new

LIGGGHTS Users Manual

fix nph/omp command 450

computes is the same as the fix group. For fix nph and fix npt, the group for the new computes is "all" since
pressure is computed for the entire system.

Note that these are NOT the computes used by thermodynamic output (see the thermo_style command) with
ID = thermo_temp and thermo_press. This means you can change the attributes of this fix's temperature or
pressure via the compute_modify command or print this temperature or pressure during thermodynamic
output via the thermo_style custom command using the appropriate compute-ID. It also means that changing
attributes of thermo_temp or thermo_press will have no effect on this fix.

Like other fixes that perform thermostatting, fix nvt and fix npt can be used with compute commands that
calculate a temperature after removing a "bias" from the atom velocities. E.g. removing the center-of-mass
velocity from a group of atoms or only calculating temperature on the x-component of velocity or only
calculating temperature for atoms in a geometric region. This is not done by default, but only if the
fix_modify command is used to assign a temperature compute to this fix that includes such a bias term. See
the doc pages for individual compute commands to determine which ones include a bias. In this case, the
thermostat works in the following manner: the current temperature is calculated taking the bias into account,
bias is removed from each atom, thermostatting is performed on the remaining thermal degrees of freedom,
and the bias is added back in.

These fixes can be used with either the verlet or respa integrators. When using one of the barostat fixes with
respa, LAMMPS uses an integrator constructed according to the following factorization of the Liouville
propagator (for two rRESPA levels):

This factorization differs somewhat from that of Tuckerman et al., in that the barostat is only updated at the
outermost rRESPA level, whereas Tuckerman's factorization requires splitting the pressure into pieces
corresponding to the forces computed at each rRESPA level. In theory, the latter method will exhibit better
numerical stability. In practice, because Pdamp is normally chosen to be a large multiple of the outermost
rRESPA timestep, the barostat dynamics are not the limiting factor for numerical stability. Both factorizations
are time-reversible and can be shown to preserve the phase space measure of the underlying non-Hamiltonian
equations of motion.

The fix npt and fix nph commands can be used with rigid bodies or mixtures of rigid bodies and non-rigid
particles (e.g. solvent). But there are also fix rigid/npt and fix rigid/nph commands, which are typically a more
natural choice. See the doc page for those commands for more discussion of the various ways to do this.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

LIGGGHTS Users Manual

fix nph/omp command 451

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

These fixes writes the state of all the thermostat and barostat variables to binary restart files. See the
read_restart command for info on how to re-specify a fix in an input script that reads a restart file, so that the
operation of the fix continues in an uninterrupted fashion.

The fix_modify temp and press options are supported by these fixes. You can use them to assign a compute
you have defined to this fix which will be used in its thermostatting or barostatting procedure, as described
above. If you do this, note that the kinetic energy derived from the compute temperature should be consistent
with the virial term computed using all atoms for the pressure. LAMMPS will warn you if you choose to
compute temperature on a subset of atoms.

IMPORTANT NOTE: If both the temp and press keywords are used in a single thermo_modify command (or
in two separate commands), then the order in which the keywords are specified is important. Note that a
pressure compute defines its own temperature compute as an argument when it is specified. The temp
keyword will override this (for the pressure compute being used by fix npt), but only if the temp keyword
comes after the press keyword. If the temp keyword comes before the press keyword, then the new pressure
compute specified by the press keyword will be unaffected by the temp setting.

The fix_modify energy option is supported by these fixes to add the energy change induced by Nose/Hoover
thermostatting and barostatting to the system's potential energy as part of thermodynamic output.

These fixes compute a global scalar and a global vector of quantities, which can be accessed by various output
commands. The scalar value calculated by these fixes is "extensive"; the vector values are "intensive".

The scalar is the cumulative energy change due to the fix.

The vector stores internal Nose/Hoover thermostat and barostat variables. The number and meaning of the
vector values depends on which fix is used and the settings for keywords tchain and pchain, which specify the
number of Nose/Hoover chains for the thermostat and barostat. If no thermostatting is done, then tchain is 0.
If no barostatting is done, then pchain is 0. In the following list, "ndof" is 0, 1, 3, or 6, and is the number of
degrees of freedom in the barostat. Its value is 0 if no barostat is used, else its value is 6 if any off-diagonal
stress tensor component is barostatted, else its value is 1 if couple xyz is used or couple xy for a 2d simulation,
otherwise its value is 3.

The order of values in the global vector and their meaning is as follows. The notation means there are tchain
values for eta, followed by tchain for eta_dot, followed by ndof for omega, etc:

eta[tchain] = particle thermostat displacements (unitless)•
eta_dot[tchain] = particle thermostat velocities (1/time units)•
omega[ndof] = barostat displacements (unitless)•
omega_dot[ndof] = barostat velocities (1/time units)•
etap[pchain] = barostat thermostat displacements (unitless)•
etap_dot[pchain] = barostat thermostat velocities (1/time units)•

LIGGGHTS Users Manual

fix nph/omp command 452

PE_eta[tchain] = potential energy of each particle thermostat displacement (energy units)•
KE_eta_dot[tchain] = kinetic energy of each particle thermostat velocity (energy units)•
PE_omega[ndof] = potential energy of each barostat displacement (energy units)•
KE_omega_dot[ndof] = kinetic energy of each barostat velocity (energy units)•
PE_etap[pchain] = potential energy of each barostat thermostat displacement (energy units)•
KE_etap_dot[pchain] = kinetic energy of each barostat thermostat velocity (energy units)•
PE_strain[1] = scalar strain energy (energy units)•

These fixes can ramp their external temperature and pressure over multiple runs, using the start and stop
keywords of the run command. See the run command for details of how to do this.

These fixes are not invoked during energy minimization.

Restrictions:

X, y, z cannot be barostatted if the associated dimension is not periodic. Xy, xz, and yz can only be barostatted
if the simulation domain is triclinic and the 2nd dimension in the keyword (y dimension in xy) is periodic. Z,
xz, and yz, cannot be barostatted for 2D simulations. The create_box, read data, and read_restart commands
specify whether the simulation box is orthogonal or non-orthogonal (triclinic) and explain the meaning of the
xy,xz,yz tilt factors.

For the temp keyword, the final Tstop cannot be 0.0 since it would make the external T = 0.0 at some timestep
during the simulation which is not allowed in the Nose/Hoover formulation.

The scaleyz yes and scalexz yes keyword/value pairs can not be used for 2D simulations. scaleyz yes, scalexz
yes, and scalexy yes options can only be used if the 2nd dimension in the keyword is periodic, and if the tilt
factor is not coupled to the barostat via keywords tri, yz, xz, and xy.

Related commands:

fix nve, fix_modify, run_style

Default:

The keyword defaults are tchain = 3, pchain = 3, mtk = yes, tloop = ploop = 1, nreset = 0, drag = 0.0, dilate =
all, couple = none, scaleyz = scalexz = scalexy = yes if periodic in 2nd dimension and not coupled to barostat,
otherwise no.

(Martyna) Martyna, Tobias and Klein, J Chem Phys, 101, 4177 (1994).

(Parrinello) Parrinello and Rahman, J Appl Phys, 52, 7182 (1981).

(Tuckerman) Tuckerman, Alejandre, Lopez-Rendon, Jochim, and Martyna, J Phys A: Math Gen, 39, 5629
(2006).

(Shinoda) Shinoda, Shiga, and Mikami, Phys Rev B, 69, 134103 (2004).

LIGGGHTS Users Manual

fix nph/omp command 453

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nph/asphere command

fix nph/asphere/omp command

Syntax:

fix ID group-ID nph/asphere args keyword value ...

ID, group-ID are documented in fix command•
nph/asphere = style name of this fix command•
additional barostat related keyword/value pairs from the fix nph command can be appended•

Examples:

fix 1 all nph/asphere iso 0.0 0.0 1000.0
fix 2 all nph/asphere x 5.0 5.0 1000.0
fix 2 all nph/asphere x 5.0 5.0 1000.0 drag 0.2
fix 2 water nph/asphere aniso 0.0 0.0 1000.0 dilate partial

Description:

Perform constant NPH integration to update position, velocity, orientation, and angular velocity each timestep
for aspherical or ellipsoidal particles in the group using a Nose/Hoover pressure barostat. P is pressure; H is
enthalpy. This creates a system trajectory consistent with the isenthalpic ensemble.

This fix differs from the fix nph command, which assumes point particles and only updates their position and
velocity.

Additional parameters affecting the barostat are specified by keywords and values documented with the fix
nph command. See, for example, discussion of the aniso, and dilate keywords.

The particles in the fix group are the only ones whose velocities and positions are updated by the
velocity/position update portion of the NPH integration.

Regardless of what particles are in the fix group, a global pressure is computed for all particles. Similarly,
when the size of the simulation box is changed, all particles are re-scaled to new positions, unless the keyword
dilate is specified with a value of partial, in which case only the particles in the fix group are re-scaled. The
latter can be useful for leaving the coordinates of particles in a solid substrate unchanged and controlling the
pressure of a surrounding fluid.

This fix computes a temperature and pressure each timestep. To do this, the fix creates its own computes of
style "temp/asphere" and "pressure", as if these commands had been issued:

compute fix-ID_temp all temp/asphere
compute fix-ID_press all pressure fix-ID_temp

See the compute temp/asphere and compute pressure commands for details. Note that the IDs of the new
computes are the fix-ID + underscore + "temp" or fix_ID + underscore + "press", and the group for the new
computes is "all" since pressure is computed for the entire system.

Note that these are NOT the computes used by thermodynamic output (see the thermo_style command) with
ID = thermo_temp and thermo_press. This means you can change the attributes of this fix's temperature or
pressure via the compute_modify command or print this temperature or pressure during thermodynamic

LIGGGHTS Users Manual

fix nph/asphere command 454

http://lammps.sandia.gov

output via the thermo_style custom command using the appropriate compute-ID. It also means that changing
attributes of thermo_temp or thermo_press will have no effect on this fix.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the Nose/Hoover barostat to binary restart files. See the read_restart command for
info on how to re-specify a fix in an input script that reads a restart file, so that the operation of the fix
continues in an uninterrupted fashion.

The fix_modify temp and press options are supported by this fix. You can use them to assign a compute you
have defined to this fix which will be used in its thermostatting or barostatting procedure. If you do this, note
that the kinetic energy derived from the compute temperature should be consistent with the virial term
computed using all atoms for the pressure. LAMMPS will warn you if you choose to compute temperature on
a subset of atoms.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
barostatting to the system's potential energy as part of thermodynamic output.

This fix computes the same global scalar and global vector of quantities as does the fix nph command.

This fix can ramp its target pressure over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

This fix is part of the ASPHERE package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This fix requires that atoms store torque and angular momementum and a quaternion as defined by the
atom_style ellipsoid command.

All particles in the group must be finite-size. They cannot be point particles, but they can be aspherical or
spherical as defined by their shape attribute.

Related commands:

fix nph, fix nve_asphere, fix nvt_asphere, fix npt_asphere, fix_modify

LIGGGHTS Users Manual

fix nph/asphere/omp command 455

Default: none

LIGGGHTS Users Manual

fix nph/asphere/omp command 456

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nph/sphere command

fix nph/sphere/omp command

Syntax:

fix ID group-ID nph/sphere args keyword value ...

ID, group-ID are documented in fix command•
nph/sphere = style name of this fix command•
additional barostat related keyword/value pairs from the fix nph command can be appended•

Examples:

fix 1 all nph/sphere iso 0.0 0.0 1000.0
fix 2 all nph/sphere x 5.0 5.0 1000.0
fix 2 all nph/sphere x 5.0 5.0 1000.0 drag 0.2
fix 2 water nph/sphere aniso 0.0 0.0 1000.0 dilate partial

Description:

Perform constant NPH integration to update position, velocity, and angular velocity each timestep for
finite-size spherical particles in the group using a Nose/Hoover pressure barostat. P is pressure; H is enthalpy.
This creates a system trajectory consistent with the isenthalpic ensemble.

This fix differs from the fix nph command, which assumes point particles and only updates their position and
velocity.

Additional parameters affecting the barostat are specified by keywords and values documented with the fix
nph command. See, for example, discussion of the aniso, and dilate keywords.

The particles in the fix group are the only ones whose velocities and positions are updated by the
velocity/position update portion of the NPH integration.

Regardless of what particles are in the fix group, a global pressure is computed for all particles. Similarly,
when the size of the simulation box is changed, all particles are re-scaled to new positions, unless the keyword
dilate is specified with a value of partial, in which case only the particles in the fix group are re-scaled. The
latter can be useful for leaving the coordinates of particles in a solid substrate unchanged and controlling the
pressure of a surrounding fluid.

This fix computes a temperature and pressure each timestep. To do this, the fix creates its own computes of
style "temp/sphere" and "pressure", as if these commands had been issued:

compute fix-ID_temp all temp/sphere
compute fix-ID_press all pressure fix-ID_temp

See the compute temp/sphere and compute pressure commands for details. Note that the IDs of the new
computes are the fix-ID + underscore + "temp" or fix_ID + underscore + "press", and the group for the new
computes is "all" since pressure is computed for the entire system.

Note that these are NOT the computes used by thermodynamic output (see the thermo_style command) with
ID = thermo_temp and thermo_press. This means you can change the attributes of this fix's temperature or
pressure via the compute_modify command or print this temperature or pressure during thermodynamic

LIGGGHTS Users Manual

fix nph/sphere command 457

http://lammps.sandia.gov

output via the thermo_style custom command using the appropriate compute-ID. It also means that changing
attributes of thermo_temp or thermo_press will have no effect on this fix.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the Nose/Hoover barostat to binary restart files. See the read_restart command for
info on how to re-specify a fix in an input script that reads a restart file, so that the operation of the fix
continues in an uninterrupted fashion.

The fix_modify temp and press options are supported by this fix. You can use them to assign a compute you
have defined to this fix which will be used in its thermostatting or barostatting procedure. If you do this, note
that the kinetic energy derived from the compute temperature should be consistent with the virial term
computed using all atoms for the pressure. LAMMPS will warn you if you choose to compute temperature on
a subset of atoms.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
barostatting to the system's potential energy as part of thermodynamic output.

This fix computes the same global scalar and global vector of quantities as does the fix nph command.

This fix can ramp its target pressure over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

This fix requires that atoms store torque and angular velocity (omega) and a radius as defined by the
atom_style sphere command.

All particles in the group must be finite-size spheres. They cannot be point particles.

Related commands:

fix nph, fix nve_sphere, fix nvt_sphere, fix npt_sphere, fix_modify

Default: none

LIGGGHTS Users Manual

fix nph/sphere/omp command 458

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nphug command

fix nphug/omp command

Syntax:

fix ID group-ID nphug keyword value ...

ID, group-ID are documented in fix command

one or more keyword value pairs may be appended
keyword = temp or iso or aniso or tri or x or y or z or couple or tchain or pchain or mtk or tloop or ploop or nreset or drag or dilate or scaleyz or scalexz or scalexy

temp values = Value1 Value2 Tdamp
 Value1, Value2 = Nose-Hoover target temperatures, ignored by Hugoniostat
 Tdamp = temperature damping parameter (time units)

iso or aniso or tri values = Pstart Pstop Pdamp
 Pstart,Pstop = scalar external pressures, must be equal (pressure units)
 Pdamp = pressure damping parameter (time units)

x or y or z or xy or yz or xz values = Pstart Pstop Pdamp
 Pstart,Pstop = external stress tensor components, must be equal (pressure units)
 Pdamp = stress damping parameter (time units)

couple = none or xyz or xy or yz or xz
tchain value = length of thermostat chain (1 = single thermostat)
pchain values = length of thermostat chain on barostat (0 = no thermostat)
mtk value = yes or no = add in MTK adjustment term or not
tloop value = number of sub-cycles to perform on thermostat
ploop value = number of sub-cycles to perform on barostat thermostat
nreset value = reset reference cell every this many timesteps
drag value = drag factor added to barostat/thermostat (0.0 = no drag)
dilate value = all or partial
scaleyz value = yes or no = scale yz with lz
scalexz value = yes or no = scale xz with lz
scalexy value = yes or no = scale xy with ly

•

Examples:

fix myhug all nphug temp 1.0 1.0 10.0 z 40.0 40.0 70.0
fix myhug all nphug temp 1.0 1.0 10.0 iso 40.0 40.0 70.0 drag 200.0 tchain 1 pchain 0

Description:

This command is a variant of the Nose-Hoover fix npt fix style. It performs time integration of the
Hugoniostat equations of motion developed by Ravelo et al. (Ravelo). These equations compress the system
to a state with average axial stress or pressure equal to the specified target value and that satisfies the
Rankine-Hugoniot (RH) jump conditions for steady shocks.

The compression can be performed either hydrostatically (using keyword iso, aniso, or tri) or uniaxially
(using keywords x, y, or z). In the hydrostatic case, the cell dimensions change dynamically so that the average
axial stress in all three directions converges towards the specified target value. In the uniaxial case, the chosen
cell dimension changes dynamically so that the average axial stress in that direction converges towards the
target value. The other two cell dimensions are kept fixed (zero lateral strain).

This leads to the following additional restrictions on the keywords:

One and only one of the following keywords should be used: iso, aniso, tri, x, y, z•
The specified initial and final target pressures must be the same.•
The keywords xy, xz, yz may not be used.•

LIGGGHTS Users Manual

fix nphug command 459

http://lammps.sandia.gov

The only admissible value for the couple keyword is xyz, which has the same effect as keyword iso•
The temp keyword must be used to specify the time constant for kinetic energy relaxation, but initial
and final target temperature values are ignored.

•

Essentially, a Hugoniostat simulation is an NPT simulation in which the user-specified target temperature is
replaced with a time-dependent target temperature Tt obtained from the following equation:

where T and Tt are the instantaneous and target temperatures, P and P0 are the instantaneous and reference
pressures or axial stresses, depending on whether hydrostatic or uniaxial compression is being performed, V
and V0 are the instantaneous and reference volumes, E and E0 are the instantaneous and reference internal
energy (potential plus kinetic), Ndof is the number of degrees of freedom used in the definition of
temperature, and kB is the Boltzmann constant. Delta is the negative deviation of the instantaneous
temperature from the target temperature. When the system reaches a stable equilibrium, the value of Delta
should fluctuate about zero.

The values of E0, V0, and P0 are the instantaneous values at the start of the simulation. These can be
overridden using the fix_modify keywords e0, v0, and p0 described below.

IMPORTANT NOTE: Unlike the fix temp/berendsen command which performs thermostatting but NO time
integration, this fix performs thermostatting/barostatting AND time integration. Thus you should not use any
other time integration fix, such as fix nve on atoms to which this fix is applied. Likewise, this fix should not
be used on atoms that have their temperature controlled by another fix - e.g. by fix langevin or fix
temp/rescale commands.

This fix computes a temperature and pressure at each timestep. To do this, the fix creates its own computes of
style "temp" and "pressure", as if one of these two sets of commands had been issued:

compute fix-ID_temp group-ID temp
compute fix-ID_press group-ID pressure fix-ID_temp

compute fix-ID_temp all temp
compute fix-ID_press all pressure fix-ID_temp

See the compute temp and compute pressure commands for details. Note that the IDs of the new computes are
the fix-ID + underscore + "temp" or fix_ID + underscore + "press". The group for the new computes is "all"
since pressure is computed for the entire system.

Note that these are NOT the computes used by thermodynamic output (see the thermo_style command) with
ID = thermo_temp and thermo_press. This means you can change the attributes of this fix's temperature or
pressure via the compute_modify command or print this temperature or pressure during thermodynamic
output via the thermo_style custom command using the appropriate compute-ID. It also means that changing
attributes of thermo_temp or thermo_press will have no effect on this fix.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

LIGGGHTS Users Manual

fix nphug/omp command 460

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the values of E0, V0, and P0, as well as the state of all the thermostat and barostat variables to
binary restart files. See the read_restart command for info on how to re-specify a fix in an input script that
reads a restart file, so that the operation of the fix continues in an uninterrupted fashion.

The fix_modify e0, v0 and p0 keywords can be used to define the values of E0, V0, and P0. Note the the
values for e0 and v0 are extensive, and so must correspond to the total energy and volume of the entire
system, not energy and volume per atom. If any of these quantities are not specified, then the instantaneous
value in the system at the start of the simulation is used.

The fix_modify temp and press options are supported by these fixes. You can use them to assign a compute
you have defined to this fix which will be used in its thermostatting or barostatting procedure, as described
above. If you do this, note that the kinetic energy derived from the compute temperature should be consistent
with the virial term computed using all atoms for the pressure. LAMMPS will warn you if you choose to
compute temperature on a subset of atoms.

The fix_modify energy option is supported by these fixes to add the energy change induced by Nose/Hoover
thermostatting and barostatting to the system's potential energy as part of thermodynamic output. Either way,
this energy is *not* included in the definition of internal energy E when calculating the value of Delta in the
above equation.

These fixes compute a global scalar and a global vector of quantities, which can be accessed by various output
commands. The scalar value calculated by these fixes is "extensive"; the vector values are "intensive".

The scalar is the cumulative energy change due to the fix.

The vector stores three quantities unique to this fix (Delta, Us, and up), followed by all the internal
Nose/Hoover thermostat and barostat variables defined for fix_style npt. Delta is the deviation of the
temperature from the target temperature, given by the above equation. Us and up are the shock and particle
velocity corresponding to a steady shock calculated from the RH conditions. They have units of distance/time.

Restrictions:

This fix style is part of the SHOCK package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

All the usual restrictions for fix_style npt apply, plus the additional ones mentioned above.

Related commands:

fix msst, fix npt, fix_modify

Default:

LIGGGHTS Users Manual

fix nphug/omp command 461

The keyword defaults are the same as those for fix npt

(Ravelo) Ravelo, Holian, Germann and Lomdahl, Phys Rev B, 70, 014103 (2004).

LIGGGHTS Users Manual

fix nphug/omp command 462

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix npt/asphere command

fix npt/asphere/omp command

Syntax:

fix ID group-ID npt/asphere keyword value ...

ID, group-ID are documented in fix command•
npt/asphere = style name of this fix command•
additional thermostat and barostat related keyword/value pairs from the fix npt command can be
appended

•

Examples:

fix 1 all npt/asphere temp 300.0 300.0 100.0 iso 0.0 0.0 1000.0
fix 2 all npt/asphere temp 300.0 300.0 100.0 x 5.0 5.0 1000.0
fix 2 all npt/asphere temp 300.0 300.0 100.0 x 5.0 5.0 1000.0 drag 0.2
fix 2 water npt/asphere temp 300.0 300.0 100.0 aniso 0.0 0.0 1000.0 dilate partial

Description:

Perform constant NPT integration to update position, velocity, orientation, and angular velocity each timestep
for aspherical or ellipsoidal particles in the group using a Nose/Hoover temperature thermostat and
Nose/Hoover pressure barostat. P is pressure; T is temperature. This creates a system trajectory consistent
with the isothermal-isobaric ensemble.

This fix differs from the fix npt command, which assumes point particles and only updates their position and
velocity.

The thermostat is applied to both the translational and rotational degrees of freedom for the aspherical
particles, assuming a compute is used which calculates a temperature that includes the rotational degrees of
freedom (see below). The translational degrees of freedom can also have a bias velocity removed from them
before thermostatting takes place; see the description below.

Additional parameters affecting the thermostat and barostat are specified by keywords and values documented
with the fix npt command. See, for example, discussion of the temp, iso, aniso, and dilate keywords.

The particles in the fix group are the only ones whose velocities and positions are updated by the
velocity/position update portion of the NPT integration.

Regardless of what particles are in the fix group, a global pressure is computed for all particles. Similarly,
when the size of the simulation box is changed, all particles are re-scaled to new positions, unless the keyword
dilate is specified with a value of partial, in which case only the particles in the fix group are re-scaled. The
latter can be useful for leaving the coordinates of particles in a solid substrate unchanged and controlling the
pressure of a surrounding fluid.

This fix computes a temperature and pressure each timestep. To do this, the fix creates its own computes of
style "temp/asphere" and "pressure", as if these commands had been issued:

compute fix-ID_temp all temp/asphere
compute fix-ID_press all pressure fix-ID_temp

LIGGGHTS Users Manual

fix npt/asphere command 463

http://lammps.sandia.gov

See the compute temp/asphere and compute pressure commands for details. Note that the IDs of the new
computes are the fix-ID + underscore + "temp" or fix_ID + underscore + "press", and the group for the new
computes is "all" since pressure is computed for the entire system.

Note that these are NOT the computes used by thermodynamic output (see the thermo_style command) with
ID = thermo_temp and thermo_press. This means you can change the attributes of this fix's temperature or
pressure via the compute_modify command or print this temperature or pressure during thermodynamic
output via the thermo_style custom command using the appropriate compute-ID. It also means that changing
attributes of thermo_temp or thermo_press will have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that calculate a
temperature after removing a "bias" from the atom velocities. E.g. removing the center-of-mass velocity from
a group of atoms or only calculating temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by default, but only if the fix_modify command
is used to assign a temperature compute to this fix that includes such a bias term. See the doc pages for
individual compute commands to determine which ones include a bias. In this case, the thermostat works in
the following manner: the current temperature is calculated taking the bias into account, bias is removed from
each atom, thermostatting is performed on the remaining thermal degrees of freedom, and the bias is added
back in.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the Nose/Hoover thermostat and barostat to binary restart files. See the read_restart
command for info on how to re-specify a fix in an input script that reads a restart file, so that the operation of
the fix continues in an uninterrupted fashion.

The fix_modify temp and press options are supported by this fix. You can use them to assign a compute you
have defined to this fix which will be used in its thermostatting or barostatting procedure. If you do this, note
that the kinetic energy derived from the compute temperature should be consistent with the virial term
computed using all atoms for the pressure. LAMMPS will warn you if you choose to compute temperature on
a subset of atoms.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting and barostatting to the system's potential energy as part of thermodynamic output.

This fix computes the same global scalar and global vector of quantities as does the fix npt command.

This fix can ramp its target temperature and pressure over multiple runs, using the start and stop keywords of
the run command. See the run command for details of how to do this.

LIGGGHTS Users Manual

fix npt/asphere/omp command 464

This fix is not invoked during energy minimization.

Restrictions:

This fix is part of the ASPHERE package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This fix requires that atoms store torque and angular momementum and a quaternion as defined by the
atom_style ellipsoid command.

All particles in the group must be finite-size. They cannot be point particles, but they can be aspherical or
spherical as defined by their shape attribute.

Related commands:

fix npt, fix nve_asphere, fix nvt_asphere, fix_modify

Default: none

LIGGGHTS Users Manual

fix npt/asphere/omp command 465

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix npt/sphere command

fix npt/sphere/omp command

Syntax:

fix ID group-ID npt/sphere keyword value ...

ID, group-ID are documented in fix command•
npt/sphere = style name of this fix command•
additional thermostat and barostat related keyword/value pairs from the fix npt command can be
appended

•

Examples:

fix 1 all npt/sphere temp 300.0 300.0 100.0 iso 0.0 0.0 1000.0
fix 2 all npt/sphere temp 300.0 300.0 100.0 x 5.0 5.0 1000.0
fix 2 all npt/sphere temp 300.0 300.0 100.0 x 5.0 5.0 1000.0 drag 0.2
fix 2 water npt/sphere temp 300.0 300.0 100.0 aniso 0.0 0.0 1000.0 dilate partial

Description:

Perform constant NPT integration to update position, velocity, and angular velocity each timestep for
finite-sizex spherical particles in the group using a Nose/Hoover temperature thermostat and Nose/Hoover
pressure barostat. P is pressure; T is temperature. This creates a system trajectory consistent with the
isothermal-isobaric ensemble.

This fix differs from the fix npt command, which assumes point particles and only updates their position and
velocity.

The thermostat is applied to both the translational and rotational degrees of freedom for the spherical particles,
assuming a compute is used which calculates a temperature that includes the rotational degrees of freedom
(see below). The translational degrees of freedom can also have a bias velocity removed from them before
thermostatting takes place; see the description below.

Additional parameters affecting the thermostat and barostat are specified by keywords and values documented
with the fix npt command. See, for example, discussion of the temp, iso, aniso, and dilate keywords.

The particles in the fix group are the only ones whose velocities and positions are updated by the
velocity/position update portion of the NPT integration.

Regardless of what particles are in the fix group, a global pressure is computed for all particles. Similarly,
when the size of the simulation box is changed, all particles are re-scaled to new positions, unless the keyword
dilate is specified with a value of partial, in which case only the particles in the fix group are re-scaled. The
latter can be useful for leaving the coordinates of particles in a solid substrate unchanged and controlling the
pressure of a surrounding fluid.

This fix computes a temperature and pressure each timestep. To do this, the fix creates its own computes of
style "temp/sphere" and "pressure", as if these commands had been issued:

compute fix-ID_temp all temp/sphere
compute fix-ID_press all pressure fix-ID_temp

LIGGGHTS Users Manual

fix npt/sphere command 466

http://lammps.sandia.gov

See the compute temp/sphere and compute pressure commands for details. Note that the IDs of the new
computes are the fix-ID + underscore + "temp" or fix_ID + underscore + "press", and the group for the new
computes is "all" since pressure is computed for the entire system.

Note that these are NOT the computes used by thermodynamic output (see the thermo_style command) with
ID = thermo_temp and thermo_press. This means you can change the attributes of this fix's temperature or
pressure via the compute_modify command or print this temperature or pressure during thermodynamic
output via the thermo_style custom command using the appropriate compute-ID. It also means that changing
attributes of thermo_temp or thermo_press will have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that calculate a
temperature after removing a "bias" from the atom velocities. E.g. removing the center-of-mass velocity from
a group of atoms or only calculating temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by default, but only if the fix_modify command
is used to assign a temperature compute to this fix that includes such a bias term. See the doc pages for
individual compute commands to determine which ones include a bias. In this case, the thermostat works in
the following manner: the current temperature is calculated taking the bias into account, bias is removed from
each atom, thermostatting is performed on the remaining thermal degrees of freedom, and the bias is added
back in.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the Nose/Hoover thermostat and barostat to binary restart files. See the read_restart
command for info on how to re-specify a fix in an input script that reads a restart file, so that the operation of
the fix continues in an uninterrupted fashion.

The fix_modify temp and press options are supported by this fix. You can use them to assign a compute you
have defined to this fix which will be used in its thermostatting or barostatting procedure. If you do this, note
that the kinetic energy derived from the compute temperature should be consistent with the virial term
computed using all atoms for the pressure. LAMMPS will warn you if you choose to compute temperature on
a subset of atoms.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting and barostatting to the system's potential energy as part of thermodynamic output.

This fix computes the same global scalar and global vector of quantities as does the fix npt command.

This fix can ramp its target temperature and pressure over multiple runs, using the start and stop keywords of
the run command. See the run command for details of how to do this.

LIGGGHTS Users Manual

fix npt/sphere/omp command 467

This fix is not invoked during energy minimization.

Restrictions:

This fix requires that atoms store torque and angular velocity (omega) and a radius as defined by the
atom_style sphere command.

All particles in the group must be finite-size spheres. They cannot be point particles.

Related commands:

fix npt, fix nve_sphere, fix nvt_sphere, fix npt_asphere, fix_modify

Default: none

LIGGGHTS Users Manual

fix npt/sphere/omp command 468

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nve/asphere command

Syntax:

fix ID group-ID nve/asphere

ID, group-ID are documented in fix command•
nve/asphere = style name of this fix command•

Examples:

fix 1 all nve/asphere

Description:

Perform constant NVE integration to update position, velocity, orientation, and angular velocity for aspherical
particles in the group each timestep. V is volume; E is energy. This creates a system trajectory consistent with
the microcanonical ensemble.

This fix differs from the fix nve command, which assumes point particles and only updates their position and
velocity.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the ASPHERE package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This fix requires that atoms store torque and angular momementum and a quaternion as defined by the
atom_style ellipsoid command.

All particles in the group must be finite-size. They cannot be point particles, but they can be aspherical or
spherical as defined by their shape attribute.

Related commands:

fix nve, fix nve/sphere

Default: none

LIGGGHTS Users Manual

fix nve/asphere command 469

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nve/asphere/noforce command

Syntax:

fix ID group-ID nve/asphere/noforce

ID, group-ID are documented in fix command•
nve/asphere/noforce = style name of this fix command•

Examples:

fix 1 all nve/asphere/noforce

Description:

Perform updates of position and orientation, but not velocity or angular momentum for atoms in the group
each timestep. In other words, the force and torque on the atoms is ignored and their velocity and angular
momentum are not updated. The atom velocities and angularm momenta are used to update their positions and
orientation.

This is useful as an implicit time integrator for Fast Lubrication Dynamics, since the velocity and angular
momentum are updated by the pair_style lubricuteU command.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the ASPHERE package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This fix requires that atoms store torque and angular momementum and a quaternion as defined by the
atom_style ellipsoid command.

All particles in the group must be finite-size. They cannot be point particles, but they can be aspherical or
spherical as defined by their shape attribute.

Related commands:

fix nve/noforce, fix nve/asphere

Default: none

LIGGGHTS Users Manual

fix nve/asphere/noforce command 470

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nve/body command

Syntax:

fix ID group-ID nve/body

ID, group-ID are documented in fix command•
nve/body = style name of this fix command•

Examples:

fix 1 all nve/body

Description:

Perform constant NVE integration to update position, velocity, orientation, and angular velocity for body
particles in the group each timestep. V is volume; E is energy. This creates a system trajectory consistent with
the microcanonical ensemble. See Section_howto 14 of the manual and the body doc page for more details on
using body particles.

This fix differs from the fix nve command, which assumes point particles and only updates their position and
velocity.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the BODY package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This fix requires that atoms store torque and angular momementum and a quaternion as defined by the
atom_style body command.

All particles in the group must be body particles. They cannot be point particles.

Related commands:

fix nve, fix nve/sphere, fix nve/asphere

Default: none

LIGGGHTS Users Manual

fix nve/body command 471

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nve/eff command

Syntax:

fix ID group-ID nve/eff

ID, group-ID are documented in fix command•
nve/eff = style name of this fix command•

Examples:

fix 1 all nve/eff

Description:

Perform constant NVE integration to update position and velocity for nuclei and electrons in the group for the
electron force field model. V is volume; E is energy. This creates a system trajectory consistent with the
microcanonical ensemble.

The operation of this fix is exactly like that described by the fix nve command, except that the radius and
radial velocity of electrons are also updated.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:

fix nve, fix nvt/eff, fix npt/eff

Default: none

LIGGGHTS Users Manual

fix nve/eff command 472

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nve command

fix nve/cuda command

fix nve/omp command

Syntax:

fix ID group-ID nve

ID, group-ID are documented in fix command•
nve = style name of this fix command•

Examples:

fix 1 all nve

Description:

Perform constant NVE integration to update position and velocity for atoms in the group each timestep. V is
volume; E is energy. This creates a system trajectory consistent with the microcanonical ensemble.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

fix nvt, fix npt

Default: none

LIGGGHTS Users Manual

fix nve command 473

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nve/limit command

Syntax:

fix ID group-ID nve/limit limitstyle xmax

ID, group-ID are documented in fix command•
nve/limit = style name of this fix command•
limitstyle = absolute or radius_ratio•
xmax = maximum distance an atom can move in one timestep (distance units or relative to atom
radius)

•

Examples:

fix 1 all nve/limit absolute 0.1

Description:

Perform constant NVE updates of position and velocity for atoms in the group each timestep. A limit is
imposed on the maximum distance an atom can move in one timestep. This is useful when starting a
simulation with a configuration containing highly overlapped atoms. Normally this would generate huge
forces which would blow atoms out of the simulation box, causing LAMMPS to stop with an error.

Using this fix can overcome that problem. Forces on atoms must still be computable (which typically means 2
atoms must have a separation distance > 0.0). But large velocities generated by large forces are reset to a
value that corresponds to a displacement of length xmax in a single timestep. Xmax is specified in distance
units; see the units command for details. The value of xmax should be consistent with the neighbor skin
distance and the frequency of neighbor list re-building, so that pairwise interactions are not missed on
successive timesteps as atoms move. See the neighbor and neigh_modify commands for details.

If limitstyle absolute is used, xmax is applied directly. If limitstyle radius_ratio is used, a maxmimum
distance per step of xmax*radius is applied for each atom. This can be useful for the simulation of
poly-disperse systems. Note that this option requires the atom radius to be stored by using an appropriate atom
style.

Note that if a velocity reset occurs the integrator will not conserve energy. On steps where no velocity resets
occur, this integrator is exactly like the fix nve command. Since forces are unaltered, pressures computed by
thermodynamic output will still be very large for overlapped configurations.

IMPORTANT NOTE: You should not use fix shake in conjunction with this fix. That is because fix shake
applies contraint forces based on the predicted postitions of atoms after the next timestep. It has no way of
knowing the timestep may change due to this fix, which will cause the constraint forces to be invalid. A better
strategy is to turn off fix shake when performing initial dynamics that need this fix, then turn fix shake on
when doing normal dynamics with a fixed-size timestep.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the count
of how many updates of atom's velocity/position were limited by the maximum distance criterion. This should

LIGGGHTS Users Manual

fix nve/omp command 474

http://lammps.sandia.gov

be roughly the number of atoms so affected, except that updates occur at both the beginning and end of a
timestep in a velocity Verlet timestepping algorithm. This is a cumulative quantity for the current run, but is
re-initialized to zero each time a run is performed. The scalar value calculated by this fix is "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

fix nve, fix nve/noforce, pair_style soft

Default: none

LIGGGHTS Users Manual

fix nve/limit command 475

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nve/line command

Syntax:

fix ID group-ID nve/line

ID, group-ID are documented in fix command•
nve/line = style name of this fix command•

Examples:

fix 1 all nve/line

Description:

Perform constant NVE integration to update position, velocity, orientation, and angular velocity for line
segment particles in the group each timestep. V is volume; E is energy. This creates a system trajectory
consistent with the microcanonical ensemble. See Section_howto 14 of the manual for an overview of using
line segment particles.

This fix differs from the fix nve command, which assumes point particles and only updates their position and
velocity.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the ASPHERE package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This fix requires that particles be line segments as defined by the atom_style line command.

Related commands:

fix nve, fix nve/asphere

Default: none

LIGGGHTS Users Manual

fix nve/line command 476

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nve/noforce command

Syntax:

fix ID group-ID nve

ID, group-ID are documented in fix command•
nve/noforce = style name of this fix command•

Examples:

fix 3 wall nve/noforce

Description:

Perform updates of position, but not velocity for atoms in the group each timestep. In other words, the force
on the atoms is ignored and their velocity is not updated. The atom velocities are used to update their
positions.

This can be useful for wall atoms, when you set their velocities, and want the wall to move (or stay stationary)
in a prescribed fashion.

This can also be accomplished via the fix setforce command, but with fix nve/noforce, the forces on the wall
atoms are unchanged, and can thus be printed by the dump command or queried with an equal-style variable
that uses the fcm() group function to compute the total force on the group of atoms.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

fix nve

Default: none

LIGGGHTS Users Manual

fix nve/noforce command 477

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nve/sphere command

fix nve/sphere/omp command

Syntax:

fix ID group-ID nve/sphere

ID, group-ID are documented in fix command•
nve/sphere = style name of this fix command•
zero or more keyword/value pairs may be appended•
keyword = update

update value = dipole
 dipole = update orientation of dipole moment during integration

•

Examples:

fix 1 all nve/sphere
fix 1 all nve/sphere update dipole

Description:

Perform constant NVE integration to update position, velocity, and angular velocity for finite-size spherical
particles in the group each timestep. V is volume; E is energy. This creates a system trajectory consistent with
the microcanonical ensemble.

This fix differs from the fix nve command, which assumes point particles and only updates their position and
velocity.

If the update keyword is used with the dipole value, then the orientation of the dipole moment of each particle
is also updated during the time integration. This option should be used for models where a dipole moment is
assigned to particles via use of the atom_style dipole command.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

LIGGGHTS Users Manual

fix nve/sphere command 478

http://lammps.sandia.gov

this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix requires that atoms store torque and angular velocity (omega) and a radius as defined by the
atom_style sphere command. If the dipole keyword is used, then they must also store a dipole moment as
defined by the atom_style dipole command.

All particles in the group must be finite-size spheres. They cannot be point particles.

Related commands:

fix nve, fix nve/asphere

Default: none

LIGGGHTS Users Manual

fix nve/sphere/omp command 479

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nve/tri command

Syntax:

fix ID group-ID nve/tri

ID, group-ID are documented in fix command•
nve/tri = style name of this fix command•

Examples:

fix 1 all nve/tri

Description:

Perform constant NVE integration to update position, velocity, orientation, and angular momentum for
triangular particles in the group each timestep. V is volume; E is energy. This creates a system trajectory
consistent with the microcanonical ensemble. See Section_howto 14 of the manual for an overview of using
triangular particles.

This fix differs from the fix nve command, which assumes point particles and only updates their position and
velocity.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the ASPHERE package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This fix requires that particles be triangles as defined by the atom_style tri command.

Related commands:

fix nve, fix nve/asphere

Default: none

LIGGGHTS Users Manual

fix nve/tri command 480

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nvt/asphere command

fix nvt/asphere/omp command

Syntax:

fix ID group-ID nvt/asphere keyword value ...

ID, group-ID are documented in fix command•
nvt/asphere = style name of this fix command•
additional thermostat related keyword/value pairs from the fix nvt command can be appended•

Examples:

fix 1 all nvt/asphere temp 300.0 300.0 100.0
fix 1 all nvt/asphere temp 300.0 300.0 100.0 drag 0.2

Description:

Perform constant NVT integration to update position, velocity, orientation, and angular velocity each timestep
for aspherical or ellipsoidal particles in the group using a Nose/Hoover temperature thermostat. V is volume;
T is temperature. This creates a system trajectory consistent with the canonical ensemble.

This fix differs from the fix nvt command, which assumes point particles and only updates their position and
velocity.

The thermostat is applied to both the translational and rotational degrees of freedom for the aspherical
particles, assuming a compute is used which calculates a temperature that includes the rotational degrees of
freedom (see below). The translational degrees of freedom can also have a bias velocity removed from them
before thermostatting takes place; see the description below.

Additional parameters affecting the thermostat are specified by keywords and values documented with the fix
nvt command. See, for example, discussion of the temp and drag keywords.

This fix computes a temperature each timestep. To do this, the fix creates its own compute of style
"temp/asphere", as if this command had been issued:

compute fix-ID_temp group-ID temp/asphere

See the compute temp/asphere command for details. Note that the ID of the new compute is the fix-ID +
underscore + "temp", and the group for the new compute is the same as the fix group.

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp. This means you can change the attributes of this fix's temperature (e.g. its degrees-of-freedom)
via the compute_modify command or print this temperature during thermodynamic output via the
thermo_style custom command using the appropriate compute-ID. It also means that changing attributes of
thermo_temp will have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that calculate a
temperature after removing a "bias" from the atom velocities. E.g. removing the center-of-mass velocity from
a group of atoms or only calculating temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by default, but only if the fix_modify command
is used to assign a temperature compute to this fix that includes such a bias term. See the doc pages for

LIGGGHTS Users Manual

fix nvt/asphere command 481

http://lammps.sandia.gov

individual compute commands to determine which ones include a bias. In this case, the thermostat works in
the following manner: the current temperature is calculated taking the bias into account, bias is removed from
each atom, thermostatting is performed on the remaining thermal degrees of freedom, and the bias is added
back in.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the Nose/Hoover thermostat to binary restart files. See the read_restart command
for info on how to re-specify a fix in an input script that reads a restart file, so that the operation of the fix
continues in an uninterrupted fashion.

The fix_modify temp option is supported by this fix. You can use it to assign a compute you have defined to
this fix which will be used in its thermostatting procedure.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting to the system's potential energy as part of thermodynamic output.

This fix computes the same global scalar and global vector of quantities as does the fix nvt command.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

This fix is part of the ASPHERE package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This fix requires that atoms store torque and angular momementum and a quaternion as defined by the
atom_style ellipsoid command.

All particles in the group must be finite-size. They cannot be point particles, but they can be aspherical or
spherical as defined by their shape attribute.

Related commands:

fix nvt, fix nve_asphere, fix npt_asphere, fix_modify

LIGGGHTS Users Manual

fix nvt/asphere/omp command 482

Default: none

LIGGGHTS Users Manual

fix nvt/asphere/omp command 483

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nvt/sllod/eff command

Syntax:

fix ID group-ID nvt/sllod/eff keyword value ...

ID, group-ID are documented in fix command•
nvt/sllod/eff = style name of this fix command•
additional thermostat related keyword/value pairs from the fix nvt/eff command can be appended•

Examples:

fix 1 all nvt/sllod/eff temp 300.0 300.0 0.1
fix 1 all nvt/sllod/eff temp 300.0 300.0 0.1 drag 0.2

Description:

Perform constant NVT integration to update positions and velocities each timestep for nuclei and electrons in
the group for the electron force field model, using a Nose/Hoover temperature thermostat. V is volume; T is
temperature. This creates a system trajectory consistent with the canonical ensemble.

The operation of this fix is exactly like that described by the fix nvt/sllod command, except that the radius and
radial velocity of electrons are also updated and thermostatted. Likewise the temperature calculated by the fix,
using the compute it creates (as discussed in the fix nvt, npt, and nph doc page), is performed with a compute
temp/deform/eff commmand that includes the eFF contribution to the temperature from the electron radial
velocity.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the Nose/Hoover thermostat to binary restart files. See the read_restart command
for info on how to re-specify a fix in an input script that reads a restart file, so that the operation of the fix
continues in an uninterrupted fashion.

The fix_modify temp option is supported by this fix. You can use it to assign a compute you have defined to
this fix which will be used in its thermostatting procedure.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting to the system's potential energy as part of thermodynamic output.

This fix computes the same global scalar and global vector of quantities as does the fix nvt/eff command.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

This fix is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This fix works best without Nose-Hoover chain thermostats, i.e. using tchain = 1. Setting tchain to larger
values can result in poor equilibration.

LIGGGHTS Users Manual

fix nvt/sllod/eff command 484

http://lammps.sandia.gov

Related commands:

fix nve/eff, fix nvt/eff, fix langevin/eff, fix nvt/sllod, fix_modify, compute temp/deform/eff

Default:

Same as fix nvt/eff, except tchain = 1.

(Tuckerman) Tuckerman, Mundy, Balasubramanian, Klein, J Chem Phys, 106, 5615 (1997).

LIGGGHTS Users Manual

fix nvt/sllod/eff command 485

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nvt/sllod command

fix nvt/sllod/omp command

Syntax:

fix ID group-ID nvt/sllod keyword value ...

ID, group-ID are documented in fix command•
nvt/sllod = style name of this fix command•
additional thermostat related keyword/value pairs from the fix nvt command can be appended•

Examples:

fix 1 all nvt/sllod temp 300.0 300.0 100.0
fix 1 all nvt/sllod temp 300.0 300.0 100.0 drag 0.2

Description:

Perform constant NVT integration to update positions and velocities each timestep for atoms in the group
using a Nose/Hoover temperature thermostat. V is volume; T is temperature. This creates a system trajectory
consistent with the canonical ensemble.

This thermostat is used for a simulation box that is changing size and/or shape, for example in a
non-equilibrium MD (NEMD) simulation. The size/shape change is induced by use of the fix deform
command, so each point in the simulation box can be thought of as having a "streaming" velocity. This
position-dependent streaming velocity is subtracted from each atom's actual velocity to yield a thermal
velocity which is used for temperature computation and thermostatting. For example, if the box is being
sheared in x, relative to y, then points at the bottom of the box (low y) have a small x velocity, while points at
the top of the box (hi y) have a large x velocity. These velocities do not contribute to the thermal
"temperature" of the atom.

IMPORTANT NOTE: Fix deform has an option for remapping either atom coordinates or velocities to the
changing simulation box. To use fix nvt/sllod, fix deform should NOT remap atom positions, because fix
nvt/sllod adjusts the atom positions and velocities to create a velocity profile that matches the changing box
size/shape. Fix deform SHOULD remap atom velocities when atoms cross periodic boundaries since that is
consistent with maintaining the velocity profile created by fix nvt/sllod. LAMMPS will give an error if this
setting is not consistent.

The SLLOD equations of motion coupled to a Nose/Hoover thermostat are discussed in (Tuckerman) (eqs 4
and 5), which is what is implemented in LAMMPS in a velocity Verlet formulation.

Additional parameters affecting the thermostat are specified by keywords and values documented with the fix
nvt command. See, for example, discussion of the temp and drag keywords.

This fix computes a temperature each timestep. To do this, the fix creates its own compute of style
"temp/deform", as if this command had been issued:

compute fix-ID_temp group-ID temp/deform

See the compute temp/deform command for details. Note that the ID of the new compute is the fix-ID +
underscore + "temp", and the group for the new compute is the same as the fix group.

LIGGGHTS Users Manual

fix nvt/sllod command 486

http://lammps.sandia.gov

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp. This means you can change the attributes of this fix's temperature (e.g. its degrees-of-freedom)
via the compute_modify command or print this temperature during thermodynamic output via the
thermo_style custom command using the appropriate compute-ID. It also means that changing attributes of
thermo_temp will have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that calculate a
temperature after removing a "bias" from the atom velocities. E.g. removing the center-of-mass velocity from
a group of atoms or only calculating temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by default, but only if the fix_modify command
is used to assign a temperature compute to this fix that includes such a bias term. See the doc pages for
individual compute commands to determine which ones include a bias. In this case, the thermostat works in
the following manner: the current temperature is calculated taking the bias into account, bias is removed from
each atom, thermostatting is performed on the remaining thermal degrees of freedom, and the bias is added
back in.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the Nose/Hoover thermostat to binary restart files. See the read_restart command
for info on how to re-specify a fix in an input script that reads a restart file, so that the operation of the fix
continues in an uninterrupted fashion.

The fix_modify temp option is supported by this fix. You can use it to assign a compute you have defined to
this fix which will be used in its thermostatting procedure.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting to the system's potential energy as part of thermodynamic output.

This fix computes the same global scalar and global vector of quantities as does the fix nvt command.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

This fix works best without Nose-Hoover chain thermostats, i.e. using tchain = 1. Setting tchain to larger
values can result in poor equilibration.

LIGGGHTS Users Manual

fix nvt/sllod/omp command 487

Related commands:

fix nve, fix nvt, fix temp/rescale, fix langevin, fix_modify, compute temp/deform

Default:

Same as fix nvt, except tchain = 1.

(Tuckerman) Tuckerman, Mundy, Balasubramanian, Klein, J Chem Phys, 106, 5615 (1997).

LIGGGHTS Users Manual

fix nvt/sllod/omp command 488

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix nvt/sphere command

fix nvt/sphere/omp command

Syntax:

fix ID group-ID nvt/sphere keyword value ...

ID, group-ID are documented in fix command•
nvt/sphere = style name of this fix command•
additional thermostat related keyword/value pairs from the fix nvt command can be appended•

Examples:

fix 1 all nvt/sphere temp 300.0 300.0 100.0
fix 1 all nvt/sphere temp 300.0 300.0 100.0 drag 0.2

Description:

Perform constant NVT integration to update position, velocity, and angular velocity each timestep for
finite-size spherical particles in the group using a Nose/Hoover temperature thermostat. V is volume; T is
temperature. This creates a system trajectory consistent with the canonical ensemble.

This fix differs from the fix nvt command, which assumes point particles and only updates their position and
velocity.

The thermostat is applied to both the translational and rotational degrees of freedom for the spherical particles,
assuming a compute is used which calculates a temperature that includes the rotational degrees of freedom
(see below). The translational degrees of freedom can also have a bias velocity removed from them before
thermostatting takes place; see the description below.

Additional parameters affecting the thermostat are specified by keywords and values documented with the fix
nvt command. See, for example, discussion of the temp and drag keywords.

This fix computes a temperature each timestep. To do this, the fix creates its own compute of style
"temp/sphere", as if this command had been issued:

compute fix-ID_temp group-ID temp/sphere

See the compute temp/sphere command for details. Note that the ID of the new compute is the fix-ID +
underscore + "temp", and the group for the new compute is the same as the fix group.

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp. This means you can change the attributes of this fix's temperature (e.g. its degrees-of-freedom)
via the compute_modify command or print this temperature during thermodynamic output via the
thermo_style custom command using the appropriate compute-ID. It also means that changing attributes of
thermo_temp will have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that calculate a
temperature after removing a "bias" from the atom velocities. E.g. removing the center-of-mass velocity from
a group of atoms or only calculating temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by default, but only if the fix_modify command
is used to assign a temperature compute to this fix that includes such a bias term. See the doc pages for

LIGGGHTS Users Manual

fix nvt/sphere command 489

http://lammps.sandia.gov

individual compute commands to determine which ones include a bias. In this case, the thermostat works in
the following manner: the current temperature is calculated taking the bias into account, bias is removed from
each atom, thermostatting is performed on the remaining thermal degrees of freedom, and the bias is added
back in.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the Nose/Hoover thermostat to binary restart files. See the read_restart command
for info on how to re-specify a fix in an input script that reads a restart file, so that the operation of the fix
continues in an uninterrupted fashion.

The fix_modify temp option is supported by this fix. You can use it to assign a compute you have defined to
this fix which will be used in its thermostatting procedure.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting to the system's potential energy as part of thermodynamic output.

This fix computes the same global scalar and global vector of quantities as does the fix nvt command.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

This fix requires that atoms store torque and angular velocity (omega) and a radius as defined by the
atom_style sphere command.

All particles in the group must be finite-size spheres. They cannot be point particles.

Related commands:

fix nvt, fix nve_sphere, fix nvt_asphere, fix npt_sphere, fix_modify

Default: none

LIGGGHTS Users Manual

fix nvt/sphere/omp command 490

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix orient/fcc command

fix ID group-ID orient/fcc nstats dir alat dE cutlo cuthi file0 file1

ID, group-ID are documented in fix command•
nstats = print stats every this many steps, 0 = never•
dir = 0/1 for which crystal is used as reference•
alat = fcc cubic lattice constant (distance units)•
dE = energy added to each atom (energy units)•
cutlo,cuthi = values between 0.0 and 1.0, cutlo < cuthi•
file0,file1 = files that specify orientation of each grain•

Examples:

fix gb all orient/fcc 0 1 4.032008 0.001 0.25 0.75 xi.vec chi.vec

Description:

The fix applies an orientation-dependent force to atoms near a planar grain boundary which can be used to
induce grain boundary migration (in the direction perpendicular to the grain boundary plane). The motivation
and explanation of this force and its application are described in (Janssens). The force is only applied to atoms
in the fix group.

The basic idea is that atoms in one grain (on one side of the boundary) have a potential energy dE added to
them. Atoms in the other grain have 0.0 potential energy added. Atoms near the boundary (whose neighbor
environment is intermediate between the two grain orientations) have an energy between 0.0 and dE added.
This creates an effective driving force to reduce the potential energy of atoms near the boundary by pushing
them towards one of the grain orientations. For dir = 1 and dE > 0, the boundary will thus move so that the
grain described by file0 grows and the grain described by file1 shrinks. Thus this fix is designed for
simulations of two-grain systems, either with one grain boundary and free surfaces parallel to the boundary, or
a system with periodic boundary conditions and two equal and opposite grain boundaries. In either case, the
entire system can displace during the simulation, and such motion should be accounted for in measuring the
grain boundary velocity.

The potential energy added to atom I is given by these formulas

LIGGGHTS Users Manual

fix orient/fcc command 491

http://lammps.sandia.gov

which are fully explained in (Janssens). The order parameter Xi for atom I in equation (1) is a sum over the 12
nearest neighbors of atom I. Rj is the vector from atom I to its neighbor J, and RIj is a vector in the reference
(perfect) crystal. That is, if dir = 0/1, then RIj is a vector to an atom coord from file 0/1. Equation (2) gives the
expected value of the order parameter XiIJ in the other grain. Hi and lo cutoffs are defined in equations (3)
and (4), using the input parameters cutlo and cuthi as thresholds to avoid adding grain boundary energy when
the deviation in the order parameter from 0 or 1 is small (e.g. due to thermal fluctuations in a perfect crystal).
The added potential energy Ui for atom I is given in equation (6) where it is interpolated between 0 and dE
using the two threshold Xi values and the Wi value of equation (5).

The derivative of this energy expression gives the force on each atom which thus depends on the orientation
of its neighbors relative to the 2 grain orientations. Only atoms near the grain boundary feel a net force which
tends to drive them to one of the two grain orientations.

In equation (1), the reference vector used for each neighbor is the reference vector closest to the actual
neighbor position. This means it is possible two different neighbors will use the same reference vector. In
such cases, the atom in question is far from a perfect orientation and will likely receive the full dE addition, so
the effect of duplicate reference vector usage is small.

The dir parameter determines which grain wants to grow at the expense of the other. A value of 0 means the
first grain will shrink; a value of 1 means it will grow. This assumes that dE is positive. The reverse will be
true if dE is negative.

LIGGGHTS Users Manual

fix orient/fcc command 492

The alat parameter is the cubic lattice constant for the fcc material and is only used to compute a cutoff
distance of 1.57 * alat / sqrt(2) for finding the 12 nearest neighbors of each atom (which should be valid for an
fcc crystal). A longer/shorter cutoff can be imposed by adjusting alat. If a particular atom has less than 12
neighbors within the cutoff, the order parameter of equation (1) is effectively multiplied by 12 divided by the
actual number of neighbors within the cutoff.

The dE parameter is the maximum amount of additional energy added to each atom in the grain which wants
to shrink.

The cutlo and cuthi parameters are used to reduce the force added to bulk atoms in each grain far away from
the boundary. An atom in the bulk surrounded by neighbors at the ideal grain orientation would compute an
order parameter of 0 or 1 and have no force added. However, thermal vibrations in the solid will cause the
order parameters to be greater than 0 or less than 1. The cutoff parameters mask this effect, allowing forces to
only be added to atoms with order-parameters between the cutoff values.

File0 and file1 are filenames for the two grains which each contain 6 vectors (6 lines with 3 values per line)
which specify the grain orientations. Each vector is a displacement from a central atom (0,0,0) to a nearest
neighbor atom in an fcc lattice at the proper orientation. The vector lengths should all be identical since an fcc
lattice has a coordination number of 12. Only 6 are listed due to symmetry, so the list must include one from
each pair of equal-and-opposite neighbors. A pair of orientation files for a Sigma=5 tilt boundary are show
below.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential energy of atom interactions with the
grain boundary driving force to the system's potential energy as part of thermodynamic output.

This fix calculates a global scalar which can be accessed by various output commands. The scalar is the
potential energy change due to this fix. The scalar value calculated by this fix is "extensive".

This fix also calculates a per-atom array which can be accessed by various output commands. The array stores
the order parameter Xi and normalized order parameter (0 to 1) for each atom. The per-atom values can be
accessed on any timestep.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the MISC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This fix should only be used with fcc lattices.

Related commands:

fix_modify

Default: none

(Janssens) Janssens, Olmsted, Holm, Foiles, Plimpton, Derlet, Nature Materials, 5, 124-127 (2006).

LIGGGHTS Users Manual

fix orient/fcc command 493

For illustration purposes, here are example files that specify a Sigma=5 tilt boundary. This is for a lattice
constant of 3.5706 Angs.

file0:

 0.798410432046075 1.785300000000000 1.596820864092150
 -0.798410432046075 1.785300000000000 -1.596820864092150
 2.395231296138225 0.000000000000000 0.798410432046075
 0.798410432046075 0.000000000000000 -2.395231296138225
 1.596820864092150 1.785300000000000 -0.798410432046075
 1.596820864092150 -1.785300000000000 -0.798410432046075

file1:

 -0.798410432046075 1.785300000000000 1.596820864092150
 0.798410432046075 1.785300000000000 -1.596820864092150
 0.798410432046075 0.000000000000000 2.395231296138225
 2.395231296138225 0.000000000000000 -0.798410432046075
 1.596820864092150 1.785300000000000 0.798410432046075
 1.596820864092150 -1.785300000000000 0.798410432046075

LIGGGHTS Users Manual

fix orient/fcc command 494

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix particledistribution/discrete command

Syntax:

fix ID group-ID particledistribution/discrete seed ntemp t_id t_m ...

ID, group-ID are documented in fix command•
particledistribution/discrete = style name of this fix command•
seed = random number generator seed (integer value)•
ntemp = number of particle templates to be used in this command•
zero or more t_id/t_m pairs are appended, number of pairs must match ntemp

t_id = id of a fix of type particletemplate/sphere
t_m = mass % for this template in the distribution

•

Examples:

fix pdd1 all particledistribution/discrete 6778 1 pts1 1.0
fix pdd1 all particledistribution/discrete 1239 2 pts1 0.3 pts2 0.7

LIGGGHTS vs. LAMMPS Info:

This command is not available in LAMMPS.

Description:

Define a discrete particle distribution that defines a discrete particle distribution to be inserted by the
fix_pour_dev command. It takes several templates of type fix_particletemplate_sphere as inputs, which define
the properties of the single particles that are part of the distribution.

At insertion, particles are chosen according to the mass-% distribution as defined by each pair (t_id, t_m).
Note that the sum of all weights t_m must be equal to 1.0, if this is not the case the user is warned at the
distribution is normalized. Note that large particles are inserted first, so that a higher volume fraction can be
achieved. If not all desired insertions could be performed, it is likely that the distribution is not accurately
reproduced.

IMPORTANT NOTE: As opposed to the number-based distributions used by fix_pour and fix_pour_legacy,
this fix uses the more common distribution based on mass-% as input (as does fix_particletemplate_sphere).

Restart, fix_modify, output, run start/stop, minimize info:

Information about the random state in this fix is written to binary restart files so you can restart a simulation
with the same particles being chosen for insertion. None of the fix_modify options are relevant to this fix. No
global scalar or vector or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

fix_pour_dev

LIGGGHTS Users Manual

fix particledistribution/discrete command 495

http://www.cfdem.com
http://lammps.sandia.gov

Default: none

LIGGGHTS Users Manual

fix particledistribution/discrete command 496

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix particletemplate/sphere command

Syntax:

fix ID group-ID particletemplate/sphere seed keyword values ...

ID, group-ID are documented in fix command•
particletemplate/sphere = style name of this fix command•
seed = random number generator seed (integer value)•
n_spheres = number of spheres in the template•
zero or more keyword/value pairs can be appended•
keyword = atom_type or density or volume_limit or radius

atom_type value = atom type assigned to this particle template
density values = random_style param1 (param2)
 random_style = 'constant' or 'uniform' or 'gaussian'
 param1 = density for 'constant', low value of density for 'uniform', expectancy value for 'gaussian'
 param2 = omitted for 'constant', high value of density for 'uniform', sigma value for 'gaussian'
volume_limit value = lowest particle volume allowed in simulation
radius values = random_style param1 (param2)
 random_style = 'constant' or 'uniform number' or 'uniform mass' or 'gaussian number'
 param1 = radius for 'constant', low value of radius for 'uniform', mu value for 'gaussian'
 param2 = omitted for 'constant', high value of radius for 'uniform', sigma value for 'gaussian'

•

Examples:

fix pts1 all particletemplate/sphere 1 atom_type 1 density constant 2500 radius constant 0.0015

LIGGGHTS vs. LAMMPS Info:

This LIGGGHTS command is not available in LAMMPS.

Description:

Define a particle that is used as input for a fix_particledistribution_discrete command. You can choose the
atom type, density and radius of the particles. For density and radius, you can choose between 'constant',
'uniform' and 'gaussian' random styles. Note that for radius, you can additionally choose between a
number-based and mass-based uniform distribution, where the latter is used more frequently typically.
'gaussian' for radius only supports a number-based distribution.

It is thus possible to define a uniform or gaussian distribution on top of the discrete distribution defined by
fix_particledistribution_discrete.

IMPORTANT NOTE: As opposed to the number-based distributions used by fix_pour and fix_pour_legacy,
this fix uses the more common distribution based on mass-% for the radius distribution (as does
fix_particledistribution_discrete).

LIGGGHTS will throw an error if the particle volume is too small compared to machine precision. If you are
sure you know what you are doing you can override the default limit of 1e-12.

Restart, fix_modify, output, run start/stop, minimize info:

Information about the random state in this fix is written to binary restart files so you can restart a simulation
with the same particles being chosen for insertion. None of the fix_modify options are relevant to this fix. No

LIGGGHTS Users Manual

fix particletemplate/sphere command 497

http://www.cfdem.com
http://lammps.sandia.gov

global scalar or vector or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

fix_particletemplate_sphere

Default: radius = 1.0, density = 1.0, atom_type = 1, volume_limit = 1e-12

LIGGGHTS Users Manual

fix particletemplate/sphere command 498

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix phonon command

Syntax:

fix ID group-ID phonon N Noutput Nwait map_file prefix keyword values ...

ID, group-ID are documented in fix command•
phonon = style name of this fix command•
N = measure the Green's function every this many timesteps•
Noutput = output the dynamical matrix every this many measurements•
Nwait = wait this many timesteps before measuring•
map_file = file or GAMMA

file is the file that contains the mapping info between atom ID and the lattice indices.

GAMMA flags to treate the whole simulation box as a unit cell, so that the mapping
 info can be generated internally. In this case, dynamical matrix at only the gamma-point
 will/can be evaluated.

•

prefix = prefix for output files•
one or none keyword/value pairs may be appended•
keyword = sysdim or nasr

sysdim value = d
 d = dimension of the system, usually the same as the MD model dimension

nasr value = n
 n = number of iterations to enforce the acoustic sum rule

•

Examples:

fix 1 all phonon 20 5000 200000 map.in LJ1D sysdim 1
fix 1 all phonon 20 5000 200000 map.in EAM3D
fix 1 all phonon 10 5000 500000 GAMMA EAM0D nasr 100

Description:

Calculate the dynamical matrix from molecular dynamics simulations based on fluctuation-dissipation theory
for a group of atoms.

Consider a crystal with N unit cells in three dimensions labelled l = (l1,l2,l3) where li are integers. Each unit
cell is defined by three linearly independent vectors a1, a2, a3 forming a parallelipiped, containing K basis
atoms labelled k.

Based on fluctuation-dissipation theory, the force constant coefficients of the system in reciprocal space are
given by (Campañá , Kong)

Φkα,k'β(q) = kBT G-1
kα,k'β(q),

where G is the Green's functions coefficients given by

Gkα,k'β(q) = <ukα(q)�uk'β*(q)>,

where denotes the ensemble average, and

ukα(q) = ∑l ulkα exp(iqrl)

LIGGGHTS Users Manual

fix phonon command 499

http://lammps.sandia.gov

is the α component of the atomic displacement for the kth atom in the unit cell in reciprocal space at q. In
practice, the Green's functions coefficients can also be measured according to the following formula,

Gkα,k'β(q) = <Rkα(q)�R*
k'β(q)> - <R>kα(q)�<R>*k'β(q),

where R is the instantaneous positions of atoms, and <R> is the averaged atomic positions. It gives essentially
the same results as the displacement method and is easier to implement in an MD code.

Once the force constant matrix is known, the dynamical matrix D can then be obtained by

Dkα, k'β(q) = (mkmk')-1/2 Φkα,k'β(q)

whose eigenvalues are exactly the phonon frequencies at q.

This fix uses positions of atoms in the specified group and calculates two-point correlations. To achieve this.
the positions of the atoms are examined every Nevery steps and are Fourier-transformed into reciprocal space,
where the averaging process and correlation computation is then done. After every Noutput measurements, the
matrix G(q) is calculated and inverted to obtain the elastic stiffness coefficients. The dynamical matrices are
then constructed and written to prefix.bin.timestep files in binary format and to the file prefix.log for each
wavevector q.

A detailed description of this method can be found in (Kong2011).

The sysdim keyword is optional. If specified with a value smaller than the dimensionality of the LAMMPS
simulation, its value is used for the dynamical matrix calculation. For example, using LAMMPS ot model a
2D or 3D system, the phonon dispersion of a 1D atomic chain can be computed using sysdim = 1.

The nasr keyword is optional. An iterative procedure is employed to enforce the acoustic sum rule on Φ at Γ,
and the number provided by keyword nasr gives the total number of iterations. For a system whose unit cell
has only one atom, nasr = 1 is sufficient; for other systems, nasr = 10 is typically sufficient.

The map_file contains the mapping information between the lattice indices and the atom IDs, which tells the
code which atom sits at which lattice point; the lattice indices start from 0. An auxiliary code, latgen, can be
employed to generate the compatible map file for various crystals.

In case one simulates an aperiodic system, where the whole simulation box is treated as a unit cell, one can set
map_file as GAMMA, so that the mapping info will be generated internally and a file is not needed. In this
case, the dynamical matrix at only the gamma-point will/can be evaluated. Please keep in mind that
fix-phonon is designed for cyrstals, it will be inefficient and even degrade the performance of lammps in case
the unit cell is too large.

The calculated dynamical matrix elements are written out in energy/distance^2/mass units. The coordinates
for q points in the log file is in the units of the basis vectors of the corresponding reciprocal lattice.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify temp option is supported by this fix. You can use it to change the temperature compute from
thermo_temp to the one that reflects the true temperature of atoms in the group.

No global scalar or vector or per-atom quantities are stored by this fix for access by various output commands.

Instead, this fix outputs its initialization information (including mapping information) and the calculated

LIGGGHTS Users Manual

fix phonon command 500

http://code.google.com/p/latgen

dynamical matrices to the file prefix.log, with the specified prefix. The dynamical matrices are also written to
files prefix.bin.timestep in binary format. These can be read by the post-processing tool in tools/phonon to
compute the phonon density of states and/or phonon dispersion curves.

No parameter of this fix can be used with the start/stop keywords of the run command.

This fix is not invoked during energy minimization.

Restrictions:

This fix assumes a crystalline system with periodical lattice. The temperature of the system should not exceed
the melting temperature to keep the system in its solid state.

This fix is part of the USER-PHONON package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

This fix requires LAMMPS be built with an FFT library. See the Making LAMMPS section for more info.

Related commands:

compute msd

Default:

The option defaults are sysdim = the same dimemsion as specified by the dimension command, and nasr = 20.

(Campañá) C. Campañá and M. H. Müser, Practical Green's function approach to the simulation of elastic
semi-infinite solids, Phys. Rev. B 74, 075420 (2006)

(Kong) L.T. Kong, G. Bartels, C. Campañá, C. Denniston, and Martin H. Müser, Implementation of Green's
function molecular dynamics: An extension to LAMMPS, Computer Physics Communications
180(6):1004-1010 (2009).

L.T. Kong, C. Denniston, and Martin H. Müser, An improved version of the Green's function molecular
dynamics method, Computer Physics Communications 182(2):540-541 (2011).

(Kong2011) L.T. Kong, Phonon dispersion measured directly from molecular dynamics simulations,
Computer Physics Communications 182(10):2201-2207, (2011).

LIGGGHTS Users Manual

fix phonon command 501

http://dx.doi.org/10.1103/PhysRevB.74.075420
http://dx.doi.org/10.1016/j.cpc.2008.12.035
http://dx.doi.org/10.1016/j.cpc.2008.12.035
http://dx.doi.org/10.1016/j.cpc.2010.10.006
http://dx.doi.org/10.1016/j.cpc.2011.04.019

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix planeforce command

Syntax:

fix ID group-ID planeforce x y z

ID, group-ID are documented in fix command•
lineforce = style name of this fix command•
x y z = 3-vector that is normal to the plane•

Examples:

fix hold boundary planeforce 1.0 0.0 0.0

Description:

Adjust the forces on each atom in the group so that only the components of force in the plane specified by the
normal vector (x,y,z) remain. This is done by subtracting out the component of force perpendicular to the
plane.

If the initial velocity of the atom is 0.0 (or in the plane), then it should continue to move in the plane
thereafter.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

Restrictions: none

Related commands:

fix lineforce

Default: none

LIGGGHTS Users Manual

fix planeforce command 502

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix poems

Syntax:

fix ID group-ID poems keyword values

ID, group-ID are documented in fix command•
poems = style name of this fix command•
keyword = group or file or molecule

group values = list of group IDs
molecule values = none
file values = filename

•

Examples:

fix 3 fluid poems group clump1 clump2 clump3
fix 3 fluid poems file cluster.list

Description:

Treats one or more sets of atoms as coupled rigid bodies. This means that each timestep the total force and
torque on each rigid body is computed and the coordinates and velocities of the atoms are updated so that the
collection of bodies move as a coupled set. This can be useful for treating a large biomolecule as a collection
of connected, coarse-grained particles.

The coupling, associated motion constraints, and time integration is performed by the software package
Parallelizable Open source Efficient Multibody Software (POEMS) which computes the constrained
rigid-body motion of articulated (jointed) multibody systems (Anderson). POEMS was written and is
distributed by Prof Kurt Anderson, his graduate student Rudranarayan Mukherjee, and other members of his
group at Rensselaer Polytechnic Institute (RPI). Rudranarayan developed the LAMMPS/POEMS interface.
For copyright information on POEMS and other details, please refer to the documents in the poems directory
distributed with LAMMPS.

This fix updates the positions and velocities of the rigid atoms with a constant-energy time integration, so you
should not update the same atoms via other fixes (e.g. nve, nvt, npt, temp/rescale, langevin).

Each body must have a non-degenerate inertia tensor, which means if must contain at least 3 non-collinear
atoms. Which atoms are in which bodies can be defined via several options.

For option group, each of the listed groups is treated as a rigid body. Note that only atoms that are also in the
fix group are included in each rigid body.

For option molecule, each set of atoms in the group with a different molecule ID is treated as a rigid body.

For option file, sets of atoms are read from the specified file and each set is treated as a rigid body. Each line
of the file specifies a rigid body in the following format:

ID type atom1-ID atom2-ID atom3-ID ...

ID as an integer from 1 to M (the number of rigid bodies). Type is any integer; it is not used by the fix poems
command. The remaining arguments are IDs of atoms in the rigid body, each typically from 1 to N (the
number of atoms in the system). Only atoms that are also in the fix group are included in each rigid body.

LIGGGHTS Users Manual

fix poems 503

http://lammps.sandia.gov
http://www.rpi.edu/~anderk5/lab

Blank lines and lines that begin with '#' are skipped.

A connection between a pair of rigid bodies is inferred if one atom is common to both bodies. The POEMS
solver treats that atom as a spherical joint with 3 degrees of freedom. Currently, a collection of bodies can
only be connected by joints as a linear chain. The entire collection of rigid bodies can represent one or more
chains. Other connection topologies (tree, ring) are not allowed, but will be added later. Note that if no joints
exist, it is more efficient to use the fix rigid command to simulate the system.

When the poems fix is defined, it will print out statistics on the total # of clusters, bodies, joints, atoms
involved. A cluster in this context means a set of rigid bodies connected by joints.

For computational efficiency, you should turn off pairwise and bond interactions within each rigid body, as
they no longer contribute to the motion. The "neigh_modify exclude" and "delete_bonds" commands can be
used to do this if each rigid body is a group.

For computational efficiency, you should only define one fix poems which includes all the desired rigid
bodies. LAMMPS will allow multiple poems fixes to be defined, but it is more expensive.

The degrees-of-freedom removed by coupled rigid bodies are accounted for in temperature and pressure
computations. Similarly, the rigid body contribution to the pressure virial is also accounted for. The latter is
only correct if forces within the bodies have been turned off, and there is only a single fix poems defined.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the POEMS package. It is only enabled if LAMMPS was built with that package, which
also requires the POEMS library be built and linked with LAMMPS. See the Making LAMMPS section for
more info.

Related commands:

fix rigid, delete_bonds, neigh_modify exclude

Default: none

(Anderson) Anderson, Mukherjee, Critchley, Ziegler, and Lipton "POEMS: Parallelizable Open-source
Efficient Multibody Software ", Engineering With Computers (2006). (link to paper)

LIGGGHTS Users Manual

fix poems 504

http://dx.doi.org/10.1007/s00366-006-0026-x

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix pour/legacy command

Syntax:

fix ID group-ID pour/legacy N type seed keyword values ...

ID, group-ID are documented in fix command•
pour/legacy = style name of this fix command•
N = # of atoms to insert•
type = atom type to assign to inserted atoms•
seed = random # seed (positive integer)•
one or more keyword/value pairs may be appended to args•
keyword = region or diam or dens or vol or rate or vel

region value = region-ID
 region-ID = ID of region to use as insertion volume

diam values = lo hi
 lo,hi = range of diameters for inserted particles (distance units)

dens values = lo hi
 lo,hi = range of densities for inserted particles

vol values = fraction Nattempt
 fraction = desired volume fraction for filling insertion volume
 Nattempt = max # of insertion attempts per atom

rate value = V
 V = z velocity (3d) or y velocity (2d) at which
 insertion volume moves (velocity units)

vel values (3d) = vxlo vxhi vylo vyhi vz
vel values (2d) = vxlo vxhi vy

 vxlo,vxhi = range of x velocities for inserted particles (velocity units)
 vylo,vyhi = range of y velocities for inserted particles (velocity units)
 vz = z velocity (3d) assigned to inserted particles (velocity units)
 vy = y velocity (2d) assigned to inserted particles (velocity units)

•

Examples:

fix 3 all pour/legacy 1000 2 29494 region myblock
fix 2 all pour/legacy 10000 1 19985583 region disk vol 0.33 100 rate 1.0 diam 0.9 1.1

Description:

Insert particles into a granular run every few timesteps within a specified region until N particles have been
inserted. This is useful for simulating the pouring of particles into a container under the influence of gravity.

Inserted particles are assigned the specified atom type and are assigned to two groups: the default group "all"
and the group specified in the fix pour/legacy command (which can also be "all").

This command must use the region keyword to define an insertion volume. The specified region must have
been previously defined with a region command. It must be of type block or a z-axis cylinder and must be
defined with side = in. The cylinder style of region can only be used with 3d simulations.

Each timestep particles are inserted, they are placed randomly inside the insertion volume so as to mimic a
stream of poured particles. The larger the volume, the more particles that can be inserted at any one timestep.
Particles are inserted again after enough time has elapsed that the previously inserted particles fall out of the
insertion volume under the influence of gravity. Insertions continue every so many timesteps until the desired
of particles has been inserted.

LIGGGHTS Users Manual

fix pour/legacy command 505

http://lammps.sandia.gov

All other keywords are optional with defaults as shown below. The diam, dens, and vel options enable inserted
particles to have a range of diameters or densities or xy velocities. The specific values for a particular inserted
particle will be chosen randomly and uniformly between the specified bounds. The vz or vy value for option
vel assigns a z-velocity (3d) or y-velocity (2d) to each inserted particle.

The vol option specifies what volume fraction of the insertion volume will be filled with particles. The higher
the value, the more particles are inserted each timestep. Since inserted particles cannot overlap, the maximum
volume fraction should be no higher than about 0.6. Each timestep particles are inserted, LAMMPS will make
up to a total of M tries to insert the new particles without overlaps, where M = # of inserted particles *
Nattempt. If LAMMPS is unsuccessful at completing all insertions, it prints a warning.

The rate option moves the insertion volume in the z direction (3d) or y direction (2d). This enables pouring
particles from a successively higher height over time.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. This means you must be careful when restarting
a pouring simulation, when the restart file was written in the middle of the pouring operation. Specifically,
you should use a new fix pour command in the input script for the restarted simulation that continues the
operation. You will need to adjust the arguments of the original fix pour command to do this.

Also note that because the state of the random number generator is not saved in restart files, you cannot do
"exact" restarts with this fix, where the simulation continues on the same as if no restart had taken place.
However, in a statistical sense, a restarted simulation should produce the same behavior if you adjust the fix
pour/legacy parameters appropriately.

None of the fix_modify options are relevant to this fix. No global or per-atom quantities are stored by this fix
for access by various output commands. No parameter of this fix can be used with the start/stop keywords of
the run command. This fix is not invoked during energy minimization.

Restrictions:

This fix is part of the GRANULAR package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

For 3d simulations, a gravity fix in the -z direction must be defined for use in conjunction with this fix. For 2d
simulations, gravity must be defined in the -y direction.

The specified insertion region cannot be a "dynamic" region, as defined by the region command.

Related commands:

fix_deposit, fix_gravity, region

Default:

The option defaults are diam = 1.0 1.0, dens = 1.0 1.0, vol = 0.25 50, rate = 0.0, vel = 0.0 0.0 0.0 0.0 0.0.

LIGGGHTS Users Manual

fix pour/legacy command 506

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix press/berendsen command

Syntax:

fix ID group-ID press/berendsen keyword value ...

ID, group-ID are documented in fix command•
press/berendsen = style name of this fix command

one or more keyword value pairs may be appended
keyword = iso or aniso or x or y or z or couple or dilate or modulus

iso or aniso values = Pstart Pstop Pdamp
 Pstart,Pstop = scalar external pressure at start/end of run (pressure units)
 Pdamp = pressure damping parameter (time units)

x or y or z values = Pstart Pstop Pdamp
 Pstart,Pstop = external stress tensor component at start/end of run (pressure units)
 Pdamp = stress damping parameter (time units)

couple = none or xyz or xy or yz or xz
modulus value = bulk modulus of system (pressure units)
dilate value = all or partial

•

Examples:

fix 1 all press/berendsen iso 0.0 0.0 1000.0
fix 2 all press/berendsen aniso 0.0 0.0 1000.0 dilate partial

Description:

Reset the pressure of the system by using a Berendsen barostat (Berendsen), which rescales the system
volume and (optionally) the atoms coordinates within the simulation box every timestep.

Regardless of what atoms are in the fix group, a global pressure is computed for all atoms. Similarly, when the
size of the simulation box is changed, all atoms are re-scaled to new positions, unless the keyword dilate is
specified with a value of partial, in which case only the atoms in the fix group are re-scaled. The latter can be
useful for leaving the coordinates of atoms in a solid substrate unchanged and controlling the pressure of a
surrounding fluid.

IMPORTANT NOTE: Unlike the fix npt or fix nph commands which perform Nose/Hoover barostatting AND
time integration, this fix does NOT perform time integration. It only modifies the box size and atom
coordinates to effect barostatting. Thus you must use a separate time integration fix, like fix nve or fix nvt to
actually update the positions and velocities of atoms. This fix can be used in conjunction with thermostatting
fixes to control the temperature, such as fix nvt or fix langevin or fix temp/berendsen.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting and barostatting.

The barostat is specified using one or more of the iso, aniso, x, y, z, and couple keywords. These keywords
give you the ability to specify the 3 diagonal components of an external stress tensor, and to couple various of
these components together so that the dimensions they represent are varied together during a constant-pressure
simulation. Unlike the fix npt and fix nph commands, this fix cannot be used with triclinic (non-orthogonal)
simulation boxes to control all 6 components of the general pressure tensor.

The target pressures for each of the 3 diagonal components of the stress tensor can be specified independently
via the x, y, z, keywords, which correspond to the 3 simulation box dimensions. For each component, the

LIGGGHTS Users Manual

fix press/berendsen command 507

http://lammps.sandia.gov

external pressure or tensor component at each timestep is a ramped value during the run from Pstart to Pstop.
If a target pressure is specified for a component, then the corresponding box dimension will change during a
simulation. For example, if the y keyword is used, the y-box length will change. A box dimension will not
change if that component is not specified, although you have the option to change that dimension via the fix
deform command.

For all barostat keywords, the Pdamp parameter determines the time scale on which pressure is relaxed. For
example, a value of 1000.0 means to relax the pressure in a timespan of (roughly) 1000 time units (tau or
fmsec or psec - see the units command).

IMPORTANT NOTE: The relaxation time is actually also a function of the bulk modulus of the system
(inverse of isothermal compressibility). The bulk modulus has units of pressure and is the amount of pressure
that would need to be applied (isotropically) to reduce the volume of the system by a factor of 2 (assuming the
bulk modulus was a constant, independent of density, which it's not). The bulk modulus can be set via the
keyword modulus. The Pdamp parameter is effectively multiplied by the bulk modulus, so if the pressure is
relaxing faster than expected or desired, increasing the bulk modulus has the same effect as increasing Pdamp.
The converse is also true. LAMMPS does not attempt to guess a correct value of the bulk modulus; it just uses
10.0 as a default value which gives reasonable relaxation for a Lennard-Jones liquid, but will be way off for
other materials and way too small for solids. Thus you should experiment to find appropriate values of Pdamp
and/or the modulus when using this fix.

The couple keyword allows two or three of the diagonal components of the pressure tensor to be "coupled"
together. The value specified with the keyword determines which are coupled. For example, xz means the Pxx
and Pzz components of the stress tensor are coupled. Xyz means all 3 diagonal components are coupled.
Coupling means two things: the instantaneous stress will be computed as an average of the corresponding
diagonal components, and the coupled box dimensions will be changed together in lockstep, meaning coupled
dimensions will be dilated or contracted by the same percentage every timestep. The Pstart, Pstop, Pdamp
parameters for any coupled dimensions must be identical. Couple xyz can be used for a 2d simulation; the z
dimension is simply ignored.

The iso and aniso keywords are simply shortcuts that are equivalent to specifying several other keywords
together.

The keyword iso means couple all 3 diagonal components together when pressure is computed (hydrostatic
pressure), and dilate/contract the dimensions together. Using "iso Pstart Pstop Pdamp" is the same as
specifying these 4 keywords:

x Pstart Pstop Pdamp
y Pstart Pstop Pdamp
z Pstart Pstop Pdamp
couple xyz

The keyword aniso means x, y, and z dimensions are controlled independently using the Pxx, Pyy, and Pzz
components of the stress tensor as the driving forces, and the specified scalar external pressure. Using "aniso
Pstart Pstop Pdamp" is the same as specifying these 4 keywords:

x Pstart Pstop Pdamp
y Pstart Pstop Pdamp
z Pstart Pstop Pdamp
couple none

This fix computes a temperature and pressure each timestep. To do this, the fix creates its own computes of
style "temp" and "pressure", as if these commands had been issued:

compute fix-ID_temp group-ID temp
compute fix-ID_press group-ID pressure fix-ID_temp

LIGGGHTS Users Manual

fix press/berendsen command 508

See the compute temp and compute pressure commands for details. Note that the IDs of the new computes are
the fix-ID + underscore + "temp" or fix_ID + underscore + "press", and the group for the new computes is the
same as the fix group.

Note that these are NOT the computes used by thermodynamic output (see the thermo_style command) with
ID = thermo_temp and thermo_press. This means you can change the attributes of this fix's temperature or
pressure via the compute_modify command or print this temperature or pressure during thermodynamic
output via the thermo_style custom command using the appropriate compute-ID. It also means that changing
attributes of thermo_temp or thermo_press will have no effect on this fix.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify temp and press options are supported by this fix. You can use them to assign a compute you
have defined to this fix which will be used in its temperature and pressure calculations. If you do this, note
that the kinetic energy derived from the compute temperature should be consistent with the virial term
computed using all atoms for the pressure. LAMMPS will warn you if you choose to compute temperature on
a subset of atoms.

No global or per-atom quantities are stored by this fix for access by various output commands.

This fix can ramp its target pressure over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

Any dimension being adjusted by this fix must be periodic.

Related commands:

fix nve, fix nph, fix npt, fix temp/berendsen, fix_modify

Default:

The keyword defaults are dilate = all, modulus = 10.0 in units of pressure for whatever units are defined.

(Berendsen) Berendsen, Postma, van Gunsteren, DiNola, Haak, J Chem Phys, 81, 3684 (1984).

LIGGGHTS Users Manual

fix press/berendsen command 509

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix print command

Syntax:

fix ID group-ID print N string keyword value ...

ID, group-ID are documented in fix command•
print = style name of this fix command•
N = print every N steps•
string = text string to print with optional variable names•
zero or more keyword/value pairs may be appended•
keyword = file or append or screen or title

file value = filename
append value = filename
screen value = yes or no
title value = string

 string = text to print as 1st line of output file

•

Examples:

fix extra all print 100 "Coords of marker atom = $x $y $z"
fix extra all print 100 "Coords of marker atom = $x $y $z" file coord.txt

Description:

Print a text string every N steps during a simulation run. This can be used for diagnostic purposes or as a
debugging tool to monitor some quantity during a run. The text string must be a single argument, so it should
be enclosed in double quotes if it is more than one word. If it contains variables it must be enclosed in double
quotes to insure they are not evaluated when the input script line is read, but will instead be evaluated each
time the string is printed.

See the variable command for a description of equal style variables which are the most useful ones to use with
the fix print command, since they are evaluated afresh each timestep that the fix print line is output.
Equal-style variables calculate formulas involving mathematical operations, atom properties, group properties,
thermodynamic properties, global values calculated by a compute or fix, or references to other variables.

If the file or append keyword is used, a filename is specified to which the output generated by this fix will be
written. If file is used, then the filename is overwritten if it already exists. If append is used, then the filename
is appended to if it already exists, or created if it does not exist.

If the screen keyword is used, output by this fix to the screen and logfile can be turned on or off as desired.

The title keyword allow specification of the string that will be printed as the first line of the output file,
assuming the file keyword was used. By default, the title line is as follows:

Fix print output for fix ID

where ID is replaced with the fix-ID.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No

LIGGGHTS Users Manual

fix print command 510

http://lammps.sandia.gov

parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

variable, print

Default:

The option defaults are no file output, screen = yes, and title string as described above.

LIGGGHTS Users Manual

fix print command 511

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix property/atom/tracer command

Syntax:

fix id group property/atom/tracer region_mark region-ID mark_step s keyword value ...

ID, group-ID are documented in fix command•
property/atom/tracer = style name of this fix command•
region_mark = obligatory keyword•
region-ID = ID of region atoms must be in to be marked•
mark_step = obligatory keyword•
s = step when atoms are marked (or started to be marked, depending on marker_style)•
zero or more keyword/value pairs may be appended to args•
keyword = marker_style or check_mark_every

marker_style value = dirac or heaviside
 dirac = use a dirac impulse at time step s to mark the particles
 heaviside = use a dirac impulse staring at time step s to mark the particles

check_mark_every value = n
 n = check every that many time-step if atom are in region to be marked

•

Examples:

fix tracer all property/atom/tracer region_mark mark mark_step 10000 marker_style dirac check_mark_every 10

LIGGGHTS vs. LAMMPS Info:

This LIGGGHTS command is not available in LAMMPS.

Description:

Fix property/atom/tracer marks particles using either a Dirac delta impulse (default) or a Heaviside impulse,
as specified by the marker_style keyword. Particles are marked if they are inside the region specified by the
region_mark keyword. Using the Dirac impulse means that all the particles which are in the region at the
time-step specified by the mark_step keyword are marked. Using the Heaviside impulse means that all the
particles which pass by the specified region after the specified time-step are marked.

Keyword check_mark_every can be used to control how often the region is checked. Typically, this is useful
when the heaviside option is used, because you may not want to check each particle each time-step. However,
be careful not to choose this value too large, in this case you could skip particles passing through the region.

It is useful to combine this command with a compute nparticles/tracer/region command to compute residence
time distributions.

IMPORTANT NOTE: Using compute nparticles/tracer/region can change the tracer value (keyword
reset_marker.)

Restart, fix_modify, output, run start/stop, minimize info:

Information about this fix is written to binary restart files .

This fix computes a per-atom vector (the marker) which can be accessed by various output commands. . This
fix also computes a global scalar indicating how many particles were marked since the last time the global

LIGGGHTS Users Manual

fix property/atom/tracer command 512

http://www.cfdem.com
http://lammps.sandia.gov

scalar was computed. This scalar can also be accessed by various output commands. .

Restrictions:

Currently, this feature does not support multi-sphere particles.

Related commands:

compute nparticles/tracer/region

Default:

marker_style = dirac, check_mark_every = 10

LIGGGHTS Users Manual

fix property/atom/tracer command 513

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix property/atom/tracer/stream command

Syntax:

fix id group property/atom/tracer/stream region_mark region-ID mark_step s n_tracer n insert_stream ins-ID every e

ID, group-ID are documented in fix command•
property/atom/tracer/stream = style name of this fix command•
mark_step = obligatory keyword•
s = step when atoms are marked (or started to be marked, depending on marker_style)•
n_tracer = obligatory keyword•
n = number of tracer atoms to be marked•
insert_stream = obligatory keyword•
ins-ID = ID of a fix insert/stream•
every = obligatory keyword

e = 'once' or integer > 0

•

Examples:

fix tracer all property/atom/tracer/stream mark_step 10000 insert_stream ins n_tracer 20 every 10000

LIGGGHTS vs. LAMMPS Info:

This LIGGGHTS command is not available in LAMMPS.

Description:

Fix property/atom/tracer/stream marks a given number of particles (as defined by keyword n_tracer) which
are generated by a fix insert/stream command (as defined by keyword ins-ID. The first n_tracer particles
which pass the insertion face after time-step mark_step are being marked as tracers. In case of every = once,
this procedure is performed once, otherwise the procedure is repeated for the first n_tracer particles which
pass the insertion face after step mark_step + every.

Note that even for option once, particles are the marking procedure can extend over multiple packets of
insertion by a fix insert/stream in case that the number of particles inserted in a packet is smaller than the
number of particles to tag (as defined by keyword n_tracer).

An arbitrary number of fix property/atom/tracer/stream commands can be used for a given fix insert/stream.

It is useful to combine this command with a compute nparticles/tracer/region command to compute residence
time distributions.

IMPORTANT NOTE: Due to some parallel operation which needed to tag the particles, you need an atom
map to be allocated, see the atom_modify command for details.

Restart, fix_modify, output, run start/stop, minimize info:

Information about this fix is written to binary restart files .

This fix computes a per-atom vector (the marker) which can be accessed by various output commands. . This
fix also computes a global scalar indicating how many particles were marked since the last time the global
scalar was computed. This scalar can also be accessed by various output commands. .

LIGGGHTS Users Manual

fix property/atom/tracer/stream command 514

http://www.cfdem.com
http://lammps.sandia.gov

Restrictions:

Currently, this feature does not support multi-sphere particles.

Related commands:

compute nparticles/tracer/region

Default: none

LIGGGHTS Users Manual

fix property/atom/tracer/stream command 515

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix property/global command

fix property/atom command

Syntax:

fix id group property/atom variablename style restartvalue comm_ghost_value comm_reverse_ghost_value defaultvalue(s)...
fix id group property/global variablename style stylearg defaultvalue(s)...

ID, group-ID are documented in fix command•
property/global or property/atom = style name of this fix command•
variablename = a valid C++ string•
restartvalues = 'yes' or 'no'•
comm_ghost_value = 'yes' or 'no'•
comm_reverse_ghost_value = 'yes' or 'no'•

fix property/global:

style = scalar or vector or atomtype or matrix or atomtypepair

 stylearg for scalar/vector: none
 stylearg for matrix/atomtypepair: nCols

•

fix property/atom:

style = scalar or vector•
restartvalue = yes or no•
communicate_ghost_value = yes or no•
communicate_reverse_ghost_value = yes or no•

Examples:

fix m3 all property/global coefficientRestitution peratomtypepair 1 0.3
fix m5 all property/global characteristicVelocity scalar 2.
fix uf all property/atom uf vector yes no no 0. 0. 0.

LIGGGHTS vs. LAMMPS Info:

This LIGGGHTS command is not available in LAMMPS.

Description:

Fix property/atom reserves per-atom properties to be accessed by the user or other fixes. Style scalar
reserves one value per atom, style vector multiple values per atoms, where the number of defaultvalues (that
are assigned to the atoms at creation) determines the length of the vector. The group of atoms the fix is
applied to is always "all", irrespective of which group is used for the fix command . If you want to assign
different values for different groups, you can use the set command with keyword 'property/atom'. Keyword
restartvalues determines whether information about the values stored by this fix is written to binary restart
files. Keyword communicate_ghost_value determines whether information about the values stored by this fix
can be communicated to ghost particles (forward communication). The exact location during a time-step when
this happens depends on the model that uses this fix. Keyword communicate_reverse_ghost_value determines
whether information about the values stored by this fix can be communicated from ghost particles to owned
particles (reverse communication). The exact location during a time-step when this happens depends on the

LIGGGHTS Users Manual

fix property/global command 516

http://www.cfdem.com
http://lammps.sandia.gov

model that uses this fix.

Fix property/global reserves global properties to be accessed by the user or other fixes or pair styles. The
number of defaultvalues determines the length of the vector / the number of matrix components . For style
vector or atomtype, the user provides the number of vector components . For style matrix or atomtypepair, the
user provides the number of matrix columns (nCols) .

Example: nCols= 2 and defaultvalues = 1 2 3 4 5 6 would be mapped into a matrix like

[1 2]

[3 4]

[5 6]

Note that the number of default values must thus be a multiple of nCols. Note that vector and atomtype do the
same thing, atomtype is just provided to make input scripts more readable . Note that matrix and atomtypepair
both refer to a matrix of global values. However, a matrix defined via atomtypepair is required to be
symmetric.

Note that the group of atoms the fix is applied to is ignored (as the fix is not applied to atoms, but defines
values of global scope).

Restart, fix_modify, output, run start/stop, minimize info:

Information about this fix is written to binary restart files if you set restartvalue to 'yes'.

Restrictions: none

Related commands:

set, pair_gran

Default: none

LIGGGHTS Users Manual

fix property/atom command 517

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix qeq/comb command

fix qeq/comb/omp command

Syntax:

fix ID group-ID qeq/comb Nevery precision keyword value ...

ID, group-ID are documented in fix command•
qeq/comb = style name of this fix command•
Nevery = perform charge equilibration every this many steps•
precision = convergence criterion for charge equilibration•
zero or more keyword/value pairs may be appended•
keyword = file

file value = filename
 filename = name of file to write QEQ equilibration info to

•

Examples:

fix 1 surface qeq/comb 10 0.0001

Description:

Perform charge equilibration (QeQ) in conjunction with the COMB (Charge-Optimized Many-Body) potential
as described in (COMB_1) and (COMB_2). It performs the charge equilibration portion of the calculation
using the so-called QEq method, whereby the charge on each atom is adjusted to minimize the energy of the
system. This fix can only be used with the COMB potential; see the fix qeq/reax command for a QeQ
calculation that can be used with any potential.

Only charges on the atoms in the specified group are equilibrated. The fix relies on the pair style (COMB in
this case) to calculate the per-atom electronegativity (effective force on the charges). An electronegativity
equalization calculation (or QEq) is performed in an interative fashion, which in parallel requires
communication at each iteration for processors to exchange charge information about nearby atoms with each
other. See Rappe_and_Goddard and Rick_and_Stuart for details.

During a run, charge equilibration is peformed every Nevery time steps. Charge equilibration is also always
enforced on the first step of each run. The precision argument controls the tolerance for the difference in
electronegativity for all atoms during charge equilibration. Precision is a trade-off between the cost of
performing charge equilibration (more iterations) and accuracy.

If the file keyword is used, then information about each equilibration calculation is written to the specifed file.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

LIGGGHTS Users Manual

fix qeq/comb command 518

http://lammps.sandia.gov

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix produces a per-atom vector which can be accessed by various output commands. The vector stores the
gradient of the charge on each atom. The per-atom values be accessed on any timestep.

No parameter of this fix can be used with the start/stop keywords of the run command.

This fix can be invoked during energy minimization.

Restrictions:

This fix command currently only supports pair style comb.

Related commands:

pair_style comb

Default:

No file output is performed.

(COMB_1) J. Yu, S. B. Sinnott, S. R. Phillpot, Phys Rev B, 75, 085311 (2007),

(COMB_2) T.-R. Shan, B. D. Devine, T. W. Kemper, S. B. Sinnott, S. R. Phillpot, Phys Rev B, 81, 125328
(2010).

(Rappe_and_Goddard) A. K. Rappe, W. A. Goddard, J Phys Chem 95, 3358 (1991).

(Rick_and_Stuart) S. W. Rick, S. J. Stuart, B. J. Berne, J Chem Phys 101, 16141 (1994).

LIGGGHTS Users Manual

fix qeq/comb/omp command 519

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix qeq/reax command

Syntax:

fix ID group-ID qeq/reax Nevery cutlo cuthi tolerance params

ID, group-ID are documented in fix command•
qeq/reax = style name of this fix command•
Nevery = perform QEq every this many steps•
cutlo,cuthi = lo and hi cutoff for Taper radius•
tolerance = precision to which charges will be equilibrated•
params = reax/c or a filename•

Examples:

fix 1 all qeq/reax 1 0.0 10.0 1.0e-6 reax/c
fix 1 all qeq/reax 1 0.0 10.0 1.0e-6 param.qeq

Description:

Perform the charge equilibration (QEq) method as described in (Rappe and Goddard) and formulated in
(Nakano). It is typically used in conjunction with the ReaxFF force field model as implemented in the
pair_style reax/c command, but it can be used with any potential in LAMMPS, so long as it defines and uses
charges on each atom. The fix qeq/comb command should be used to perform charge equliibration with the
COMB potential. For more technical details about the charge equilibration performed by fix qeq/reax, see the
(Aktulga) paper.

The QEq method minimizes the electrostatic energy of the system by adjusting the partial charge on
individual atoms based on interactions with their neighbors. It reqires some parameters for each atom type. If
the params setting above is the word "reax/c", then these are extracted from the pair_style reax/c command
and the ReaxFF force field file it reads in. If a file name is specified for params, then the parameters are taken
from the specified file and the file must contain one line for each atom type. The latter form must be used
when performing QeQ with a non-ReaxFF potential. Each line should be formatted as follows:

itype chi eta gamma

where itype is the atom type from 1 to Ntypes, chi denotes the electronegativity in eV, eta denotes the
self-Coulomb potential in eV, and gamma denotes the valence orbital exponent. Note that these 3 quantities
are also in the ReaxFF potential file, except that eta is defined here as twice the eta value in the ReaxFF file.
Note that unlike the rest of LAMMPS, the units of this fix are hard-coded to be A, eV, and electronic charge.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. No global scalar or vector or per-atom quantities
are stored by this fix for access by various output commands. No parameter of this fix can be used with the
start/stop keywords of the run command.

This fix is invoked during energy minimization.

Restrictions:

This fix is part of the USER-REAXC package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

LIGGGHTS Users Manual

fix qeq/reax command 520

http://lammps.sandia.gov

This fix does not correctly handle interactions involving multiple periodic images of the same atom. Hence, it
should not be used for periodic cell dimensions less than 10 angstroms.

Related commands:

pair_style reax/c

Default: none

(Rappe) Rappe and Goddard III, Journal of Physical Chemistry, 105, 3358-3363 (1991).

(Nakano) Nakano, Computer Physics Communications, 104, 59-69 (1997).

(Aktulga) Aktulga, Fogarty, Pandit, Grama, Parallel Computing, 38, 245-259 (2012).

LIGGGHTS Users Manual

fix qeq/reax command 521

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix reax/bonds command

fix reax/c/bonds command

Syntax:

fix ID group-ID reax/bonds Nevery filename

ID, group-ID are documented in fix command•
reax/bonds = style name of this fix command•
Nevery = output interval in timesteps•
filename = name of output file•

Examples:

fix 1 all reax/bonds 100 bonds.tatb
fix 1 all reax/c/bonds 100 bonds.reaxc

Description:

Write out the bond information computed by the ReaxFF potential specified by pair_style reax or pair_style
reax/c in the exact same format as the original stand-alone ReaxFF code of Adri van Duin. The bond
information is written to filename on timesteps that are multiples of Nevery, including timestep 0. For
time-averaged chemical species analysis, please see the fix species command.

The format of the output file should be self-explantory.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

The fix reax/bonds command requires that the pair_style reax be invoked. This fix is part of the REAX
package. It is only enabled if LAMMPS was built with that package, which also requires the REAX library be
built and linked with LAMMPS. The fix reax/c/bonds command requires that the pair_style reax/c be invoked.
This fix is part of the USER-REAXC package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

pair_style reax, pair_style reax/c, fix reax/c/species

Default: none

LIGGGHTS Users Manual

fix reax/bonds command 522

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix reax/c/species command

Syntax:

fix ID group-ID reax/c/species Nevery Nrepeat Nfreq filename keyword value ...

ID, group-ID are documented in fix command•
reax/c/species = style name of this command•
Nevery = sample bond-order every this many timesteps•
Nrepeat = # of bond-order samples used for calculating averages•
Nfreq = calculate average bond-order every this many timesteps•
filename = name of output file•
zero or more keyword/value pairs may be appended•
keyword = cutoff or element or position

cutoff value = I J Cutoff
 I, J = atom types
 Cutoff = Bond-order cutoff value for this pair of atom types

element value = Element1, Element2, ...
position value = posfreq filepos

 posfreq = write position files every this many timestep
 filepos = name of position output file

•

Examples:

fix 1 all reax/c/species 10 10 100 species.out
fix 1 all reax/c/species 1 2 20 species.out cutoff 1 1 0.40 cutoff 1 2 0.55
fix 1 all reax/c/species 1 100 100 species.out element Au O H position 1000 AuOH.pos

Description:

Write out the chemical species information computed by the ReaxFF potential specified by pair_style reax/c.
Bond-order values (either averaged or instantaneous, depending on value of Nrepeat) are used to determine
chemical bonds. Every Nfreq timesteps, chemical species information is written to filename as a two line
output. The first line is a header containing labels. The second line consists of the following: timestep, total
number of molecules, total number of distinct species, number of molecules of each species. The chemical
formula of each species is given in the first line.

Optional keyword cutoff can be assigned to change the minimum bond-order values used in identifying
chemical bonds between pairs of atoms. Bond-order cutoffs should be carefully chosen, as bond-order cutoffs
that are too small may include too many bonds (which will result in an error), while too-large cutoffs will
result in fragmented molecules. The default cutoff of 0.3 usually gives good estimate.

Optional keyword element can be used to specify the chemical symbol printed for each LAMMPS atom type.
The number of symbols must match the number of LAMMPS atom types and each symbol must consist of 1
or 2 alphanumeric characters. Normally, these symbols should be chosen to match the chemical identity of
each LAMMPS atom type, as specified using the reax/c pair_coeff command and the ReaxFF force field file.

Optional keyword position writes center-of-mass positions of each identified molecules to file filepos every
posfreq timesteps. The first line contains information on timestep, total number of molecules, total number of
distinct species, and box dimensions. The second line is a header containing labels. From the third line
downward, each molecule writes a line of output containing the following information: molecule ID, number
of atoms in this molecule, chemical formula, total charge, and center-of-mass xyz positions of this molecule.
The xyz positions are in fractional coordinates relative to the box dimensions.

LIGGGHTS Users Manual

fix reax/c/bonds command 523

http://lammps.sandia.gov

Keyword position output file filepos can contain the wildcard character "*". If the "*" character appears in
filepos, then one file per snapshot is written at posfreq and the "*" character is replaced with the timestep
value. For example, AuO.pos.* becomes AuO.pos.0, AuO.pos.1000, etc.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the bond-order values are sampled to
get the average bond order. The species analysis is performed using the average bond-order on timesteps that
are a multiple of Nfreq. The average is over Nrepeat bond-order samples, computed in the preceding portion
of the simulation every Nevery timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero
even if Nrepeat is 1. Also, the timesteps contributing to the average bond-order cannot overlap, i.e. Nfreq >
(Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then bond-order values on timesteps
90,92,94,96,98,100 will be used to compute the average bond-order for the species analysis output on timestep
100.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

The fix species currently only works with pair_style reax/c and it requires that the pair_style reax/c be
invoked. This fix is part of the USER-REAXC package. It is only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info.

It should be possible to extend it to other reactive pair_styles (such as rebo, airebo, comb, and bop), but this
has not yet been done.

Related commands:

pair_style reax/c, fix reax/bonds

Default:

The default values for bond-order cutoffs are 0.3 for all I-J pairs. The default element symbols are C, H, O, N.
Position files are not written by default.

LIGGGHTS Users Manual

fix reax/c/species command 524

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix recenter command

Syntax:

fix ID group-ID recenter x y z keyword value ...

ID, group-ID are documented in fix command•
recenter = style name of this fix command•
x,y,z = constrain center-of-mass to these coords (distance units), any coord can also be NULL or INIT
(see below)

•

zero or more keyword/value pairs may be appended•
keyword = shift or units

shift value = group-ID
 group-ID = group of atoms whose coords are shifted

units value = box or lattice or fraction

•

Examples:

fix 1 all recenter 0.0 0.5 0.0
fix 1 all recenter INIT INIT NULL
fix 1 all recenter INIT 0.0 0.0 units box

Description:

Constrain the center-of-mass position of a group of atoms by adjusting the coordinates of the atoms every
timestep. This is simply a small shift that does not alter the dynamics of the system or change the relative
coordinates of any pair of atoms in the group. This can be used to insure the entire collection of atoms (or a
portion of them) do not drift during the simulation due to random perturbations (e.g. fix langevin
thermostatting).

Distance units for the x,y,z values are determined by the setting of the units keyword, as discussed below. One
or more x,y,z values can also be specified as NULL, which means exclude that dimension from this operation.
Or it can be specified as INIT which means to constrain the center-of-mass to its initial value at the beginning
of the run.

The center-of-mass (COM) is computed for the group specified by the fix. If the current COM is different
than the specified x,y,z, then a group of atoms has their coordinates shifted by the difference. By default the
shifted group is also the group specified by the fix. A different group can be shifted by using the shift
keyword. For example, the COM could be computed on a protein to keep it in the center of the simulation
box. But the entire system (protein + water) could be shifted.

If the units keyword is set to box, then the distance units of x,y,z are defined by the units command - e.g.
Angstroms for real units. A lattice value means the distance units are in lattice spacings. The lattice command
must have been previously used to define the lattice spacing. A fraction value means a fractional distance
between the lo/hi box boundaries, e.g. 0.5 = middle of the box. The default is to use lattice units.

Note that the velocity command can be used to create velocities with zero aggregate linear and/or angular
momentum.

IMPORTANT NOTE: This fix performs its operations at the same point in the timestep as other time
integration fixes, such as fix nve, fix nvt, or fix npt. Thus fix recenter should normally be the last such fix
specified in the input script, since the adjustments it makes to atom coordinates should come after the changes

LIGGGHTS Users Manual

fix recenter command 525

http://lammps.sandia.gov

made by time integration. LAMMPS will warn you if your fixes are not ordered this way.

IMPORTANT NOTE: If you use this fix on a small group of atoms (e.g. a molecule in solvent) without using
the shift keyword to adjust the positions of all atoms in the system, then the results can be unpredictable. For
example, if the molecule is pushed in one direction by the solvent, its velocity will increase. But its
coordinates will be recentered, meaning it is pushed back towards the force. Thus over time, the velocity and
temperature of the molecule could become very large (though it won't appear to be moving due to the
recentering). If you are thermostatting the entire system, then the solvent would be cooled to compensate. A
better solution for this simulation scenario is to use the fix spring command to tether the molecule in place.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix should not be used with an x,y,z setting that causes a large shift in the system on the 1st timestep, due
to the requested COM being very different from the initial COM. This could cause atoms to be lost, especially
in parallel. Instead, use the displace_atoms command, which can be used to move atoms a large distance.

Related commands:

fix momentum, velocity

Default:

The option defaults are shift = fix group-ID, and units = lattice.

LIGGGHTS Users Manual

fix recenter command 526

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix restrain command

Syntax:

fix ID group-ID restrain keyword args ...

ID, group-ID are documented in fix command•
restrain = style name of this fix command•
one or more keyword/arg pairs may be appended•
keyword = bond or angle or dihedral

bond args = atom1 atom2 Kstart Kstop r0
 atom1,atom2 = IDs of 2 atoms in bond
 Kstart,Kstop = restraint coefficients at start/end of run (energy units)
 r0 = equilibrium bond distance (distance units)

angle args = atom1 atom2 atom3 Kstart Kstop theta0
 atom1,atom2,atom3 = IDs of 3 atoms in angle, atom2 = middle atom
 Kstart,Kstop = restraint coefficients at start/end of run (energy units)
 theta0 = equilibrium angle theta (degrees)

bond args = atom1 atom2 atom3 atom4 Kstart Kstop phi0
 atom1,atom2,atom3,atom4 = IDs of 4 atoms in dihedral in linear order
 Kstart,Kstop = restraint coefficients at start/end of run (energy units)
 phi0 = equilibrium dihedral angle phi (degrees)

•

Examples:

fix holdem all restrain bond 45 48 2000.0 2000.0 2.75
fix holdem all restrain dihedral 1 2 3 4 2000.0 2000.0 120.0
fix holdem all restrain bond 45 48 2000.0 2000.0 2.75 dihedral 1 2 3 4 2000.0 2000.0 120.0
fix texas_holdem all restrain dihedral 1 2 3 4 0.0 2000.0 120.0 dihedral 1 2 3 5 0.0 2000.0 -120.0 dihedral 1 2 3 6 0.0 2000.0 0.0

Description:

Restrain the motion of the specified sets of atoms by making them part of a bond or angle or dihedral
interaction whose strength can vary over time during a simulation. This is functionally equivalent to creating a
bond or angle or dihedral for the same atoms in a data file, as specified by the read_data command, albeit with
a time-varying pre-factor coefficient. For the purpose of forcefield parameter-fitting or mapping a molecular
potential energy surface, this fix reduces the hassle and risk associated with modifying data files. In other
words, use this fix to temporarily force a molecule to adopt a particular conformation. To create a permanent
bond or angle or dihedral, you should modify the data file.

The group-ID specified by this fix is ignored.

The second example above applies a restraint to hold the dihedral angle formed by atoms 1, 2, 3, and 4 near
120 degrees using a constant restraint coefficient. The fourth example applies similar restraints to multiple
dihedral angles using a restraint coefficient that increases from 0.0 to 2000.0 over the course of the run.

IMPORTANT NOTE: Adding a force to atoms implies a change in their potential energy as they move due to
the applied force field. For dynamics via the run command, this energy can be added to the system's potential
energy for thermodynamic output (see below). For energy minimization via the minimize command, this
energy must be added to the system's potential energy to formulate a self-consistent minimization problem
(see below).

In order for a restraint to be effective, the restraint force must typically be significantly larger than the forces
associated with conventional forcefield terms. If the restraint is applied during a dynamics run (as opposed to

LIGGGHTS Users Manual

fix restrain command 527

http://lammps.sandia.gov

during an energy minimization), a large restraint coefficient can significantly reduce the stable timestep size,
especially if the atoms are initially far from the preferred conformation. You may need to experiment to
determine what value of K works best for a given application.

For the case of finding a minimum energy structure for a single molecule with particular restratins (e.g. for
fitting forcefield parameters or constructing a potential energy surface), commands such as the following may
be useful:

minimize molecule energy with restraints
velocity all create 600.0 8675309 mom yes rot yes dist gaussian
fix NVE all nve
fix TFIX all langevin 600.0 0.0 100 24601
fix REST all restrain dihedral 2 1 3 8 0.0 5000.0 $angle1 dihedral 3 1 2 9 0.0 5000.0 $angle2
fix_modify REST energy yes
run 10000
fix TFIX all langevin 0.0 0.0 100 24601
fix REST all restrain dihedral 2 1 3 8 5000.0 5000.0 $angle1 dihedral 3 1 2 9 5000.0 5000.0 $angle2
fix_modify REST energy yes
run 10000
sanity check for convergence
minimize 1e-6 1e-9 1000 100000
report unrestrained energies
unfix REST
run 0

The bond keyword applies a bond restraint to the specified atoms using the same functional form used by the
bond_style harmonic command. The potential associated with the restraint is

with the following coefficients:

K (energy/distance^2)•
r0 (distance)•

K and r0 are specified with the fix. Note that the usual 1/2 factor is included in K.

The angle keyword applies an angle restraint to the specified atoms using the same functional form used by
the angle_style harmonic command. The potential associated with the restraint is

with the following coefficients:

K (energy/radian^2)•
theta0 (degrees)•

K and theta0 are specified with the fix. Note that the usual 1/2 factor is included in K.

The dihedral keyword applies a dihedral restraint to the specified atoms using a simplified form of the
function used by the dihedral_style charmm command. The potential associated with the restraint is

LIGGGHTS Users Manual

fix restrain command 528

with the following coefficients:

K (energy)•
n = 1•
d (degrees) = phi0 + 180•

K and phi0 are specified with the fix. Note that the value of n is hard-wired to 1. Also note that the energy will
be a minimum when the current dihedral angle phi is equal to phi0.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential energy associated with this fix to
the system's potential energy as part of thermodynamic output.

IMPORTANT NOTE: If you want the fictitious potential energy associated with the added forces to be
included in the total potential energy of the system (the quantity being minimized), you MUST enable the
fix_modify energy option for this fix.

This fix computes a global scalar, which can be accessed by various output commands. The scalar is the
potential energy for all the restraints as discussed above. The scalar value calculated by this fix is "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

Restrictions: none

Related commands: none

Default: none

LIGGGHTS Users Manual

fix restrain command 529

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix rigid command

fix rigid/nve command

fix rigid/nvt command

fix rigid/npt command

fix rigid/nph command

fix rigid/small command

Syntax:

fix ID group-ID style bodystyle args keyword values ...

ID, group-ID are documented in fix command•
style = rigid or rigid/nve or rigid/nvt or rigid/npt or rigid/nph or rigid/small•
bodystyle = single or molecule or group

single args = none
molecule args = none
group args = N groupID1 groupID2 ...

 N = # of groups
 groupID1, groupID2, ... = list of N group IDs

•

zero or more keyword/value pairs may be appended•
keyword = langevin or temp or iso or aniso or x or y or z or couple or tparam or pchain or dilate or
force or torque or infile

langevin values = Tstart Tstop Tperiod seed
 Tstart,Tstop = desired temperature at start/stop of run (temperature units)
 Tdamp = temperature damping parameter (time units)
 seed = random number seed to use for white noise (positive integer)

temp values = Tstart Tstop Tdamp
 Tstart,Tstop = desired temperature at start/stop of run (temperature units)
 Tdamp = temperature damping parameter (time units)

iso or aniso values = Pstart Pstop Pdamp
 Pstart,Pstop = scalar external pressure at start/end of run (pressure units)
 Pdamp = pressure damping parameter (time units)

x or y or z values = Pstart Pstop Pdamp
 Pstart,Pstop = external stress tensor component at start/end of run (pressure units)
 Pdamp = stress damping parameter (time units)

couple = none or xyz or xy or yz or xz
tparam values = Tchain Titer Torder

 Tchain = length of Nose/Hoover thermostat chain
 Titer = number of thermostat iterations performed
 Torder = 3 or 5 = Yoshida-Suzuki integration parameters

pchain values = Pchain
 Pchain = length of the Nose/Hoover thermostat chain coupled with the barostat

dilate value = dilate-group-ID
 dilate-group-ID = only dilate atoms in this group due to barostat volume changes

force values = M xflag yflag zflag
 M = which rigid body from 1-Nbody (see asterisk form below)
 xflag,yflag,zflag = off/on if component of center-of-mass force is active

torque values = M xflag yflag zflag
 M = which rigid body from 1-Nbody (see asterisk form below)
 xflag,yflag,zflag = off/on if component of center-of-mass torque is active

•

LIGGGHTS Users Manual

fix rigid command 530

http://lammps.sandia.gov

infile filename
 filename = file with per-body values of mass, center-of-mass, moments of inertia

Examples:

fix 1 clump rigid single
fix 1 clump rigid/small molecule
fix 1 clump rigid single force 1 off off on langevin 1.0 1.0 1.0 428984
fix 1 polychains rigid/nvt molecule temp 1.0 1.0 5.0
fix 1 polychains rigid molecule force 1*5 off off off force 6*10 off off on
fix 1 polychains rigid/small molecule langevin 1.0 1.0 1.0 428984
fix 2 fluid rigid group 3 clump1 clump2 clump3 torque * off off off
fix 1 rods rigid/npt molecule temp 300.0 300.0 100.0 iso 0.5 0.5 10.0
fix 1 particles rigid/npt molecule temp 1.0 1.0 5.0 x 0.5 0.5 1.0 z 0.5 0.5 1.0 couple xz
fix 1 water rigid/nph molecule iso 0.5 0.5 1.0

Description:

Treat one or more sets of atoms as independent rigid bodies. This means that each timestep the total force and
torque on each rigid body is computed as the sum of the forces and torques on its constituent particles and the
coordinates, velocities, and orientations of the atoms in each body are updated so that the body moves and
rotates as a single entity.

Examples of large rigid bodies are a large colloidal particle, or portions of a large biomolecule such as a
protein.

Example of small rigid bodies are patchy nanoparticles, such as those modeled in this paper by Sharon
Glotzer's group, clumps of granular particles, lipid molecules consiting of one or more point dipoles
connected to other spheroids or ellipsoids, irregular particles built from line segments (2d) or triangles (3d),
and coarse-grain models of nano or colloidal particles consisting of a small number of constituent particles.
Note that the fix shake command can also be used to rigidify small molecules of 2, 3, or 4 atoms, e.g. water
molecules. That fix treats the constituent atoms as point masses.

These fixes also update the positions and velocities of the atoms in each rigid body via time integration, in the
NVE, NVT, NPT, or NPH ensemble, as described below.

There are two main variants of this fix, fix rigid and fix rigid/small. The NVE/NVT/NPT/NHT versions
belong to one of the two variants, as their style names indicate.

IMPORTANT NOTE: Not all of the bodystyle options and keyword/value options are available for both the
rigid and rigid/small variants. See details below.

The rigid variant is typically the best choice for a system with a small number of large rigid bodies, each of
which can extend across the domain of many processors. It operates by creating a single global list of rigid
bodies, which all processors contribute to. MPI_Allreduce operations are performed each timestep to sum the
contributions from each processor to the force and torque on all the bodies. This operation will not scale well
in parallel if large numbers of rigid bodies are simulated.

The rigid/small variant is typically best for a system with a large number of small rigid bodies. Each body is
assigned to the atom closest to the geometrical center of the body. The fix operates using local lists of rigid
bodies owned by each processor and information is exchanged and summed via local communication between
neighboring processors when ghost atom info is accumlated.

IMPORTANT NOTE: To use rigid/small the ghost atom cutoff must be large enough to span the distance
between the atom that owns the body and every other atom in the body. This distance value is printed out
when the rigid bodies are defined. If the pair_style cutoff plus neighbor skin does not span this distance, then
you should use the communicate cutoff command with a setting epsilon larger than the distance.

LIGGGHTS Users Manual

fix rigid/small command 531

Which of the two variants is faster for a particular problem is hard to predict. The best way to decide is to
perform a short test run. Both variants should give identical numerical answers for short runs. Long runs
should give statistically similar results, but round-off differences will accumulate to produce divergent
trajectories.

IMPORTANT NOTE: You should not update the atoms in rigid bodies via other time-integration fixes (e.g.
fix nve, fix nvt, fix npt), or you will be integrating their motion more than once each timestep. When
performing a hybrid simulation with some atoms in rigid bodies, and some not, a separate time integration fix
like fix nve or fix nvt should be used for the non-rigid particles.

IMPORTANT NOTE: These fixes are overkill if you simply want to hold a collection of atoms stationary or
have them move with a constant velocity. A simpler way to hold atoms stationary is to not include those
atoms in your time integration fix. E.g. use "fix 1 mobile nve" instead of "fix 1 all nve", where "mobile" is the
group of atoms that you want to move. You can move atoms with a constant velocity by assigning them an
initial velocity (via the velocity command), setting the force on them to 0.0 (via the fix setforce command),
and integrating them as usual (e.g. via the fix nve command).

Each rigid body must have two or more atoms. An atom can belong to at most one rigid body. Which atoms
are in which bodies can be defined via several options.

For bodystyle single the entire fix group of atoms is treated as one rigid body. This option is only allowed for
fix rigid and its sub-styles.

For bodystyle molecule, each set of atoms in the fix group with a different molecule ID is treated as a rigid
body. This option is allowed for fix rigid and fix rigid/small, and their sub-styles. Note that atoms with a
molecule ID = 0 will be treated as a single rigid body. For a system with atomic solvent (typically this is
atoms with molecule ID = 0) surrounding rigid bodies, this may not be what you want. Thus you should be
careful to use a fix group that only includes atoms you want to be part of rigid bodies.

For bodystyle group, each of the listed groups is treated as a separate rigid body. Only atoms that are also in
the fix group are included in each rigid body. This option is only allowed for fix rigid and its sub-styles.

IMPORTANT NOTE: To compute the initial center-of-mass position and other properties of each rigid body,
the image flags for each atom in the body are used to "unwrap" the atom coordinates. Thus you must insure
that these image flags are consistent so that the unwrapping creates a valid rigid body (one where the atoms
are close together), particularly if the atoms in a single rigid body straddle a periodic boundary. This means
the input data file or restart file must define the image flags for each atom consistently or that you have used
the set command to specify them correctly. If a dimension is non-periodic then the image flag of each atom
must be 0 in that dimension, else an error is generated.

The force and torque keywords discussed next are only allowed for fix rigid and its sub-styles.

By default, each rigid body is acted on by other atoms which induce an external force and torque on its center
of mass, causing it to translate and rotate. Components of the external center-of-mass force and torque can be
turned off by the force and torque keywords. This may be useful if you wish a body to rotate but not translate,
or vice versa, or if you wish it to rotate or translate continuously unaffected by interactions with other
particles. Note that if you expect a rigid body not to move or rotate by using these keywords, you must insure
its initial center-of-mass translational or angular velocity is 0.0. Otherwise the initial translational or angular
momentum the body has will persist.

An xflag, yflag, or zflag set to off means turn off the component of force of torque in that dimension. A setting
of on means turn on the component, which is the default. Which rigid body(s) the settings apply to is
determined by the first argument of the force and torque keywords. It can be an integer M from 1 to Nbody,
where Nbody is the number of rigid bodies defined. A wild-card asterisk can be used in place of, or in

LIGGGHTS Users Manual

fix rigid/small command 532

conjunction with, the M argument to set the flags for multiple rigid bodies. This takes the form "*" or "*n" or
"n*" or "m*n". If N = the number of rigid bodies, then an asterisk with no numeric values means all bodies
from 1 to N. A leading asterisk means all bodies from 1 to n (inclusive). A trailing asterisk means all bodies
from n to N (inclusive). A middle asterisk means all types from m to n (inclusive). Note that you can use the
force or torque keywords as many times as you like. If a particular rigid body has its component flags set
multiple times, the settings from the final keyword are used.

For computational efficiency, you may wish to turn off pairwise and bond interactions within each rigid body,
as they no longer contribute to the motion. The neigh_modify exclude and delete_bonds commands are used
to do this.

For computational efficiency, you should typically define one fix rigid or fix rigid/small command which
includes all the desired rigid bodies. LAMMPS will allow multiple rigid fixes to be defined, but it is more
expensive.

The constituent particles within a rigid body can be point particles (the default in LAMMPS) or finite-size
particles, such as spheres or ellipsoids or line segments or triangles. See the atom_style sphere and ellipsoid
and line and tri commands for more details on these kinds of particles. Finite-size particles contribute
differently to the moment of inertia of a rigid body than do point particles. Finite-size particles can also
experience torque (e.g. due to frictional granular interactions) and have an orientation. These contributions are
accounted for by these fixes.

Forces between particles within a body do not contribute to the external force or torque on the body. Thus for
computational efficiency, you may wish to turn off pairwise and bond interactions between particles within
each rigid body. The neigh_modify exclude and delete_bonds commands are used to do this. For finite-size
particles this also means the particles can be highly overlapped when creating the rigid body.

The rigid and rigid/small and rigid/nve styles perform constant NVE time integration. The only difference is
that the rigid and rigid/small styles use an integration technique based on Richardson iterations. The rigid/nve
style uses the methods described in the paper by Miller, which are thought to provide better energy
conservation than an iterative approach.

The rigid/nvt style performs constant NVT integration using a Nose/Hoover thermostat with chains as
described originally in (Hoover) and (Martyna), which thermostats both the translational and rotational
degrees of freedom of the rigid bodies. The rigid-body algorithm used by rigid/nvt is described in the paper by
Kamberaj.

The rigid/npt and rigid/nph styles perform constant NPT or NPH integration using a Nose/Hoover barostat
with chains. For the NPT case, the same Nose/Hoover thermostat is also used as with rigid/nvt.

The barostat parameters are specified using one or more of the iso, aniso, x, y, z and couple keywords. These
keywords give you the ability to specify 3 diagonal components of the external stress tensor, and to couple
these components together so that the dimensions they represent are varied together during a constant-pressure
simulation. The effects of these keywords are similar to those defined in fix npt/nph

NOTE: Currently the rigid/npt and rigid/nph styles do not support triclinic (non-orthongonal) boxes.

The target pressures for each of the 6 components of the stress tensor can be specified independently via the x,
y, z keywords, which correspond to the 3 simulation box dimensions. For each component, the external
pressure or tensor component at each timestep is a ramped value during the run from Pstart to Pstop. If a
target pressure is specified for a component, then the corresponding box dimension will change during a
simulation. For example, if the y keyword is used, the y-box length will change. A box dimension will not
change if that component is not specified, although you have the option to change that dimension via the fix
deform command.

LIGGGHTS Users Manual

fix rigid/small command 533

For all barostat keywords, the Pdamp parameter operates like the Tdamp parameter, determining the time
scale on which pressure is relaxed. For example, a value of 10.0 means to relax the pressure in a timespan of
(roughly) 10 time units (e.g. tau or fmsec or psec - see the units command).

Regardless of what atoms are in the fix group (the only atoms which are time integrated), a global pressure or
stress tensor is computed for all atoms. Similarly, when the size of the simulation box is changed, all atoms
are re-scaled to new positions, unless the keyword dilate is specified with a dilate-group-ID for a group that
represents a subset of the atoms. This can be useful, for example, to leave the coordinates of atoms in a solid
substrate unchanged and controlling the pressure of a surrounding fluid. Another example is a system
consisting of rigid bodies and point particles where the barostat is only coupled with the rigid bodies. This
option should be used with care, since it can be unphysical to dilate some atoms and not others, because it can
introduce large, instantaneous displacements between a pair of atoms (one dilated, one not) that are far from
the dilation origin.

The couple keyword allows two or three of the diagonal components of the pressure tensor to be "coupled"
together. The value specified with the keyword determines which are coupled. For example, xz means the Pxx
and Pzz components of the stress tensor are coupled. Xyz means all 3 diagonal components are coupled.
Coupling means two things: the instantaneous stress will be computed as an average of the corresponding
diagonal components, and the coupled box dimensions will be changed together in lockstep, meaning coupled
dimensions will be dilated or contracted by the same percentage every timestep. The Pstart, Pstop, Pdamp
parameters for any coupled dimensions must be identical. Couple xyz can be used for a 2d simulation; the z
dimension is simply ignored.

The iso and aniso keywords are simply shortcuts that are equivalent to specifying several other keywords
together.

The keyword iso means couple all 3 diagonal components together when pressure is computed (hydrostatic
pressure), and dilate/contract the dimensions together. Using "iso Pstart Pstop Pdamp" is the same as
specifying these 4 keywords:

x Pstart Pstop Pdamp
y Pstart Pstop Pdamp
z Pstart Pstop Pdamp
couple xyz

The keyword aniso means x, y, and z dimensions are controlled independently using the Pxx, Pyy, and Pzz
components of the stress tensor as the driving forces, and the specified scalar external pressure. Using "aniso
Pstart Pstop Pdamp" is the same as specifying these 4 keywords:

x Pstart Pstop Pdamp
y Pstart Pstop Pdamp
z Pstart Pstop Pdamp
couple none

The keyword/value option pairs are used in the following ways.

The langevin and temp and tparam keywords perform thermostatting of the rigid bodies, altering both their
translational and rotational degrees of freedom. What is meant by "temperature" of a collection of rigid bodies
and how it can be monitored via the fix output is discussed below.

The langevin keyword applies a Langevin thermostat to the constant NVE time integration performed by
either the rigid or rigid/small or rigid/nve styles. It cannot be used with the rigid/nvt style. The desired
temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamp parameter is
specified in time units and determines how rapidly the temperature is relaxed. For example, a value of 100.0
means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or psec - see the units
command). The random # seed must be a positive integer.

LIGGGHTS Users Manual

fix rigid/small command 534

The way that Langevin thermostatting operates is explained on the fix langevin doc page. If you wish to
simply viscously damp the rotational motion without thermostatting, you can set Tstart and Tstop to 0.0,
which means only the viscous drag term in the Langevin thermostat will be applied. See the discussion on the
fix viscous doc page for details.

IMPORTANT NOTE: When the langevin keyword is used with fix rigid versus fix rigid/small, different
dynamics will result for parallel runs. This is because of the way random numbers are used in the two cases.
The dynamics for the two cases should be statistically similar, but will not be identical, even for a single
timestep.

The temp and tparam keywords apply a Nose/Hoover thermostat to the NVT time integration performed by
the rigid/nvt style. They cannot be used with the rigid or rigid/small or rigid/nve styles. The desired
temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamp parameter is
specified in time units and determines how rapidly the temperature is relaxed. For example, a value of 100.0
means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or psec - see the units
command).

Nose/Hoover chains are used in conjunction with this thermostat. The tparam keyword can optionally be used
to change the chain settings used. Tchain is the number of thermostats in the Nose Hoover chain. This value,
along with Tdamp can be varied to dampen undesirable oscillations in temperature that can occur in a
simulation. As a rule of thumb, increasing the chain length should lead to smaller oscillations. The keyword
pchain specifies the number of thermostats in the chain thermostatting the barostat degrees of freedom.

IMPORTANT NOTE: There are alternate ways to thermostat a system of rigid bodies. You can use fix
langevin to treat the individual particles in the rigid bodies as effectively immersed in an implicit solvent, e.g.
a Brownian dynamics model. For hybrid systems with both rigid bodies and solvent particles, you can
thermostat only the solvent particles that surround one or more rigid bodies by appropriate choice of groups in
the compute and fix commands for temperature and thermostatting. The solvent interactions with the rigid
bodies should then effectively thermostat the rigid body temperature as well without use of the Langevin or
Nose/Hoover options associated with the fix rigid commands.

The infile keyword allows a file of rigid body attributes to be read in from a file, rather then having LAMMPS
compute them. There are 3 such attributes: the total mass of the rigid body, its center-of-mass position, and its
6 moments of inertia. For rigid bodies consisting of point particles or non-overlapping finite-size particles,
LAMMPS can compute these values accurately. However, for rigid bodies consisting of finite-size particles
which overlap each other, LAMMPS will ignore the overlaps when computing these 3 attributes. The amount
of error this induces depends on the amount of overlap. To avoid this issue, the values can be pre-computed
(e.g. using Monte Carlo integration).

The format of the file is as follows. Note that the file does not have to list attributes for every rigid body
integrated by fix rigid. Only bodies which the file specifies will have their computed attributes overridden.
The file can contain initial blank lines or comment lines starting with "#" which are ignored. The first
non-blank, non-comment line should list N = the number of lines to follow. The N successive lines contain the
following information:

ID1 masstotal xcm ycm zcm ixx iyy izz ixy ixz iyz
ID2 masstotal xcm ycm zcm ixx iyy izz ixy ixz iyz
...
IDN masstotal xcm ycm zcm ixx iyy izz ixy ixz iyz

The rigid body IDs are all positive integers. For the single bodystyle, only an ID of 1 can be used. For the
group bodystyle, IDs from 1 to Ng can be used where Ng is the number of specified groups. For the molecule
bodystyle, use the molecule ID for the atoms in a specific rigid body as the rigid body ID.

LIGGGHTS Users Manual

fix rigid/small command 535

The masstotal and center-of-mass coordinates (xcm,ycm,zcm) are self-explanatory. The center-of-mass should
be consistent with what is calculated for the position of the rigid body with all its atoms unwrapped by their
respective image flags. If this produces a center-of-mass that is outside the simulation box, LAMMPS wraps it
back into the box. The 6 moments of inertia (ixx,iyy,izz,ixy,ixz,iyz) should be the values consistent with the
current orientation of the rigid body around its center of mass. The values are with respect to the simulation
box XYZ axes, not with respect to the prinicpal axes of the rigid body itself. LAMMPS performs the latter
calculation internally.

IMPORTANT NOTE: If you use the infile keyword and write restart files during a simulation, then each time
a restart file is written, the fix also write an auxiliary restart file with the name rfile.rigid, where "rfile" is the
name of the restart file, e.g. tmp.restart.10000 and tmp.restart.10000.rigid. This auxiliary file is in the same
format described above and contains info on the current center-of-mass and 6 moments of inertia. Thus it can
be used in a new input script that restarts the run and re-specifies a rigid fix using an infile keyword and the
appropriate filename. Note that the auxiliary file will contain one line for every rigid body, even if the original
file only listed a subset of the rigid bodies.

If you use a temperature compute with a group that includes particles in rigid bodies, the degrees-of-freedom
removed by each rigid body are accounted for in the temperature (and pressure) computation, but only if the
temperature group includes all the particles in a particular rigid body.

A 3d rigid body has 6 degrees of freedom (3 translational, 3 rotational), except for a collection of point
particles lying on a straight line, which has only 5, e.g a dimer. A 2d rigid body has 3 degrees of freedom (2
translational, 1 rotational).

IMPORTANT NOTE: You may wish to explicitly subtract additional degrees-of-freedom if you use the force
and torque keywords to eliminate certain motions of one or more rigid bodies. LAMMPS does not do this
automatically.

The rigid body contribution to the pressure of the system (virial) is also accounted for by this fix.

IMPORTANT NOTE: The periodic image flags of atoms in rigid bodies are altered so that the rigid body can
be reconstructed correctly when it straddles periodic boundaries. The atom image flags are not
incremented/decremented as they would be for non-rigid atoms as the rigid body crosses periodic boundaries.
Specifically, they are set so that the center-of-mass (COM) of the rigid body always remains inside the
simulation box.

This means that if you output per-atom image flags you cannot interpret them as you normally would. I.e. the
image flag values written to a dump file will be different than they would be if the atoms were not in a rigid
body. Likewise the compute msd will not compute the expected mean-squared displacement for such atoms if
the body moves across periodic boundaries. It also means that if you have bonds between a pair of rigid
bodies and the bond straddles a periodic boundary, you cannot use the replicate command to increase the
system size.

Here are details on how, you can post-process a dump file to calculate a diffusion coefficient for rigid bodies,
using the altered per-atom image flags written to a dump file. The image flags for atoms in the same rigid
body can be used to unwrap the body and calculate its center-of-mass (COM). As mentioned above, this COM
will always be inside the simulation box. Thus it will "jump" from one side of the box to the other when the
COM crosses a periodic boundary. If you keep track of the jumps, you can effectively "unwrap" the COM and
use that value to track the displacement of each rigid body, and thus the mean-squared displacement (MSD) of
an ensemble of bodies, and thus a diffusion coefficient.

Note that fix rigid does define image flags for each rigid body, which are incremented when the
center-of-mass of the rigid body crosses a periodic boundary in the usual way. These image flags have the
same meaning as atom images (see the "dump" command) and can be accessed and output as described below.

LIGGGHTS Users Manual

fix rigid/small command 536

If your simlulation is a hybrid model with a mixture of rigid bodies and non-rigid particles (e.g. solvent) there
are several ways these rigid fixes can be used in tandem with fix nve, fix nvt, fix npt, and fix nph.

If you wish to perform NVE dynamics (no thermostatting or barostatting), use fix rigid or fix rigid/nve to
integrate the rigid bodies, and fix nve to integrate the non-rigid particles.

If you wish to perform NVT dynamics (thermostatting, but no barostatting), you can use fix rigid/nvt for the
rigid bodies, and any thermostatting fix for the non-rigid particles (fix nvt, fix langevin, fix temp/berendsen).
You can also use fix rigid or fix rigid/nve for the rigid bodies and thermostat them using fix langevin on the
group that contains all the particles in the rigid bodies. The net force added by fix langevin to each rigid body
effectively thermostats its translational center-of-mass motion. Not sure how well it does at thermostatting its
rotational motion.

If you with to perform NPT or NPH dynamics (barostatting), you cannot use both fix npt and fix rigid/npt (or
the nph variants). This is because there can only be one fix which monitors the global pressure and changes
the simulation box dimensions. So you have 3 choices:

Use fix rigid/npt for the rigid bodies. Use the dilate all option so that it will dilate the positions of the
non-rigid particles as well. Use fix nvt (or any other thermostat) for the non-rigid particles.

•

Use fix npt for the group of non-rigid particles. Use the dilate all option so that it will dilate the
center-of-mass positions of the rigid bodies as well. Use fix rigid/nvt for the rigid bodies.

•

Use fix press/berendsen to compute the pressure and change the box dimensions. Use fix rigid/nvt for
the rigid bodies. Use fix nvt (or any other thermostat) for the non-rigid particles.

•

In all case, the rigid bodies and non-rigid particles both contribute to the global pressure and the box is scaled
the same by any of the barostatting fixes.

You could even use the 2nd and 3rd options for a non-hybrid simulation consisting of only rigid bodies,
assuming you give fix npt an empty group, though it's an odd thing to do. The barostatting fixes (fix npt and
fix press/berensen) will monitor the pressure and change the box dimensions, but not time integrate any
particles. The integration of the rigid bodies will be performed by fix rigid/nvt.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

No information about the rigid and rigid/small and rigid/nve fixes are written to binary restart files. For style
rigid/nvt the state of the Nose/Hoover thermostat is written to binary restart files. See the read_restart
command for info on how to re-specify a fix in an input script that reads a restart file, so that the operation of
the fix continues in an uninterrupted fashion.

LIGGGHTS Users Manual

fix rigid/small command 537

The fix_modify energy option is supported by the rigid/nvt fix to add the energy change induced by the
thermostatting to the system's potential energy as part of thermodynamic output.

The fix_modify temp and press options are supported by the rigid/npt and rigid/nph fixes to change the
computes used to calculate the instantaneous pressure tensor. Note that the rigid/nvt fix does not use any
external compute to compute instantaneous temperature.

The rigid and rigid/small and rigid/nve fixes compute a global scalar which can be accessed by various output
commands. The scalar value calculated by these fixes is "intensive". The scalar is the current temperature of
the collection of rigid bodies. This is averaged over all rigid bodies and their translational and rotational
degrees of freedom. The translational energy of a rigid body is 1/2 m v^2, where m = total mass of the body
and v = the velocity of its center of mass. The rotational energy of a rigid body is 1/2 I w^2, where I = the
moment of inertia tensor of the body and w = its angular velocity. Degrees of freedom constrained by the
force and torque keywords are removed from this calculation, but only for the rigid and rigid/nve fixes.

The rigid/nvt, rigid/npt, and rigid/nph fixes compute a global scalar which can be accessed by various output
commands. The scalar value calculated by these fixes is "extensive". The scalar is the cumulative energy
change due to the thermostatting and barostatting the fix performs.

All of the rigid fixes except rigid/small compute a global array of values which can be accessed by various
output commands. The number of rows in the array is equal to the number of rigid bodies. The number of
columns is 15. Thus for each rigid body, 15 values are stored: the xyz coords of the center of mass (COM), the
xyz components of the COM velocity, the xyz components of the force acting on the COM, the xyz
components of the torque acting on the COM, and the xyz image flags of the COM, which have the same
meaning as image flags for atom positions (see the "dump" command). The force and torque values in the
array are not affected by the force and torque keywords in the fix rigid command; they reflect values before
any changes are made by those keywords.

The ordering of the rigid bodies (by row in the array) is as follows. For the single keyword there is just one
rigid body. For the molecule keyword, the bodies are ordered by ascending molecule ID. For the group
keyword, the list of group IDs determines the ordering of bodies.

The array values calculated by these fixes are "intensive", meaning they are independent of the number of
atoms in the simulation.

No parameter of these fixes can be used with the start/stop keywords of the run command. These fixes are not
invoked during energy minimization.

Restrictions:

These fixes are all part of the RIGID package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:

delete_bonds, neigh_modify exclude

Default:

The option defaults are force * on on on and torque * on on on, meaning all rigid bodies are acted on by
center-of-mass force and torque. Also Tchain = Pchain = 10, Titer = 1, Torder = 3.

(Hoover) Hoover, Phys Rev A, 31, 1695 (1985).

LIGGGHTS Users Manual

fix rigid/small command 538

(Kamberaj) Kamberaj, Low, Neal, J Chem Phys, 122, 224114 (2005).

(Martyna) Martyna, Klein, Tuckerman, J Chem Phys, 97, 2635 (1992); Martyna, Tuckerman, Tobias, Klein,
Mol Phys, 87, 1117.

(Miller) Miller, Eleftheriou, Pattnaik, Ndirango, and Newns, J Chem Phys, 116, 8649 (2002).

(Zhang) Zhang, Glotzer, Nanoletters, 4, 1407-1413 (2004).

LIGGGHTS Users Manual

fix rigid/small command 539

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix setforce command

fix setforce/cuda command

Syntax:

fix ID group-ID setforce fx fy fz keyword value ...

ID, group-ID are documented in fix command•
setforce = style name of this fix command•
fx,fy,fz = force component values•
any of fx,fy,fz can be a variable (see below)•
zero or more keyword/value pairs may be appended to args•
keyword = region

region value = region-ID
 region-ID = ID of region atoms must be in to have added force

•

Examples:

fix freeze indenter setforce 0.0 0.0 0.0
fix 2 edge setforce NULL 0.0 0.0
fix 2 edge setforce NULL 0.0 v_oscillate

Description:

Set each component of force on each atom in the group to the specified values fx,fy,fz. This erases all
previously computed forces on the atom, though additional fixes could add new forces. This command can be
used to freeze certain atoms in the simulation by zeroing their force, either for running dynamics or
performing an energy minimization. For dynamics, this assumes their initial velocity is also zero.

Any of the fx,fy,fz values can be specified as NULL which means do not alter the force component in that
dimension.

Any of the 3 quantities defining the force components can be specified as an equal-style or atom-style
variable, namely fx, fy, fz. If the value is a variable, it should be specified as v_name, where name is the
variable name. In this case, the variable will be evaluated each timestep, and its value used to determine the
force component.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent force field.

Atom-style variables can specify the same formulas as equal-style variables but can also include per-atom
values, such as atom coordinates. Thus it is easy to specify a spatially-dependent force field with optional
time-dependence as well.

If the region keyword is used, the atom must also be in the specified geometric region in order to have force
added to it.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for

LIGGGHTS Users Manual

fix setforce command 540

http://lammps.sandia.gov

round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global 3-vector of forces, which can be accessed by various output commands. This is the
total force on the group of atoms before the forces on individual atoms are changed by the fix. The vector
values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command, but
you cannot set forces to any value besides zero when performing a minimization. Use the fix addforce
command if you want to apply a non-zero force to atoms during a minimization.

Restrictions: none

Related commands:

fix addforce, fix aveforce

Default: none

LIGGGHTS Users Manual

fix setforce/cuda command 541

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix shake command

fix shake/cuda command

Syntax:

fix ID group-ID shake tol iter N keyword values ...

ID, group-ID are documented in fix command•
shake = style name of this fix command•
tol = accuracy tolerance of SHAKE solution•
iter = max # of iterations in each SHAKE solution•
N = print SHAKE statistics every this many timesteps (0 = never)•
one or more keyword/value pairs are appended•
keyword = b or a or t or m

b values = one or more bond types
a values = one or more angle types
t values = one or more atom types
m value = one or more mass values

•

Examples:

fix 1 sub shake 0.0001 20 10 b 4 19 a 3 5 2
fix 1 sub shake 0.0001 20 10 t 5 6 m 1.0 a 31

Description:

Apply bond and angle constraints to specified bonds and angles in the simulation. This typically enables a
longer timestep.

Each timestep the specified bonds and angles are reset to their equilibrium lengths and angular values via the
well-known SHAKE algorithm. This is done by applying an additional constraint force so that the new
positions preserve the desired atom separations. The equations for the additional force are solved via an
iterative method that typically converges to an accurate solution in a few iterations. The desired tolerance (e.g.
1.0e-4 = 1 part in 10000) and maximum # of iterations are specified as arguments. Setting the N argument will
print statistics to the screen and log file about regarding the lengths of bonds and angles that are being
constrained. Small delta values mean SHAKE is doing a good job.

In LAMMPS, only small clusters of atoms can be constrained. This is so the constraint calculation for a
cluster can be performed by a single processor, to enable good parallel performance. A cluster is defined as a
central atom connected to others in the cluster by constrained bonds. LAMMPS allows for the following kinds
of clusters to be constrained: one central atom bonded to 1 or 2 or 3 atoms, or one central atom bonded to 2
others and the angle between the 3 atoms also constrained. This means water molecules or CH2 or CH3
groups may be constrained, but not all the C-C backbone bonds of a long polymer chain.

The b keyword lists bond types that will be constrained. The t keyword lists atom types. All bonds connected
to an atom of the specified type will be constrained. The m keyword lists atom masses. All bonds connected to
atoms of the specified masses will be constrained (within a fudge factor of MASSDELTA specified in
fix_shake.cpp). The a keyword lists angle types. If both bonds in the angle are constrained then the angle will
also be constrained if its type is in the list.

LIGGGHTS Users Manual

fix shake command 542

http://lammps.sandia.gov

For all keywords, a particular bond is only constrained if both atoms in the bond are in the group specified
with the SHAKE fix.

The degrees-of-freedom removed by SHAKE bonds and angles are accounted for in temperature and pressure
computations. Similarly, the SHAKE contribution to the pressure of the system (virial) is also accounted for.

IMPORTANT NOTE: This command works by using the current forces on atoms to caculate an additional
constraint force which when added will leave the atoms in positions that satisfy the SHAKE constraints (e.g.
bond length) after the next time integration step. If you define fixes (e.g. fix efield) that add additional force to
the atoms after fix shake operates, then this fix will not take them into account and the time integration will
typically not satisfy the SHAKE constraints. The solution for this is to make sure that fix shake is defined in
your input script after any other fixes which add or change forces (to atoms that fix shake operates on).

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

For computational efficiency, there can only be one shake fix defined in a simulation.

If you use a tolerance that is too large or a max-iteration count that is too small, the constraints will not be
enforced very strongly, which can lead to poor energy conservation. You can test for this in your system by
running a constant NVE simulation with a particular set of SHAKE parameters and monitoring the energy
versus time.

Related commands: none

Default: none

LIGGGHTS Users Manual

fix shake/cuda command 543

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix smd command

Syntax:

fix ID group-ID smd type values keyword values

ID, group-ID are documented in fix command•
smd = style name of this fix command•
mode = cvel or cfor to select constant velocity or constant force SMD

cvel values = K vel
 K = spring constant (force/distance units)
 vel = velocity of pulling (distance/time units)

cfor values = force
 force = pulling force (force units)

•

keyword = tether or couple

tether values = x y z R0
 x,y,z = point to which spring is tethered
 R0 = distance of end of spring from tether point (distance units)

couple values = group-ID2 x y z R0
 group-ID2 = 2nd group to couple to fix group with a spring
 x,y,z = direction of spring, automatically computed with 'auto'
 R0 = distance of end of spring (distance units)

•

Examples:

fix pull cterm smd cvel 20.0 -0.00005 tether NULL NULL 100.0 0.0
fix pull cterm smd cvel 20.0 -0.0001 tether 25.0 25 25.0 0.0
fix stretch cterm smd cvel 20.0 0.0001 couple nterm auto auto auto 0.0
fix pull cterm smd cfor 5.0 tether 25.0 25.0 25.0 0.0

Description:

This fix implements several options of steered MD (SMD) as reviewed in (Izrailev), which allows to induce
conformational changes in systems and to compute the potential of mean force (PMF) along the assumed
reaction coordinate (Park) based on Jarzynski's equality (Jarzynski). This fix borrows a lot from fix spring and
fix setforce.

You can apply a moving spring force to a group of atoms (tether style) or between two groups of atoms
(couple style). The spring can then be used in either constant velocity (cvel) mode or in constant force (cfor)
mode to induce transitions in your systems. When running in tether style, you may need some way to fix some
other part of the system (e.g. via fix spring/self)

The tether style attaches a spring between a point at a distance of R0 away from a fixed point x,y,z and the
center of mass of the fix group of atoms. A restoring force of magnitude K (R - R0) Mi / M is applied to each
atom in the group where K is the spring constant, Mi is the mass of the atom, and M is the total mass of all
atoms in the group. Note that K thus represents the total force on the group of atoms, not a per-atom force.

In cvel mode the distance R is incremented or decremented monotonously according to the pulling (or
pushing) velocity. In cfor mode a constant force is added and the actual distance in direction of the spring is
recorded.

The couple style links two groups of atoms together. The first group is the fix group; the second is specified
by group-ID2. The groups are coupled together by a spring that is at equilibrium when the two groups are

LIGGGHTS Users Manual

fix smd command 544

http://lammps.sandia.gov

displaced by a vector in direction x,y,z with respect to each other and at a distance R0 from that displacement.
Note that x,y,z only provides a direction and will be internally normalized. But since it represents the absolute
displacement of group-ID2 relative to the fix group, (1,1,0) is a different spring than (-1,-1,0). For each vector
component, the displacement can be described with the auto parameter. In this case the direction is
recomputed in every step, which can be useful for steering a local process where the whole object undergoes
some other change. When the relative positions and distance between the two groups are not in equilibrium,
the same spring force described above is applied to atoms in each of the two groups.

For both the tether and couple styles, any of the x,y,z values can be specified as NULL which means do not
include that dimension in the distance calculation or force application.

For constant velocity pulling (cvel mode), the running integral over the pulling force in direction of the spring
is recorded and can then later be used to compute the potential of mean force (PMF) by averaging over
multiple independent trajectories along the same pulling path.

Restart, fix_modify, output, run start/stop, minimize info:

The fix stores the direction of the spring, current pulling target distance and the running PMF to binary restart
files. See the read_restart command for info on how to re-specify a fix in an input script that reads a restart
file, so that the operation of the fix continues in an uninterrupted fashion.

None of the fix_modify options are relevant to this fix.

This fix computes a vector list of 7 quantities, which can be accessed by various output commands. The
quantities in the vector are in this order: the x-, y-, and z-component of the pulling force, the total force in
direction of the pull, the equilibrium distance of the spring, the distance between the two reference points, and
finally the accumulated PMF (the sum of pulling forces times displacement).

The force is the total force on the group of atoms by the spring. In the case of the couple style, it is the force
on the fix group (group-ID) or the negative of the force on the 2nd group (group-ID2). The vector values
calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the USER-MISC package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:

fix drag, fix spring, fix spring/self, fix spring/rg

Default: none

(Izrailev) Izrailev, Stepaniants, Isralewitz, Kosztin, Lu, Molnar, Wriggers, Schulten. Computational
Molecular Dynamics: Challenges, Methods, Ideas, volume 4 of Lecture Notes in Computational Science and
Engineering, pp. 39-65. Springer-Verlag, Berlin, 1998.

(Park) Park, Schulten, J. Chem. Phys. 120 (13), 5946 (2004)

(Jarzynski) Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)

LIGGGHTS Users Manual

fix smd command 545

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix sph/density/continuity command

Syntax:

fix ID group-ID sph/density/continuity

ID, group-ID are documented in fix command•
sph/density/continuity = style name of this fix command•

Examples:

fix density all sph/density/continuity

LIGGGHTS vs. LAMMPS Info:

This command is not available in LAMMPS.

Description:

Based on the continuity equation in the form

this fix calculates the density of each particle by the rule

where the summation is over all particles b other than particle a, m is the mass, v is the velocity, Wab is the
interpolating kernel (documented in pair_style sph/artVisc/tensCorr) and ∇a is the gradient of Wab.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

None of the fix_modify options are relevant to this fix.

No global scalar or vector or per_atom quantities are stored by this fix for access by various output
commands.

No parameter of this fix can be used with the start/stop keywords of the run command.

This fix is not invoked during energy minimization.

Restrictions:

There can be only one fix sph/density.

Related commands:

LIGGGHTS Users Manual

fix sph/density/continuity command 546

http://www.cfdem.com
http://lammps.sandia.gov

pair_style sph/artVisc/tensCorr, fix sph/pressure, fix sph/density/corr

Default: none

(Liu and Liu, 2003) "Smoothed Particle Hydrodynamics: A Meshfree Particle Method", G. R. Liu and M. B.
Liu, World Scientific, p. 449 (2003).

(Monaghan, 1992) "Smoothed Particle Hydrodynamics", J. J. Monaghan, Annu. Rev. Astron. Astrophys., 30,
p. 543-574 (1992).

LIGGGHTS Users Manual

fix sph/density/continuity command 547

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix sph/density/corr command

Syntax:

fix ID group-ID sph/density/corr style args

ID, group-ID are documented in fix command•
sph/density/corr = style name of this fix command•
style = shepard•
args = list of arguments for a particular style•

shepard args = every nSteps
 nSteps = determes number of timesteps

Examples:

fix corr all sph/density/corr shepard every 30

LIGGGHTS vs. LAMMPS Info:

This command is not available in LAMMPS.

Description:

In general the pressure field in SPH exhibits large oscillations. One approach to overcome this problem is to
perform a filter over the density.

The filterstyle shepard is one of the most simple and quick correction. Every nSteps timesteps the following
rule is applied:

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

None of the fix_modify options are relevant to this fix.

No global scalar or vector or per_atom quantities are stored by this fix for access by various output
commands.

No parameter of this fix can be used with the start/stop keywords of the run command.

This fix is not invoked during energy minimization.

Restrictions: none

Related commands:

pair_style sph/artVisc/tensCorr, fix sph/pressure, fix sph/density/continuity

LIGGGHTS Users Manual

fix sph/density/corr command 548

http://www.cfdem.com
http://lammps.sandia.gov

Default: none

(Liu and Liu, 2003) "Smoothed Particle Hydrodynamics: A Meshfree Particle Method", G. R. Liu and M. B.
Liu, World Scientific, p. 449 (2003).

LIGGGHTS Users Manual

fix sph/density/corr command 549

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix sph/density/summation command

Syntax:

fix ID group-ID sph/density/summation

ID, group-ID are documented in fix command•
sph/density/summation = style name of this fix command•

Examples:

fix density all sph/density/summation

LIGGGHTS vs. LAMMPS Info:

This command is not available in LAMMPS.

Description:

Calculates the density field with the classic SPH-summation approach. The governing equation is given by:

rhoa is the density of particle a, m is the mass and Wab denotes the interpolating kernel for the particle-particle
distance ra - rb. The summation is over all particles b other than particle a.

NOTE: In the current version boundary or image particles are not implemented. Therefore, the density
calculation in the vicinity to a wall will be wrong.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

None of the fix_modify options are relevant to this fix.

No global scalar or vector or per_atom quantities are stored by this fix for access by various output
commands.

No parameter of this fix can be used with the start/stop keywords of the run command.

This fix is not invoked during energy minimization.

Restrictions:

There can be only one fix sph/density/... (except fix sph/density/corr)

Related commands:

pair_style sph/artVisc/tensCorr, fix sph/pressure, fix sph/density/continuity

Default: none

LIGGGHTS Users Manual

fix sph/density/summation command 550

http://www.cfdem.com
http://lammps.sandia.gov

(Liu and Liu, 2003) "Smoothed Particle Hydrodynamics: A Meshfree Particle Method", G. R. Liu and M. B.
Liu, World Scientific, p. 449 (2003).

(Monaghan, 1992) "Smoothed Particle Hydrodynamics", J. J. Monaghan, Annu. Rev. Astron. Astrophys., 30,
p. 543-574 (1992).

LIGGGHTS Users Manual

fix sph/density/summation command 551

LIGGGHTS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix sph/pressure command

Syntax:

fix ID group-ID sph/pressure style args

ID, group-ID are documented in fix command•
sph/pressure = style name of this fix command•
style = absolut or Tait•
args = list of arguments for a particular style

absolut args = NULL
Tait args = B density0 gamma

 B = coefficient
 density0 = reference density
 gamma = isentropic exponent

•

Examples:

fix pressure all sph/pressure absolut
fix pressure all sph/pressure Tait 2000000. 1000. 7.

LIGGGHTS vs. LAMMPS Info:

This command is not available in LAMMPS.

Description:

The equation of state (EOS) for the SPH calculation is the link between the density field and the pressure
field. A lot of different equations can be found in the literature.

The absolut style was the first implemented EOS. Based on "An initiation to SPH" from Lucas Braune and
Thomas Lewiner this simple equation

is implemented, where ρa is the density of particle a.

In case of Tait style the rule

is applied. B denotes the pressure prefactor which is calculated by

where c0 is the speed of sound of the material. ρ0 is the reference density and γ is the isentropic exponent
defined as cp/cv.

LIGGGHTS Users Manual

fix sph/pressure command 552

http://www.liggghts.com/

NOTE: Monaghan has found that the speed of sound could be artificially reduced. (Monaghan, 1994)
Therefore, we can choose a greater time step. He argues that the minimum sound speed should be about ten
times greater than the maximum expected flow speed. (∆ρ < 1%)

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

None of the fix_modify options are relevant to this fix.

No global scalar or vector or per-atom quantities are stored by this fix for access by various output commands.

No parameter of this fix can be used with the start/stop keywords of the run command.

This fix is not invoked during energy minimization.

Restrictions:

One fix sph/density/summation (only dev-version) or sph/denstiy/continuity has to exist.

Related commands:

pair_style sph, fix sph/density/continuity

Default: none

LIGGGHTS Users Manual

fix sph/pressure command 553

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix spring command

Syntax:

fix ID group-ID spring keyword values

ID, group-ID are documented in fix command•
spring = style name of this fix command•
keyword = tether or couple

tether values = K x y z R0
 K = spring constant (force/distance units)
 x,y,z = point to which spring is tethered
 R0 = equilibrium distance from tether point (distance units)

couple values = group-ID2 K x y z R0
 group-ID2 = 2nd group to couple to fix group with a spring
 K = spring constant (force/distance units)
 x,y,z = direction of spring
 R0 = equilibrium distance of spring (distance units)

•

Examples:

fix pull ligand spring tether 50.0 0.0 0.0 0.0 0.0
fix pull ligand spring tether 50.0 0.0 0.0 0.0 5.0
fix pull ligand spring tether 50.0 NULL NULL 2.0 3.0
fix 5 bilayer1 spring couple bilayer2 100.0 NULL NULL 10.0 0.0
fix longitudinal pore spring couple ion 100.0 NULL NULL -20.0 0.0
fix radial pore spring couple ion 100.0 0.0 0.0 NULL 5.0

Description:

Apply a spring force to a group of atoms or between two groups of atoms. This is useful for applying an
umbrella force to a small molecule or lightly tethering a large group of atoms (e.g. all the solvent or a large
molecule) to the center of the simulation box so that it doesn't wander away over the course of a long
simulation. It can also be used to hold the centers of mass of two groups of atoms at a given distance or
orientation with respect to each other.

The tether style attaches a spring between a fixed point x,y,z and the center of mass of the fix group of atoms.
The equilibrium position of the spring is R0. At each timestep the distance R from the center of mass of the
group of atoms to the tethering point is computed, taking account of wrap-around in a periodic simulation
box. A restoring force of magnitude K (R - R0) Mi / M is applied to each atom in the group where K is the
spring constant, Mi is the mass of the atom, and M is the total mass of all atoms in the group. Note that K thus
represents the total force on the group of atoms, not a per-atom force.

The couple style links two groups of atoms together. The first group is the fix group; the second is specified
by group-ID2. The groups are coupled together by a spring that is at equilibrium when the two groups are
displaced by a vector x,y,z with respect to each other and at a distance R0 from that displacement. Note that
x,y,z is the equilibrium displacement of group-ID2 relative to the fix group. Thus (1,1,0) is a different spring
than (-1,-1,0). When the relative positions and distance between the two groups are not in equilibrium, the
same spring force described above is applied to atoms in each of the two groups.

For both the tether and couple styles, any of the x,y,z values can be specified as NULL which means do not
include that dimension in the distance calculation or force application.

LIGGGHTS Users Manual

fix spring command 554

http://lammps.sandia.gov

The first example above pulls the ligand towards the point (0,0,0). The second example holds the ligand near
the surface of a sphere of radius 5 around the point (0,0,0). The third example holds the ligand a distance 3
away from the z=2 plane (on either side).

The fourth example holds 2 bilayers a distance 10 apart in z. For the last two examples, imagine a pore (a slab
of atoms with a cylindrical hole cut out) oriented with the pore axis along z, and an ion moving within the
pore. The fifth example holds the ion a distance of -20 below the z = 0 center plane of the pore (umbrella
sampling). The last example holds the ion a distance 5 away from the pore axis (assuming the center-of-mass
of the pore in x,y is the pore axis).

IMPORTANT NOTE: The center of mass of a group of atoms is calculated in "unwrapped" coordinates using
atom image flags, which means that the group can straddle a periodic boundary. See the dump doc page for a
discussion of unwrapped coordinates. It also means that a spring connecting two groups or a group and the
tether point can cross a periodic boundary and its length be calculated correctly. One exception is for rigid
bodies, which should not be used with the fix spring command, if the rigid body will cross a periodic
boundary. This is because image flags for rigid bodies are used in a different way, as explained on the fix rigid
doc page.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the energy stored in the spring to the system's
potential energy as part of thermodynamic output.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the spring
energy = 0.5 * K * r^2.

This fix also computes global 4-vector which can be accessed by various output commands. The first 3
quantities in the vector are xyz components of the total force added to the group of atoms by the spring. In the
case of the couple style, it is the force on the fix group (group-ID) or the negative of the force on the 2nd
group (group-ID2). The 4th quantity in the vector is the magnitude of the force added by the spring, as a
positive value if (r-R0) > 0 and a negative value if (r-R0) < 0. This sign convention can be useful when using
the spring force to compute a potential of mean force (PMF).

The scalar and vector values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

IMPORTANT NOTE: If you want the spring energy to be included in the total potential energy of the system
(the quantity being minimized), you MUST enable the fix_modify energy option for this fix.

Restrictions: none

Related commands:

fix drag, fix spring/self, fix spring/rg, fix smd

Default: none

LIGGGHTS Users Manual

fix spring command 555

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix spring/rg command

Syntax:

fix ID group-ID spring/rg K RG0

ID, group-ID are documented in fix command•
spring/rg = style name of this fix command•
K = harmonic force constant (force/distance units)•
RG0 = target radius of gyration to constrain to (distance units)•

 if RG0 = NULL, use the current RG as the target value

Examples:

fix 1 protein spring/rg 5.0 10.0
fix 2 micelle spring/rg 5.0 NULL

Description:

Apply a harmonic restraining force to atoms in the group to affect their central moment about the center of
mass (radius of gyration). This fix is useful to encourage a protein or polymer to fold/unfold and also when
sampling along the radius of gyration as a reaction coordinate (i.e. for protein folding).

The radius of gyration is defined as RG in the first formula. The energy of the constraint and associated force
on each atom is given by the second and third formulas, when the group is at a different RG than the target
value RG0.

The (xi - center-of-mass) term is computed taking into account periodic boundary conditions, m_i is the mass
of the atom, and M is the mass of the entire group. Note that K is thus a force constant for the aggregate force
on the group of atoms, not a per-atom force.

If RG0 is specified as NULL, then the RG of the group is computed at the time the fix is specified, and that
value is used as the target.

Restart, fix_modify, output, run start/stop, minimize info:

LIGGGHTS Users Manual

fix spring/rg command 556

http://lammps.sandia.gov

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

fix spring, fix spring/self fix drag, fix smd

Default: none

LIGGGHTS Users Manual

fix spring/rg command 557

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix spring/self command

Syntax:

fix ID group-ID spring/self K dir

ID, group-ID are documented in fix command•
spring/self = style name of this fix command•
K = spring constant (force/distance units)•
dir = xyz, xy, xz, yz, x, y, or z (optional, default: xyz)•

Examples:

fix tether boundary-atoms spring/self 10.0
fix zrest move spring/self 10.0 z

Description:

Apply a spring force independently to each atom in the group to tether it to its initial position. The initial
position for each atom is its location at the time the fix command was issued. At each timestep, the magnitude
of the force on each atom is -Kr, where r is the displacement of the atom from its current position to its initial
position. The distance r correctly takes into account any crossings of periodic boundary by the atom since it
was in its intitial position.

With the (optional) dir flag, one can select in which direction the spring force is applied. By default, the
restraint is applied in all directions, but it can be limited to the xy-, xz-, yz-plane and the x-, y-, or z-direction,
thus restraining the atoms to a line or a plane, respectively.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the original coordinates of tethered atoms to binary restart files, so that the spring effect will be
the same in a restarted simulation. See the read_restart command for info on how to re-specify a fix in an
input script that reads a restart file, so that the operation of the fix continues in an uninterrupted fashion.

The fix_modify energy option is supported by this fix to add the energy stored in the per-atom springs to the
system's potential energy as part of thermodynamic output.

This fix computes a global scalar which can be accessed by various output commands. The scalar is an energy
which is the sum of the spring energy for each atom, where the per-atom energy is 0.5 * K * r^2. The scalar
value calculated by this fix is "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

IMPORTANT NOTE: If you want the per-atom spring energy to be included in the total potential energy of
the system (the quantity being minimized), you MUST enable the fix_modify energy option for this fix.

Restrictions: none

Related commands:

fix drag, fix spring, fix smd, fix spring/rg

LIGGGHTS Users Manual

fix spring/self command 558

http://lammps.sandia.gov

Default: none

LIGGGHTS Users Manual

fix spring/self command 559

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix srd command

Syntax:

fix ID group-ID srd N groupbig-ID Tsrd hgrid seed keyword value ...

ID, group-ID are documented in fix command•
srd = style name of this fix command•
N = reset SRD particle velocities every this many timesteps•
groupbig-ID = ID of group of large particles that SRDs interact with•
Tsrd = temperature of SRD particles (temperature units)•
hgrid = grid spacing for SRD grouping (distance units)•
seed = random # seed (positive integer)•

zero or more keyword/value pairs may be appended•
keyword = lamda or collision or overlap or inside or exact or radius or bounce or search or cubic or
shift or tstat or rescale

lamda value = mean free path of SRD particles (distance units)
collision value = noslip or slip = collision model
overlap value = yes or no = whether big particles may overlap
inside value = error or warn or ignore = how SRD particles which end up inside a big particle are treated
exact value = yes or no
radius value = rfactor = scale collision radius by this factor
bounce value = Nbounce = max # of collisions an SRD particle can undergo in one timestep
search value = sgrid = grid spacing for collision partner searching (distance units)
cubic values = style tolerance

 style = error or warn
 tolerance = fractional difference allowed (0 <= tol <= 1)

shift values = flag shiftseed
 flag = yes or no or possible = SRD bin shifting for better statistics

yes = perform bin shifting each time SRD velocities are rescaled
no = no shifting
possible = shift depending on mean free path and bin size

 shiftseed = random # seed (positive integer)
tstat value = yes or no = thermostat SRD particles or not
rescale value = yes or no or rotate or collide = rescaling of SRD velocities

yes = rescale during velocity rotation and collisions
no = no rescaling
rotate = rescale during velocity rotation, but not collisions
collide = rescale during collisions, but not velocity rotation

•

Examples:

fix 1 srd srd 10 big 1.0 0.25 482984
fix 1 srd srd 10 big 0.5 0.25 482984 collision slip search 0.5

Description:

Treat a group of partilces as stochastic rotation dynamics (SRD) particles that serve as a background solvent
when interacting with big (colloidal) particles in groupbig-ID. The SRD formalism is described in (Hecht).
The key idea behind using SRD particles as a cheap coarse-grained solvent is that SRD particles do not
interact with each other, but only with the solute particles, which in LAMMPS can be spheroids, ellipsoids, or
line segments, or triangles, or rigid bodies containing multiple spherioids or ellipsoids or line segments or
triangles. The collision and rotation properties of the model imbue the SRD particles with fluid-like
properties, including an effective viscosity. Thus simulations with large solute particles can be run more
quickly, to measure solute propoerties like diffusivity and viscosity in a background fluid. The usual

LIGGGHTS Users Manual

fix srd command 560

http://lammps.sandia.gov

LAMMPS fixes for such simulations, such as fix deform, fix viscosity, and fix nvt/sllod, can be used in
conjunction with the SRD model.

For more details on how the SRD model is implemented in LAMMPS, this paper describes the
implementation and usage of pure SRD fluids. This paper, which is nearly complete, describes the
implementation and usage of mixture systems (solute particles in an SRD fluid). See the examples/srd
directory for sample input scripts using SRD particles in both settings.

This fix does 2 things:

(1) It advects the SRD particles, performing collisions between SRD and big particles or walls every timestep,
imparting force and torque to the big particles. Collisions also change the position and velocity of SRD
particles.

(2) It resets the velocity distribution of SRD particles via random rotations every N timesteps.

SRD particles have a mass, temperature, characteristic timestep dt_SRD, and mean free path between
collisions (lamda). The fundamental equation relating these 4 quantities is

lamda = dt_SRD * sqrt(Kboltz * Tsrd / mass)

The mass of SRD particles is set by the mass command elsewhere in the input script. The SRD timestep
dt_SRD is N times the step dt defined by the timestep command. Big particles move in the normal way via a
time integration fix with a short timestep dt. SRD particles advect with a large timestep dt_SRD >= dt.

If the lamda keyword is not specified, the the SRD temperature Tsrd is used in the above formula to compute
lamda. If the lamda keyword is specified, then the Tsrd setting is ignored and the above equation is used to
compute the SRD temperature.

The characteristic length scale for the SRD fluid is set by hgrid which is used to bin SRD particles for
purposes of resetting their velocities. Normally hgrid is set to be 1/4 of the big particle diameter or smaller, to
adequately resolve fluid properties around the big particles.

Lamda cannot be smaller than 0.6 * hgrid, else an error is generated (unless the shift keyword is used, see
below). The velocities of SRD particles are bounded by Vmax, which is set so that an SRD particle will not
advect further than Dmax = 4*lamda in dt_SRD. This means that roughly speaking, Dmax should not be
larger than a big particle diameter, else SRDs may pass thru big particles without colliding. A warning is
generated if this is the case.

Collisions between SRD particles and big particles or walls are modeled as a lightweight SRD point particle
hitting a heavy big particle of given diameter or a wall at a point on its surface and bouncing off with a new
velocity. The collision changes the momentum of the SRD particle. It imparts a force and torque to the big
particle. It imparts a force to a wall. Static or moving SRD walls are setup via the fix wall/srd command. For
the remainder of this doc page, a collision of an SRD particle with a wall can be viewed as a collision with a
big particle of infinite radius and mass.

The collision keyword sets the style of collisions. The slip style means that the tangential component of the
SRD particle momentum is preserved. Thus a force is imparted to a big particle, but no torque. The normal
component of the new SRD velocity is sampled from a Gaussian distribution at temperature Tsrd.

For the noslip style, both the normal and tangential components of the new SRD velocity are sampled from a
Gaussian distribution at temperature Tsrd. Additionally, a new tangential direction for the SRD velocity is
chosen randomly. This collision style imparts torque to a big particle. Thus a time integrator fix that rotates
the big particles appropriately should be used.

LIGGGHTS Users Manual

fix srd command 561

The overlap keyword should be set to yes if two (or more) big particles can ever overlap. This depends on the
pair potential interaction used for big-big interactions, or could be the case if multiple big particles are held
together as rigid bodies via the fix rigid command. If the overlap keyword is no and big particles do in fact
overlap, then SRD/big collisions can generate an error if an SRD ends up inside two (or more) big particles at
once. How this error is treated is determined by the inside keyword. Running with overlap set to no allows for
faster collision checking, so it should only be set to yes if needed.

The inside keyword determines how a collision is treated if the computation determines that the timestep
started with the SRD particle already inside a big particle. If the setting is error then this generates an error
message and LAMMPS stops. If the setting is warn then this generates a warning message and the code
continues. If the setting is ignore then no message is generated. One of the output quantities logged by the fix
(see below) tallies the number of such events, so it can be monitored. Note that once an SRD particle is inside
a big particle, it may remain there for several steps until it drifts outside the big particle.

The exact keyword determines how accurately collisions are computed. A setting of yes computes the time
and position of each collision as SRD and big particles move together. A setting of no estimates the position
of each collision based on the end-of-timestep positions of the SRD and big particle. If overlap is set to yes,
the setting of the exact keyword is ignored since time-accurate collisions are needed.

The radius keyword scales the effective size of big particles. If big particles will overlap as they undergo
dynamics, then this keyword can be used to scale down their effective collision radius by an amount rfactor,
so that SRD particle will only collide with one big particle at a time. For example, in a Lennard-Jones system
at a temperature of 1.0 (in reduced LJ units), the minimum separation bewteen two big particles is as small as
about 0.88 sigma. Thus an rfactor value of 0.85 should prevent dual collisions.

The bounce keyword can be used to limit the maximum number of collisions an SRD particle undergoes in a
single timestep as it bounces between nearby big particles. Note that if the limit is reached, the SRD can be
left inside a big particle. A setting of 0 is the same as no limit.

There are 2 kinds of bins created and maintained when running an SRD simulation. The first are "SRD bins"
which are used to bin SRD particles and reset their velocities, as discussed above. The second are "search
bins" which are used to identify SRD/big particle collisions.

The search keyword can be used to choose a search bin size for identifying SRD/big particle collisions. The
default is to use the hgrid parameter for SRD bins as the search bin size. Choosing a smaller or large value
may be more efficient, depending on the problem. But, in a statistical sense, it should not change the
simulation results.

The cubic keyword can be used to generate an error or warning when the bin size chosen by LAMMPS
creates SRD bins that are non-cubic or different than the requested value of hgrid by a specified tolerance.
Note that using non-cubic SRD bins can lead to undetermined behavior when rotating the velocities of SRD
particles, hence LAMMPS tries to protect you from this problem.

LAMMPS attempts to set the SRD bin size to exactly hgrid. However, there must be an integer number of
bins in each dimension of the simulation box. Thus the actual bin size will depend on the size and shape of the
overall simulation box. The actual bin size is printed as part of the SRD output when a simulation begins.

If the actual bin size in non-cubic by an amount exceeding the tolerance, an error or warning is printed,
depending on the style of the cubic keyword. Likewise, if the actual bin size differs from the requested hgrid
value by an amount exceeding the tolerance, then an error or warning is printed. The tolerance is a fractional
difference. E.g. a tolerance setting of 0.01 on the shape means that if the ratio of any 2 bin dimensions exceeds
(1 +/- tolerance) then an error or warning is generated. Similarly, if the ratio of any bin dimension with hgrid
exceeds (1 +/- tolerance), then an error or warning is generated.

LIGGGHTS Users Manual

fix srd command 562

IMPORTANT NOTE: The fix srd command can be used with simluations the size and/or shape of the
simulation box changes. This can be due to non-periodic boundary conditions or the use of fixes such as the
fix deform or fix wall/srd commands to impose a shear on an SRD fluid or an interaction with an external
wall. If the box size changes then the size of SRD bins must be recalculated every reneighboring. This is not
necessary if only the box shape changes. This re-binning is always done so as to fit an integer number of bins
in the current box dimension, whether it be a fixed, shrink-wrapped, or periodic boundary, as set by the
boundary command. If the box size or shape changes, then the size of the search bins must be recalculated
avery reneighboring. Note that changing the SRD bin size may alter the properties of the SRD fluid, such as
its viscosity.

The shift keyword determines whether the coordinates of SRD particles are randomly shifted when binned for
purposes of rotating their velocities. When no shifting is performed, SRD particles are binned and the velocity
distribution of the set of SRD particles in each bin is adjusted via a rotation operator. This is a statistically
valid operation if SRD particles move sufficiently far between successive rotations. This is determined by
their mean-free path lamda. If lamda is less than 0.6 of the SRD bin size, then shifting is required. A shift
means that all of the SRD particles are shifted by a vector whose coordinates are chosen randomly in the
range [-1/2 bin size, 1/2 bin size]. Note that all particles are shifted by the same vector. The specified random
number shiftseed is used to generate these vectors. This operation sufficiently randomizes which SRD
particles are in the same bin, even if lamda is small.

If the shift flag is set to no, then no shifting is performed, but bin data will be communicated if bins overlap
processor boundaries. An error will be generated if lamda < 0.6 of the SRD bin size. If the shift flag is set to
possible, then shifting is performed only if lamda < 0.6 of the SRD bin size. A warning is generated to let you
know this is occurring. If the shift flag is set to yes then shifting is performed regardless of the magnitude of
lamda. Note that the shiftseed is not used if the shift flag is set to no, but must still be specified.

Note that shifting of SRD coordinates requires extra communication, hence it should not normally be enabled
unless required.

The tstat keyword will thermostat the SRD particles to the specified Tsrd. This is done every N timesteps,
during the velocity rotation operation, by rescaling the thermal velocity of particles in each SRD bin to the
desired temperature. If there is a streaming velocity associated with the system, e.g. due to use of the fix
deform command to perform a simulation undergoing shear, then that is also accounted for. The mean
velocity of each bin of SRD particles is set to the position-dependent streaming velocity, based on the
coordinates of the center of the SRD bin. Note that collisions of SRD particles with big particles or walls has a
thermostatting effect on the colliding particles, so it may not be necessary to thermostat the SRD particles on a
bin by bin basis in that case. Also note that for streaming simulations, if no thermostatting is performed (the
default), then it may take a long time for the SRD fluid to come to equilibrium with a velocity profile that
matches the simulation box deformation.

The rescale keyword enables rescaling of an SRD particle's velocity if it would travel more than 4 mean-free
paths in an SRD timestep. If an SRD particle exceeds this velocity it is possible it will be lost when migrating
to other processors or that collisions with big particles will be missed, either of which will generate errors.
Thus the safest mode is to run with rescaling enabled. However rescaling removes kinetic energy from the
system (the particle's velocity is reduced). The latter will not typically be a problem if thermostatting is
enabled via the tstat keyword or if SRD collisions with big particles or walls effectively thermostat the
system. If you wish to turn off rescaling (on is the default), e.g. for a pure SRD system with no thermostatting
so that the temperature does not decline over time, the rescale keyword can be used. The no value turns
rescaling off during collisions and the per-bin velocity rotation operation. The collide and rotate values turn it
on for one of the operations and off for the other.

IMPORTANT NOTE: This fix is normally used for simulations with a huge number of SRD particles relative
to the number of big particles, e.g. 100 to 1. In this scenario, computations that involve only big particles
(neighbor list creation, communication, time integration) can slow down dramatically due to the large number

LIGGGHTS Users Manual

fix srd command 563

of background SRD particles.

Three other input script commands will largely overcome this effect, speeding up an SRD simulation by a
significant amount. These are the atom_modify first, neigh_modify include, and communicate group
commands. Each takes a group-ID as an argument, which in this case should be the group-ID of the big solute
particles.

Additionally, when a pair_style for big/big particle interactions is specified, the pair_coeff command should
be used to turn off big/SRD interactions, e.g. by setting their epsilon or cutoff length to 0.0.

The "delete_atoms overlap" command may be useful in setting up an SRD simulation to insure there are no
initial overlaps between big and SRD particles.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix tabulates several SRD statistics which are stored in a vector of length 12, which can be accessed by
various output commands. The vector values calculated by this fix are "intensive", meaning they do not scale
with the size of the simulation. Technically, the first 8 do scale with the size of the simulation, but treating
them as intensive means they are not scaled when printed as part of thermodyanmic output.

These are the 12 quantities. All are values for the current timestep, except for quantity 5 and the last three,
each of which are cummulative quantities since the beginning of the run.

(1) # of SRD/big collision checks performed•
(2) # of SRDs which had a collision•
(3) # of SRD/big colllisions (including multiple bounces)•
(4) # of SRD particles inside a big particle•
(5) # of SRD particles whose velocity was rescaled to be < Vmax•
(6) # of bins for collision searching•
(7) # of bins for SRD velocity rotation•
(8) # of bins in which SRD temperature was computed•
(9) SRD temperature•
(10) # of SRD particles which have undergone max # of bounces•
(11) max # of bounces any SRD particle has had in a single step•
(12) # of reneighborings due to SRD particles moving too far•

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This command can only be used if LAMMPS was built with the SRD package. See the Making LAMMPS
section for more info on packages.

Related commands:

fix wall/srd

Default:

The option defaults are lamda inferred from Tsrd, collision = noslip, overlap = no, inside = error, exact = yes,

LIGGGHTS Users Manual

fix srd command 564

radius = 1.0, bounce = 0, search = hgrid, cubic = error 0.01, shift = no, tstat = no, and rescale = yes.

(Hecht) Hecht, Harting, Ihle, Herrmann, Phys Rev E, 72, 011408 (2005).

(Petersen) Petersen, Lechman, Plimpton, Grest, in' t Veld, Schunk, J Chem Phys, 132, 174106 (2010).

(Lechman) Lechman, et al, in preparation (2010).

LIGGGHTS Users Manual

fix srd command 565

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix store/force command

Syntax:

fix ID group-ID store/force

ID, group-ID are documented in fix command•
store/force = style name of this fix command•

Examples:

fix 1 all store/force

Description:

Store the forces on atoms in the group at the point during each timestep when the fix is invoked, as described
below. This is useful for storing forces before constraints or other boundary conditions are computed which
modify the forces, so that unmodified forces can be written to a dump file or accessed by other output
commands that use per-atom quantities.

This fix is invoked at the point in the velocity-Verlet timestepping immediately after pair, bond, angle,
dihedral, improper, and long-range forces have been calculated. It is the point in the timestep when various
fixes that compute constraint forces are calculated and potentially modify the force on each atom. Examples
of such fixes are fix shake, fix wall, and fix indent.

IMPORTANT NOTE: The order in which various fixes are applied which operate at the same point during the
timestep, is the same as the order they are specified in the input script. Thus normally, if you want to store
per-atom forces due to force field interactions, before constraints are applied, you should list this fix first
within that set of fixes, i.e. before other fixes that apply constraints. However, if you wish to include certain
constraints (e.g. fix shake) in the stored force, then it could be specified after some fixes and before others.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix produces a per-atom array which can be accessed by various output commands. The number of
columns for each atom is 3, and the columns store the x,y,z forces on each atom. The per-atom values be
accessed on any timestep.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

fix store_state

Default: none

LIGGGHTS Users Manual

fix store/force command 566

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix store/state command

Syntax:

fix ID group-ID store/state N input1 input2 ... keyword value ...

ID, group-ID are documented in fix command•
store/state = style name of this fix command•
N = store atom attributes every N steps, N = 0 for initial store only•
input = one or more atom attributes

 possible attributes = id, mol, type, mass,
 x, y, z, xs, ys, zs, xu, yu, zu, ix, iy, iz,
 vx, vy, vz, fx, fy, fz,
 q, mux, muy, muz,
 radius, omegax, omegay, omegaz,
 angmomx, angmomy, angmomz, tqx, tqy, tqz
 c_ID, c_ID[N], f_ID, f_ID[N], v_name

 id = atom ID
 mol = molecule ID
 type = atom type
 mass = atom mass
 x,y,z = unscaled atom coordinates
 xs,ys,zs = scaled atom coordinates
 xu,yu,zu = unwrapped atom coordinates
 ix,iy,iz = box image that the atom is in
 vx,vy,vz = atom velocities
 fx,fy,fz = forces on atoms
 q = atom charge
 mux,muy,muz = orientation of dipolar atom
 radius = radius of spherical particle
 omegax,omegay,omegaz = angular velocity of spherical particle
 angmomx,angmomy,angmomz = angular momentum of aspherical particle
 tqx,tqy,tqz = torque on finite-size particles
 c_ID = per-atom vector calculated by a compute with ID
 c_ID[I] = Ith column of per-atom array calculated by a compute with ID
 f_ID = per-atom vector calculated by a fix with ID
 f_ID[I] = Ith column of per-atom array calculated by a fix with ID
 v_name = per-atom vector calculated by an atom-style variable with name

•

zero or more keyword/value pairs may be appended•
keyword = com

com value = yes or no

•

Examples:

fix 1 all store/state 0 x y z
fix 1 all store/state 0 xu yu zu com yes
fix 2 all store/state 1000 vx vy vz

Description:

Define a fix that stores attributes for each atom in the group at the time the fix is defined. If N is 0, then the
values are never updated, so this is a way of archiving an atom attribute at a given time for future use in a
calculation or output. See the discussion of output commands that take fixes as inputs. And see for example,
the compute reduce, fix ave/atom, fix ave/histo, fix ave/spatial, and atom-style variable commands.

LIGGGHTS Users Manual

fix store/state command 567

http://lammps.sandia.gov

If N is not zero, then the attributes will be updated every N steps.

IMPORTANT NOTE: Actually, only atom attributes specified by keywords like xu or vy are initially stored
immediately at the point in your input script when the fix is defined. Attributes specified by a compute, fix, or
variable are not initially stored until the first run following the fix definition begins. This is because
calculating those attributes may require quantities that are not defined in between runs.

The list of possible attributes is the same as that used by the dump custom command, which describes their
meaning.

If the com keyword is set to yes then the xu, yu, and zu inputs store the position of each atom relative to the
center-of-mass of the group of atoms, instead of storing the absolute position. This option is used by the
compute msd command.

The requested values are stored in a per-atom vector or array as discussed below. Zeroes are stored for atoms
not in the specified group.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the per-atom values it stores to binary restart files, so that the values can be restored when a
simulation is restarted. See the read_restart command for info on how to re-specify a fix in an input script that
reads a restart file, so that the operation of the fix continues in an uninterrupted fashion.

None of the fix_modify options are relevant to this fix.

If a single input is specified, this fix produces a per-atom vector. If multiple inputs are specified, a per-atom
array is produced where the number of columns for each atom is the number of inputs. These can be accessed
by various output commands. The per-atom values be accessed on any timestep.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

dump custom, compute property/atom, variable

Default:

The option default is com = no.

LIGGGHTS Users Manual

fix store/state command 568

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix temp/berendsen command

fix temp/berendsen/cuda command

Syntax:

fix ID group-ID temp/berendsen Tstart Tstop Tdamp

ID, group-ID are documented in fix command•
temp/berendsen = style name of this fix command•
Tstart,Tstop = desired temperature at start/end of run

 Tstart can be a variable (see below)

•

Tdamp = temperature damping parameter (time units)•

Examples:

fix 1 all temp/berendsen 300.0 300.0 100.0

Description:

Reset the temperature of a group of atoms by using a Berendsen thermostat (Berendsen), which rescales their
velocities every timestep.

The thermostat is applied to only the translational degrees of freedom for the particles, which is an important
consideration for finite-size particles which have rotational degrees of freedom are being thermostatted with
this fix. The translational degrees of freedom can also have a bias velocity removed from them before
thermostatting takes place; see the description below.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamp
parameter is specified in time units and determines how rapidly the temperature is relaxed. For example, a
value of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or psec -
see the units command).

Tstart can be specified as an equal-style variable. In this case, the Tstop setting is ignored. If the value is a
variable, it should be specified as v_name, where name is the variable name. In this case, the variable will be
evaluated each timestep, and its value used to determine the target temperature.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent temperature.

IMPORTANT NOTE: Unlike the fix nvt command which performs Nose/Hoover thermostatting AND time
integration, this fix does NOT perform time integration. It only modifies velocities to effect thermostatting.
Thus you must use a separate time integration fix, like fix nve to actually update the positions of atoms using
the modified velocities. Likewise, this fix should not normally be used on atoms that also have their
temperature controlled by another fix - e.g. by fix nvt or fix langevin commands.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

This fix computes a temperature each timestep. To do this, the fix creates its own compute of style "temp", as

LIGGGHTS Users Manual

fix temp/berendsen command 569

http://lammps.sandia.gov

if this command had been issued:

compute fix-ID_temp group-ID temp

See the compute temp command for details. Note that the ID of the new compute is the fix-ID + underscore +
"temp", and the group for the new compute is the same as the fix group.

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp. This means you can change the attributes of this fix's temperature (e.g. its degrees-of-freedom)
via the compute_modify command or print this temperature during thermodynamic output via the
thermo_style custom command using the appropriate compute-ID. It also means that changing attributes of
thermo_temp will have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that calculate a
temperature after removing a "bias" from the atom velocities. E.g. removing the center-of-mass velocity from
a group of atoms or only calculating temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by default, but only if the fix_modify command
is used to assign a temperature compute to this fix that includes such a bias term. See the doc pages for
individual compute commands to determine which ones include a bias. In this case, the thermostat works in
the following manner: the current temperature is calculated taking the bias into account, bias is removed from
each atom, thermostatting is performed on the remaining thermal degrees of freedom, and the bias is added
back in.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify temp option is supported by this fix. You can use it to assign a temperature compute you have
defined to this fix which will be used in its thermostatting procedure, as described above. For consistency, the
group used by this fix and by the compute should be the same.

The fix_modify energy option is supported by this fix to add the energy change implied by a velocity
rescaling to the system's potential energy as part of thermodynamic output.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the
cummulative energy change due to this fix. The scalar value calculated by this fix is "extensive".

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

LIGGGHTS Users Manual

fix temp/berendsen/cuda command 570

This fix is not invoked during energy minimization.

Restrictions: none

Related commands:

fix nve, fix nvt, fix temp/rescale, fix langevin, fix_modify, compute temp, fix press/berendsen

Default: none

(Berendsen) Berendsen, Postma, van Gunsteren, DiNola, Haak, J Chem Phys, 81, 3684 (1984).

LIGGGHTS Users Manual

fix temp/berendsen/cuda command 571

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix temp/rescale/eff command

Syntax:

fix ID group-ID temp/rescale/eff N Tstart Tstop window fraction

ID, group-ID are documented in fix command•
temp/rescale/eff = style name of this fix command•
N = perform rescaling every N steps•
Tstart,Tstop = desired temperature at start/end of run (temperature units)•
window = only rescale if temperature is outside this window (temperature units)•
fraction = rescale to target temperature by this fraction•

Examples:

fix 3 flow temp/rescale/eff 10 1.0 100.0 0.02 1.0

Description:

Reset the temperature of a group of nuclei and electrons in the electron force field model by explicitly
rescaling their velocities.

The operation of this fix is exactly like that described by the fix temp/rescale command, except that the
rescaling is also applied to the radial electron velocity for electron particles.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify temp option is supported by this fix. You can use it to assign a temperature compute you have
defined to this fix which will be used in its thermostatting procedure, as described above. For consistency, the
group used by this fix and by the compute should be the same.

The fix_modify energy option is supported by this fix to add the energy change implied by a velocity
rescaling to the system's potential energy as part of thermodynamic output.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the
cummulative energy change due to this fix. The scalar value calculated by this fix is "extensive".

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

This fix is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:

fix langevin/eff, fix nvt/eff, fix_modify, fix_temp_rescale,

LIGGGHTS Users Manual

fix temp/rescale/eff command 572

http://lammps.sandia.gov

Default: none

LIGGGHTS Users Manual

fix temp/rescale/eff command 573

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix temp/rescale command

fix temp/rescale/cuda command

fix temp/rescale/limit/cuda command

Syntax:

fix ID group-ID temp/rescale N Tstart Tstop window fraction

ID, group-ID are documented in fix command•
temp/rescale = style name of this fix command•
N = perform rescaling every N steps•
Tstart,Tstop = desired temperature at start/end of run (temperature units)

 Tstart can be a variable (see below)

•

window = only rescale if temperature is outside this window (temperature units)•
fraction = rescale to target temperature by this fraction•

Examples:

fix 3 flow temp/rescale 100 1.0 1.1 0.02 0.5
fix 3 boundary temp/rescale 1 1.0 1.5 0.05 1.0
fix 3 boundary temp/rescale 1 1.0 1.5 0.05 1.0

Description:

Reset the temperature of a group of atoms by explicitly rescaling their velocities.

The rescaling is applied to only the translational degrees of freedom for the particles, which is an important
consideration if finite-size particles which have rotational degrees of freedom are being thermostatted with
this fix. The translational degrees of freedom can also have a bias velocity removed from them before
thermostatting takes place; see the description below.

Rescaling is performed every N timesteps. The target temperature is a ramped value between the Tstart and
Tstop temperatures at the beginning and end of the run.

Tstart can be specified as an equal-style variable. In this case, the Tstop setting is ignored. If the value is a
variable, it should be specified as v_name, where name is the variable name. In this case, the variable will be
evaluated each timestep, and its value used to determine the target temperature.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent temperature.

Rescaling is only performed if the difference between the current and desired temperatures is greater than the
window value. The amount of rescaling that is applied is a fraction (from 0.0 to 1.0) of the difference between
the actual and desired temperature. E.g. if fraction = 1.0, the temperature is reset to exactly the desired value.

IMPORTANT NOTE: Unlike the fix nvt command which performs Nose/Hoover thermostatting AND time
integration, this fix does NOT perform time integration. It only modifies velocities to effect thermostatting.
Thus you must use a separate time integration fix, like fix nve to actually update the positions of atoms using

LIGGGHTS Users Manual

fix temp/rescale command 574

http://lammps.sandia.gov

the modified velocities. Likewise, this fix should not normally be used on atoms that also have their
temperature controlled by another fix - e.g. by fix nvt or fix langevin commands.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

This fix computes a temperature each timestep. To do this, the fix creates its own compute of style "temp", as
if one of this command had been issued:

compute fix-ID_temp group-ID temp

See the compute temp for details. Note that the ID of the new compute is the fix-ID + underscore + "temp",
and the group for the new compute is the same as the fix group.

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID =
thermo_temp. This means you can change the attributes of this fix's temperature (e.g. its degrees-of-freedom)
via the compute_modify command or print this temperature during thermodynamic output via the
thermo_style custom command using the appropriate compute-ID. It also means that changing attributes of
thermo_temp will have no effect on this fix.

Like other fixes that perform thermostatting, this fix can be used with compute commands that calculate a
temperature after removing a "bias" from the atom velocities. E.g. removing the center-of-mass velocity from
a group of atoms or only calculating temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by default, but only if the fix_modify command
is used to assign a temperature compute to this fix that includes such a bias term. See the doc pages for
individual compute commands to determine which ones include a bias. In this case, the thermostat works in
the following manner: the current temperature is calculated taking the bias into account, bias is removed from
each atom, thermostatting is performed on the remaining thermal degrees of freedom, and the bias is added
back in.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify temp option is supported by this fix. You can use it to assign a temperature compute you have
defined to this fix which will be used in its thermostatting procedure, as described above. For consistency, the
group used by this fix and by the compute should be the same.

The fix_modify energy option is supported by this fix to add the energy change implied by a velocity
rescaling to the system's potential energy as part of thermodynamic output.

LIGGGHTS Users Manual

fix temp/rescale/limit/cuda command 575

This fix computes a global scalar which can be accessed by various output commands. The scalar is the
cummulative energy change due to this fix. The scalar value calculated by this fix is "extensive".

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions: none

Related commands:

fix langevin, fix nvt, fix_modify

Default: none

LIGGGHTS Users Manual

fix temp/rescale/limit/cuda command 576

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix thermal/conductivity command

Syntax:

fix ID group-ID thermal/conductivity N edim Nbin keyword value ...

ID, group-ID are documented in fix command•
thermal/conductivity = style name of this fix command•
N = perform kinetic energy exchange every N steps•
edim = x or y or z = direction of kinetic energy transfer•
Nbin = # of layers in edim direction (must be even number)•
zero or more keyword/value pairs may be appended•
keyword = swap

swap value = Nswap = number of swaps to perform every N steps

•

Examples:

fix 1 all thermal/conductivity 100 z 20
fix 1 all thermal/conductivity 50 z 20 swap 2

Description:

Use the Muller-Plathe algorithm described in this paper to exchange kinetic energy between two particles in
different regions of the simulation box every N steps. This induces a temperature gradient in the system. As
described below this enables a thermal conductivity of the fluid to be calculated. This algorithm is sometimes
called a reverse non-equilibrium MD (reverse NEMD) approach to computing thermal conductivity. This is
because the usual NEMD approach is to impose a temperature gradient on the system and measure the
response as the resulting heat flux. In the Muller-Plathe method, the heat flux is imposed, and the temperature
gradient is the system's response.

See the compute heat/flux command for details on how to compute thermal conductivity in an alternate way,
via the Green-Kubo formalism.

The simulation box is divided into Nbin layers in the edim direction, where the layer 1 is at the low end of that
dimension and the layer Nbin is at the high end. Every N steps, Nswap pairs of atoms are chosen in the
following manner. Only atoms in the fix group are considered. The hottest Nswap atoms in layer 1 are
selected. Similarly, the coldest Nswap atoms in the "middle" layer (see below) are selected. The two sets of
Nswap atoms are paired up and their velocities are exchanged. This effectively swaps their kinetic energies,
assuming their masses are the same. Over time, this induces a temperature gradient in the system which can be
measured using commands such as the following, which writes the temperature profile (assuming z = edim) to
the file tmp.profile:

compute ke all ke/atom
variable temp atom c_ke/1.5
fix 3 all ave/spatial 10 100 1000 z lower 0.05 v_temp &
 file tmp.profile units reduced

Note that by default, Nswap = 1, though this can be changed by the optional swap keyword. Setting this
parameter appropriately, in conjunction with the swap rate N, allows the heat flux to be adjusted across a wide
range of values, and the kinetic energy to be exchanged in large chunks or more smoothly.

The "middle" layer for velocity swapping is defined as the Nbin/2 + 1 layer. Thus if Nbin = 20, the two
swapping layers are 1 and 11. This should lead to a symmetric temperature profile since the two layers are

LIGGGHTS Users Manual

fix thermal/conductivity command 577

http://lammps.sandia.gov

separated by the same distance in both directions in a periodic sense. This is why Nbin is restricted to being an
even number.

As described below, the total kinetic energy transferred by these swaps is computed by the fix and can be
output. Dividing this quantity by time and the cross-sectional area of the simulation box yields a heat flux.
The ratio of heat flux to the slope of the temperature profile is proportional to the thermal conductivity of the
fluid, in appropriate units. See the Muller-Plathe paper for details.

IMPORTANT NOTE: If your system is periodic in the direction of the heat flux, then the flux is going in 2
directions. This means the effective heat flux in one direction is reduced by a factor of 2. You will see this in
the equations for thermal conductivity (kappa) in the Muller-Plathe paper. LAMMPS is simply tallying kinetic
energy which does not account for whether or not your system is periodic; you must use the value
appropriately to yield a kappa for your system.

IMPORTANT NOTE: After equilibration, if the temperature gradient you observe is not linear, then you are
likely swapping energy too frequently and are not in a regime of linear response. In this case you cannot
accurately infer a thermal conductivity and should try increasing the Nevery parameter.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the
cummulative kinetic energy transferred between the bottom and middle of the simulation box (in the edim
direction) is stored as a scalar quantity by this fix. This quantity is zeroed when the fix is defined and
accumlates thereafter, once every N steps. The units of the quantity are energy; see the units command for
details. The scalar value calculated by this fix is "intensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the MISC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Swaps conserve both momentum and kinetic energy, even if the masses of the swapped atoms are not equal.
Thus you should not need to thermostat the system. If you do use a thermostat, you may want to apply it only
to the non-swapped dimensions (other than vdim).

LAMMPS does not check, but you should not use this fix to swap the kinetic energy of atoms that are in
constrained molecules, e.g. via fix shake or fix rigid. This is because application of the constraints will alter
the amount of transferred momentum. You should, however, be able to use flexible molecules. See the Zhang
paper for a discussion and results of this idea.

When running a simulation with large, massive particles or molecules in a background solvent, you may want
to only exchange kinetic energy bewteen solvent particles.

Related commands:

fix ave/spatial, fix viscosity, compute heat/flux

Default:

LIGGGHTS Users Manual

fix thermal/conductivity command 578

The option defaults are swap = 1.

(Muller-Plathe) Muller-Plathe, J Chem Phys, 106, 6082 (1997).

(Zhang) Zhang, Lussetti, de Souza, Muller-Plathe, J Phys Chem B, 109, 15060-15067 (2005).

LIGGGHTS Users Manual

fix thermal/conductivity command 579

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix ti/rs command

Syntax:

fix ID group-ID ti/rs lambda_initial lambda_final t_switch t_equil keyword value ...

ID, group-ID are documented in fix command•
ti/rs = style name of this fix command•
lambda_initial/lambda_final = initial/final values of the coupling parameter•
t_switch/t_equil = number of steps of the switching/equilibration procedure•
keyword = function

function value = function-ID
 function-ID = ID of the switching function (1, 2 or 3)

•

Example:

fix ref all ti/rs 50.0 2000 1000
fix vf vacancy ti/rs 10.0 70000 50000 function 2

Description:

This fix allows you to compute the free energy temperature dependence by performing a thermodynamic
integration procedure known as Reversible Scaling (de Koning99, de Koning00a). The thermodynamic
integration is performed using the nonequilibrium method of Adiabatic Switching (Watanabe, de Koning96).

The forces on the atoms are dynamically scaled during the simulation, the rescaling is done in the following
manner:

where F_int is the total force on the atoms due to the interatomic potential and lambda is the coupling
parameter of the thermodynamic integration.

The fix acts as follows: during the first t_equil steps after the fix is defined the value of lambda is
lambda_initial , this is the period to equilibrate the system in the lambda = lambda_initial state. After this the
value of lambda changes continuously from lambda_initial to lambda_final according to the function defined
using the keyword function (described below), this is done in t_switch steps. Then comes the second
equilibration period of t_equil to equilibrate the system in the lambda = lambda_final state. After that the
switching back to the lambda = lambda_initial state is done using t_switch timesteps and following the same
switching function. After this period the value of lambda is kept equal to lambda_initial indefinitely or until a
unfix erase the fix.

The description of thermodynamic integration in both directions is done in de Koning00b, the main reason is
to try to eliminate the dissipated heat due to the nonequilibrium process.

The function keyword allows the use of three different switching rates. The option 1 results in a constant
rescaling where the lambda parameter changes at a constant rate during the switching time according to the
switching function

LIGGGHTS Users Manual

fix ti/rs command 580

http://lammps.sandia.gov

where tau is the scaled time variable t/t_switch. This switching function has the characteristic that the
temperature scaling is faster at temperatures closer to the final temperature of the procedure. The option
number 2 performs the switching at a rate defined by the following switching function

This switching function has the characteristic that the temperature scaling occurs at a constant rate during all
the procedure. The option number 3 performs the switching at a rate defined by the following switching
function

This switching function has the characteristic that the temperature scaling is faster at temperatures closer to
the initial temperature of the procedure.

An example script using this command is provided in the examples/USER/misc/ti directory.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

This fix computes a global vector quantitie which can be accessed by various output commands. The vector
has 2 positions, the first one is the coupling parameter lambda and the second one is the time derivative of
lambda. The scalar and vector values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

Related commands:

fix ti/spring

Restrictions:

This command is part of the USER-MISC package. It is only enabled if LAMMPS was built with those
packages. See the Making LAMMPS section for more info.

Default:

LIGGGHTS Users Manual

fix ti/rs command 581

The keyword default is function = 1.

(de Koning 99) M. de Koning, A. Antonelli and S. Yip, Phys Rev Lett, 83, 3973 (1999).

(Watanabe) M. Watanabe and W. P. Reinhardt, Phys Rev Lett, 65, 3301 (1990).

(de Koning 96) M. de Koning and A. Antonelli, Phys Rev E, 53, 465 (1996).

(de Koning 00a) M. de Koning, A. Antonelli and S. Yip, J Chem Phys, 115, 11025 (2000).

(de Koning 00b) M. de Koning et al., Computing in Science & Engineering, 2, 88 (2000).

LIGGGHTS Users Manual

fix ti/rs command 582

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix ti/spring command

Syntax:

fix ID group-ID ti/spring K t_switch t_equil keyword value ...

ID, group-ID are documented in fix command•
ti/spring = style name of this fix command•
K = spring constant (force/distance units)•
t_switch/t_equil = number of steps of the switching/equilibration procedure•
zero or more keyword/value pairs may be appended to args•
keyword = function

function value = function-ID
 function-ID = ID of the switching function (1 or 2)

•

Example:

fix ref all ti/spring 50.0 2000 1000 function 2

Description:

This fix allows you to compute the free energy of solids by performing a thermodynamic integration between
the solid of interest and an Einstein crystal (Frenkel). The thermodynamic integration is performed using the
nonequilibrium method of Adiabatic Switching (Watanabe, de Koning96).

A spring force is applied independently to each atom in the group to tether it to its initial position. The initial
position for each atom is its location at the time the fix command was issued. More details about the springs
are available in fix spring/self. The forces on the atoms are dynamically scaled during the simulation, the
rescaling is done in the following manner:

where F_harm is the force due to the springs, F_solid is the total force on the atoms due to the interatomic
potential and lambda is the coupling parameter of the thermodynamic integration.

The fix acts as follows: during the first t_equil steps after the fix is defined the value of lambda is zero, this is
the period to equilibrate the system in the lambda = 0 state. After this the value of lambda changes
continuously from 0 to 1 according to the function defined using the keyword function (described below), this
is done in t_switch steps. Then comes the second equilibration period of t_equil to equilibrate the system in
the lambda = 1 state. After that the switching back to the lambda = 0 state is made using t_switch timesteps
and following the same switching function. After this period the value of lambda is kept equal to zero and the
fix has no action in the dynamics of the system anymore.

The description of thermodynamic integration in both directions is done in de Koning97, the main reason is to
try to eliminate the dissipated heat due to the nonequilibrium process.

The function keyword allows the use of two different switching rates, the option 1 results in a constant
rescaling where the lambda parameter changes at a constant rate during the switching time according to the

LIGGGHTS Users Manual

fix ti/spring command 583

http://lammps.sandia.gov

switching function

where tau is the scaled time variable t/t_switch. The option number 2 performs the switching at a rate defined
by the following switching function

This function has zero slope as lambda approaches its extreme values (0 and 1), according to (de Koning96)
this results in smaller fluctuations on the integral to be computed on the thermodynamic integration.

IMPORTANT NOTE: It is importante to keep the center of mass fixed during the thermodynamic integration,
a non-zero total velocity will result in divergencies during the integration due to the fact that the atoms are
'attatched' to its equilibrium positions by the Einstein crystal. Check the option zero of fix langevin and
velocity. The use of the Nose-Hoover thermostat (fix nvt) is NOT recommended due to its well documented
issues with the canonical sampling of harmonic degrees of freedom (notice that the chain option will NOT
solve this problem). The Langevin thermostat (fix langevin) works fine.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the original coordinates of tethered atoms to binary restart files, so that the spring effect will be
the same in a restarted simulation. See the read restart command for info on how to re-specify a fix in an input
script that reads a restart file, so that the operation of the fix continues in an uninterrupted fashion.

The fix modify energy option is supported by this fix to add the energy stored in the per-atom springs to the
system's potential energy as part of thermodynamic output.

This fix computes a global scalar and a global vector quantities which can be accessed by various output
commands. The scalar is an energy which is the sum of the spring energy for each atom, where the per-atom
energy is 0.5 * K * r^2. The vector has 2 positions, the first one is the coupling parameter lambda and the
second one is the time derivative of lambda. The scalar and vector values calculated by this fix are
"extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

IMPORTANT NOTE: If you want the per-atom spring energy to be included in the total potential energy of
the system (the quantity being minimized), you MUST enable the fix modify energy option for this fix.

An example script using this command is provided in the examples/USER/misc/ti directory.

Related commands:

fix spring, fix ti/rs

Restrictions:

LIGGGHTS Users Manual

fix ti/spring command 584

This command is part of the USER-MISC package. It is only enabled if LAMMPS was built with those
packages. See the Making LAMMPS section for more info.

Default:

The keyword default is function = 1.

(Frenkel) Daan Frenkel and Anthony J. C. Ladd, J. Chem. Phys. 81, 3188 (1984).

(Watanabe) M. Watanabe and W. P. Reinhardt, Phys Rev Lett, 65, 3301 (1990).

(de Koning 96) M. de Koning and A. Antonelli, Phys Rev E, 53, 465 (1996).

(de Koning 97) M. de Koning and A. Antonelli, Phys Rev B, 55, 735 (1997).

LIGGGHTS Users Manual

fix ti/spring command 585

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix tmd command

Syntax:

fix ID group-ID tmd rho_final file1 N file2

ID, group-ID are documented in fix command•
tmd = style name of this fix command•
rho_final = desired value of rho at the end of the run (distance units)•
file1 = filename to read target structure from•
N = dump TMD statistics every this many timesteps, 0 = no dump•
file2 = filename to write TMD statistics to (only needed if N > 0)•

Examples:

fix 1 all nve
fix 2 tmdatoms tmd 1.0 target_file 100 tmd_dump_file

Description:

Perform targeted molecular dynamics (TMD) on a group of atoms. A holonomic constraint is used to force the
atoms to move towards (or away from) the target configuration. The parameter "rho" is monotonically
decreased (or increased) from its initial value to rho_final at the end of the run.

Rho has distance units and is a measure of the root-mean-squared distance (RMSD) between the current
configuration of the atoms in the group and the target coordinates listed in file1. Thus a value of rho_final =
0.0 means move the atoms all the way to the final structure during the course of the run.

The target file1 can be ASCII text or a gzipped text file (detected by a .gz suffix). The format of the target
file1 is as follows:

0.0 25.0 xlo xhi
0.0 25.0 ylo yhi
0.0 25.0 zlo zhi
125 24.97311 1.69005 23.46956 0 0 -1
126 1.94691 2.79640 1.92799 1 0 0
127 0.15906 3.46099 0.79121 1 0 0
...

The first 3 lines may or may not be needed, depending on the format of the atoms to follow. If image flags are
included with the atoms, the 1st 3 lo/hi lines must appear in the file. If image flags are not included, the 1st 3
lines should not appear. The 3 lines contain the simulation box dimensions for the atom coordinates, in the
same format as in a LAMMPS data file (see the read_data command).

The remaining lines each contain an atom ID and its target x,y,z coordinates. The atom lines (all or none of
them) can optionally be followed by 3 integer values: nx,ny,nz. For periodic dimensions, they specify which
image of the box the atom is considered to be in, i.e. a value of N (positive or negative) means add N times the
box length to the coordinate to get the true value.

The atom lines can be listed in any order, but every atom in the group must be listed in the file. Atoms not in
the fix group may also be listed; they will be ignored.

TMD statistics are written to file2 every N timesteps, unless N is specified as 0, which means no statistics.

LIGGGHTS Users Manual

fix tmd command 586

http://lammps.sandia.gov

The atoms in the fix tmd group should be integrated (via a fix nve, nvt, npt) along with other atoms in the
system.

Restarts can be used with a fix tmd command. For example, imagine a 10000 timestep run with a rho_initial =
11 and a rho_final = 1. If a restart file was written after 2000 time steps, then the configuration in the file
would have a rho value of 9. A new 8000 time step run could be performed with the same rho_final = 1 to
complete the conformational change at the same transition rate. Note that for restarted runs, the name of the
TMD statistics file should be changed to prevent it being overwritten.

For more information about TMD, see (Schlitter1) and (Schlitter2).

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands.

This fix can ramp its rho parameter over multiple runs, using the start and stop keywords of the run command.
See the run command for details of how to do this.

This fix is not invoked during energy minimization.

Restrictions:

All TMD fixes must be listed in the input script after all integrator fixes (nve, nvt, npt) are applied. This
ensures that atoms are moved before their positions are corrected to comply with the constraint.

Atoms that have a TMD fix applied should not be part of a group to which a SHAKE fix is applied. This is
because LAMMPS assumes there are not multiple competing holonomic constraints applied to the same
atoms.

To read gzipped target files, you must compile LAMMPS with the -DLAMMPS_GZIP option - see the
Making LAMMPS section of the documentation.

Related commands: none

Default: none

(Schlitter1) Schlitter, Swegat, Mulders, "Distance-type reaction coordinates for modelling activated
processes", J Molecular Modeling, 7, 171-177 (2001).

(Schlitter2) Schlitter and Klahn, "The free energy of a reaction coordinate at multiple constraints: a concise
formulation", Molecular Physics, 101, 3439-3443 (2003).

LIGGGHTS Users Manual

fix tmd command 587

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix ttm command

Syntax:

fix ID group-ID ttm seed C_e rho_e kappa_e gamma_p gamma_s v_0 Nx Ny Nz T_infile N T_outfile

ID, group-ID are documented in fix command•
ttm = style name of this fix command•
seed = random number seed to use for white noise (positive integer)•
C_e = electronic specific heat (energy/(electron*temperature) units)•
rho_e = electronic density (electrons/volume units)•
kappa_e = electronic thermal conductivity (energy/(time*distance*temperature) units)•
gamma_p = friction coefficient due to electron-ion interactions (mass/time units)•
gamma_s = friction coefficient due to electronic stopping (mass/time units)•
v_0 = electronic stopping critical velocity (velocity units)•
Nx = number of thermal solve grid points in the x-direction (positive integer)•
Ny = number of thermal solve grid points in the y-direction (positive integer)•
Nz = number of thermal solve grid points in the z-direction (positive integer)•
T_infile = filename to read initial electronic temperature from•
N = dump TTM temperatures every this many timesteps, 0 = no dump•
T_outfile = filename to write TTM temperatures to (only needed if N > 0)•

Examples:

fix 2 all ttm 699489 1.0 1.0 10 0.1 0.0 2.0 1 12 1 initialTs 1000 T.out
fix 2 all ttm 123456 1.0 1.0 1.0 1.0 1.0 5.0 5 5 5 Te.in 1 Te.out

Description:

Use a two-temperature model (TTM) to represent heat transfer through and between electronic and atomic
subsystems. LAMMPS models the atomic subsystem as usual with a molecular dynamics model and the
classical force field specified by the user, but the electronic subsystem is modeled as a continuum, or a
background "gas", on a regular grid. Energy can be transferred spatially within the grid representing the
electrons. Energy can also be transferred between the electronic and the atomic subsystems. The algorithm
underlying this fix was derived by D. M. Duffy and A. M. Rutherford and is discussed in two J Physics:
Condensed Matter papers: (Duffy) and (Rutherford). They used this algorithm in cascade simulations where a
primary knock-on atom (PKA) was initialized with a high velocity to simulate a radiation event.

Heat transfer between the electronic and atomic subsystems is carried out via an inhomogeneous Langevin
thermostat. This thermostat differs from the regular Langevin thermostat (fix langevin) in three important
ways. First, the Langevin thermostat is applied uniformly to all atoms in the user-specified group for a single
target temperature, whereas the TTM fix applies Langevin thermostatting locally to atoms within the volumes
represented by the user-specified grid points with a target temperature specific to that grid point. Second, the
Langevin thermostat couples the temperature of the atoms to an infinite heat reservoir, whereas the heat
reservoir for fix TTM is finite and represents the local electrons. Third, the TTM fix allows users to specify
not just one friction coefficient, but rather two independent friction coefficients: one for the electron-ion
interactions (gamma_p), and one for electron stopping (gamma_s).

When the friction coefficient due to electron stopping, gamma_s, is non-zero, electron stopping effects are
included for atoms moving faster than the electron stopping critical velocity, v_0. For further details about this
algorithm, see (Duffy) and (Rutherford).

LIGGGHTS Users Manual

fix ttm command 588

http://lammps.sandia.gov

Energy transport within the electronic subsystem is solved according to the heat diffusion equation with added
source terms for heat transfer between the subsystems:

where C_e is the specific heat, rho_e is the density, kappa_e is the thermal conductivity, T is temperature, the
"e" and "a" subscripts represent electronic and atomic subsystems respectively, g_p is the coupling constant
for the electron-ion interaction, and g_s is the electron stopping coupling parameter. C_e, rho_e, and kappa_e
are specified as parameters to the fix. The other quantities are derived. The form of the heat diffusion equation
used here is almost the same as that in equation 6 of (Duffy), with the exception that the electronic density is
explicitly reprensented, rather than being part of the the specific heat parameter.

Currently, this fix assumes that none of the user-supplied parameters will vary with temperature. This
assumption can be relaxed by modifying the source code to include the desired temperature dependency and
functional form for any of the parameters. Note that (Duffy) used a tanh() functional form for the temperature
dependence of the electronic specific heat, but ignored temperature dependencies of any of the other
parameters.

This fix requires use of periodic boundary conditions and a 3D simulation. Periodic boundary conditions are
also used in the heat equation solve for the electronic subsystem. This varies from the approach of
(Rutherford) where the atomic subsystem was embedded within a larger continuum representation of the
electronic subsystem.

The initial electronic temperature input file, T_infile, is a text file LAMMPS reads in with no header and with
four numeric columns (ix,iy,iz,Temp) and with a number of rows equal to the number of user-specified grid
points (Nx by Ny by Nz). The ix,iy,iz are node indices from 0 to nxnodes-1, etc. For example, the initial
electronic temperatures on a 1 by 2 by 3 grid could be specified in a T_infile as follows:

0 0 0 1.0
0 0 1 1.0
0 0 2 1.0
0 1 0 2.0
0 1 1 2.0
0 1 2 2.0

where the electronic temperatures along the y=0 plane have been set to 1.0, and the electronic temperatures
along the y=1 plane have been set to 2.0. The order of lines in this file is no important. If all the nodal values
are not specified, LAMMPS will generate an error.

The temperature output file, T_oufile, is created and written by this fix. Temperatures for both the electronic
and atomic subsystems at every node and every N timesteps are output. If N is specified as zero, no output is
generated, and no output filename is needed. The format of the output is as follows. One long line is written
every output timestep. The timestep itself is given in the first column. The next Nx*Ny*Nz columns contain
the temperatures for the atomic subsystem, and the final Nx*Ny*Nz columns contain the temperatures for the
electronic subsystem. The ordering of the Nx*Ny*Nz columns is with the z index varing fastest, y the next
fastest, and x the slowest.

This fix does not change the coordinates of its atoms; it only scales their velocities. Thus a time integration fix
(e.g. fix nve) should still be used to time integrate the affected atoms. This fix should not normally be used on
atoms that have their temperature controlled by another fix - e.g. fix nvt or fix langevin.

LIGGGHTS Users Manual

fix ttm command 589

This fix computes 2 output quantities stored in a vector of length 2, which can be accessed by various output
commands. The first quantity is the total energy of the electronic subsystem. The second quantity is the
energy transferred from the electronic to the atomic subsystem on that timestep. Note that the velocity verlet
integrator applies the fix ttm forces to the atomic subsystem as two half-step velocity updates: one on the
current timestep and one on the subsequent timestep. Consequently, the change in the atomic subsystem
energy is lagged by half a timestep relative to the change in the electronic subsystem energy. As a result of
this, users may notice slight fluctuations in the sum of the atomic and electronic subsystem energies reported
at the end of the timestep.

The vector values calculated by this fix are "extensive".

IMPORTANT NOTE: The current implementation creates a copy of the electron grid that overlays the entire
simulation domain, for each processor. Values on the grid are summed across all processors. Thus you should
insure that this grid is not too large, else your simulation could incur high memory and communication costs.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the state of the electronic subsystem and the energy exchange between the subsystems to
binary restart files. See the read_restart command for info on how to re-specify a fix in an input script that
reads a restart file, so that the operation of the fix continues in an uninterrupted fashion.

Because the state of the random number generator is not saved in the restart files, this means you cannot do
"exact" restarts with this fix, where the simulation continues on the same as if no restart had taken place.
However, in a statistical sense, a restarted simulation should produce the same behavior.

None of the fix_modify options are relevant to this fix. No global or per-atom quantities are stored by this fix
for access by various output commands. No parameter of this fix can be used with the start/stop keywords of
the run command. This fix is not invoked during energy minimization.

Restrictions:

This fix is part of the MISC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This fix can only be used for 3d simulations and orthogonal simlulation boxes. You must use periodic
boundary conditions with this fix.

Related commands:

fix langevin, fix dt/reset

Default: none

(Duffy) D M Duffy and A M Rutherford, J. Phys.: Condens. Matter, 19, 016207-016218 (2007).

(Rutherford) A M Rutherford and D M Duffy, J. Phys.: Condens. Matter, 19, 496201-496210 (2007).

LIGGGHTS Users Manual

fix ttm command 590

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix tune/kspace command

Syntax:

fix ID group-ID tune/kspace N

ID, group-ID are documented in fix command•
tune/kspace = style name of this fix command•
N = invoke this fix every N steps•

Examples:

fix 2 all tune/kspace 100

Description:

This fix tests each kspace style (Ewald, PPPM, and MSM), and automatically selects the fastest style to use
for the remainder of the run. If the fastest style is Ewald or PPPM, the fix also adjusts the coulomb cutoff
towards optimal speed. Future versions of this fix will automatically select other kspace parameters to use for
maximum simulation speed. The kspace parameters may include the style, cutoff, grid points in each
direction, order, Ewald parameter, MSM parallelization cut-point, MPI tasks to use, etc.

The rationale for this fix is to provide the user with as-fast-as-possible simulations that include long-range
electrostatics (kspace) while meeting the user-prescribed accuracy requirement. A simple heuristic could
never capture the optimal combination of parameters for every possible run-time scenario. But by performing
short tests of various kspace parameter sets, this fix allows parameters to be tailored specifically to the user's
machine, MPI ranks, use of threading or accelerators, the simulated system, and the simulation details. In
addition, it is possible that parameters could be evolved with the simulation on-the-fly, which is useful for
systems that are dynamically evolving (e.g. changes in box size/shape or number of particles).

When this fix is invoked, LAMMPS will perform short timed tests of various parameter sets to determine the
optimal parameters. Tests are performed on-the-fly, with a new test initialized every N steps. N should be
chosen large enough so that adequate CPU time lapses between tests, thereby providing statistically
significant timings. But N should not be chosen to be so large that an unfortunate parameter set test takes an
inordinate amount of wall time to complete. An N of 100 for most problems seems reasonable. Once an
optimal parameter set is found, that set is used for the remainder of the run.

This fix uses heristics to guide it's selection of parameter sets to test, but the actual timed results will be used
to decide which set to use in the simulation.

It is not necessary to discard trajectories produced using sub-optimal parameter sets, or a mix of various
parameter sets, since the user-prescribed accuracy will have been maintained throughout. However, some
users may prefer to use this fix only to discover the optimal parameter set for a given setup that can then be
used on subsequent production runs.

This fix starts with kspace parameters that are set by the user with the kspace_style and kspace_modify
commands. The prescribed accuracy will be maintained by this fix throughout the simulation.

None of the fix_modify options are relevant to this fix.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

LIGGGHTS Users Manual

fix tune/kspace command 591

http://lammps.sandia.gov

Restrictions:

This fix is part of the KSPACE package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Do not set "neigh_modify once yes" or else this fix will never be called. Reneighboring is required.

Related commands:

kspace_style, boundary kspace_modify, pair_style lj/cut/coul/long, pair_style lj/charmm/coul/long, pair_style
lj/long, pair_style lj/long/coul/long, pair_style buck/coul/long

Default:

LIGGGHTS Users Manual

fix tune/kspace command 592

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix viscosity command

Syntax:

fix ID group-ID viscosity N vdim pdim Nbin keyword value ...

ID, group-ID are documented in fix command•
viscosity = style name of this fix command•
N = perform momentum exchange every N steps•
vdim = x or y or z = which momentum component to exchange•
pdim = x or y or z = direction of momentum transfer•
Nbin = # of layers in pdim direction (must be even number)•
zero or more keyword/value pairs may be appended•
keyword = swap or target

swap value = Nswap = number of swaps to perform every N steps
vtarget value = V or INF = target velocity of swap partners (velocity units)

•

Examples:

fix 1 all viscosity 100 x z 20
fix 1 all viscosity 50 x z 20 swap 2 vtarget 1.5

Description:

Use the Muller-Plathe algorithm described in this paper to exchange momenta between two particles in
different regions of the simulation box every N steps. This induces a shear velocity profile in the system. As
described below this enables a viscosity of the fluid to be calculated. This algorithm is sometimes called a
reverse non-equilibrium MD (reverse NEMD) approach to computing viscosity. This is because the usual
NEMD approach is to impose a shear velocity profile on the system and measure the response via an
off-diagonal component of the stress tensor, which is proportional to the momentum flux. In the Muller-Plathe
method, the momentum flux is imposed, and the shear velocity profile is the system's response.

The simulation box is divided into Nbin layers in the pdim direction, where the layer 1 is at the low end of that
dimension and the layer Nbin is at the high end. Every N steps, Nswap pairs of atoms are chosen in the
following manner. Only atoms in the fix group are considered. Nswap atoms in layer 1 with positive velocity
components in the vdim direction closest to the target value V are selected. Similarly, Nswap atoms in the
"middle" layer (see below) with negative velocity components in the vdim direction closest to the negative of
the target value V are selected. The two sets of Nswap atoms are paired up and their vdim momenta
components are swapped within each pair. This resets their velocities, typically in opposite directions. Over
time, this induces a shear velocity profile in the system which can be measured using commands such as the
following, which writes the profile to the file tmp.profile:

fix f1 all ave/spatial 100 10 1000 z lower 0.05 vx &
 file tmp.profile units reduced

Note that by default, Nswap = 1 and vtarget = INF, though this can be changed by the optional swap and
vtarget keywords. When vtarget = INF, one or more atoms with the most positive and negative velocity
components are selected. Setting these parameters appropriately, in conjunction with the swap rate N, allows
the momentum flux rate to be adjusted across a wide range of values, and the momenta to be exchanged in
large chunks or more smoothly.

The "middle" layer for momenta swapping is defined as the Nbin/2 + 1 layer. Thus if Nbin = 20, the two

LIGGGHTS Users Manual

fix viscosity command 593

http://lammps.sandia.gov

swapping layers are 1 and 11. This should lead to a symmetric velocity profile since the two layers are
separated by the same distance in both directions in a periodic sense. This is why Nbin is restricted to being an
even number.

As described below, the total momentum transferred by these velocity swaps is computed by the fix and can
be output. Dividing this quantity by time and the cross-sectional area of the simulation box yields a
momentum flux. The ratio of momentum flux to the slope of the shear velocity profile is proportional to the
viscosity of the fluid, in appropriate units. See the Muller-Plathe paper for details.

IMPORTANT NOTE: If your system is periodic in the direction of the momentum flux, then the flux is going
in 2 directions. This means the effective momentum flux in one direction is reduced by a factor of 2. You will
see this in the equations for viscosity in the Muller-Plathe paper. LAMMPS is simply tallying momentum
which does not account for whether or not your system is periodic; you must use the value appropriately to
yield a viscosity for your system.

IMPORTANT NOTE: After equilibration, if the velocity profile you observe is not linear, then you are likely
swapping momentum too frequently and are not in a regime of linear response. In this case you cannot
accurately infer a viscosity and should try increasing the Nevery parameter.

An alternative method for calculating a viscosity is to run a NEMD simulation, as described in Section_howto
13 of the manual. NEMD simulations deform the simmulation box via the fix deform command. Thus they
cannot be run on a charged system using a PPPM solver since PPPM does not currently support
non-orthogonal boxes. Using fix viscosity keeps the box orthogonal; thus it does not suffer from this
limitation.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the
cummulative momentum transferred between the bottom and middle of the simulation box (in the pdim
direction) is stored as a scalar quantity by this fix. This quantity is zeroed when the fix is defined and
accumlates thereafter, once every N steps. The units of the quantity are momentum = mass*velocity. The
scalar value calculated by this fix is "intensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the MISC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Swaps conserve both momentum and kinetic energy, even if the masses of the swapped atoms are not equal.
Thus you should not need to thermostat the system. If you do use a thermostat, you may want to apply it only
to the non-swapped dimensions (other than vdim).

LAMMPS does not check, but you should not use this fix to swap velocities of atoms that are in constrained
molecules, e.g. via fix shake or fix rigid. This is because application of the constraints will alter the amount of
transferred momentum. You should, however, be able to use flexible molecules. See the Maginn paper for an
example of using this algorithm in a computation of alcohol molecule properties.

When running a simulation with large, massive particles or molecules in a background solvent, you may want

LIGGGHTS Users Manual

fix viscosity command 594

to only exchange momenta bewteen solvent particles.

Related commands:

fix ave/spatial, fix thermal/conductivity

Default:

The option defaults are swap = 1 and vtarget = INF.

(Muller-Plathe) Muller-Plathe, Phys Rev E, 59, 4894-4898 (1999).

(Maginn) Kelkar, Rafferty, Maginn, Siepmann, Fluid Phase Equilibria, 260, 218-231 (2007).

LIGGGHTS Users Manual

fix viscosity command 595

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix viscous command

fix viscous/cuda command

Syntax:

fix ID group-ID viscous gamma keyword values ...

ID, group-ID are documented in fix command•
viscous = style name of this fix command•
gamma = damping coefficient (force/velocity units)•
zero or more keyword/value pairs may be appended

keyword = scale
scale values = type ratio

 type = atom type (1-N)
 ratio = factor to scale the damping coefficient by

•

Examples:

fix 1 flow viscous 0.1
fix 1 damp viscous 0.5 scale 3 2.5

Description:

Add a viscous damping force to atoms in the group that is proportional to the velocity of the atom. The added
force can be thought of as a frictional interaction with implicit solvent, i.e. the no-slip Stokes drag on a
spherical particle. In granular simulations this can be useful for draining the kinetic energy from the system in
a controlled fashion. If used without additional thermostatting (to add kinetic energy to the system), it has the
effect of slowly (or rapidly) freezing the system; hence it can also be used as a simple energy minimization
technique.

The damping force F is given by F = - gamma * velocity. The larger the coefficient, the faster the kinetic
energy is reduced. If the optional keyword scale is used, gamma can scaled up or down by the specified factor
for atoms of that type. It can be used multiple times to adjust gamma for several atom types.

IMPORTANT NOTE: You should specify gamma in force/velocity units. This is not the same as mass/time
units, at least for some of the LAMMPS units options like "real" or "metal" that are not self-consistent.

In a Brownian dynamics context, gamma = Kb T / D, where Kb = Boltzmann's constant, T = temperature, and
D = particle diffusion coefficient. D can be written as Kb T / (3 pi eta d), where eta = dynamic viscosity of the
frictional fluid and d = diameter of particle. This means gamma = 3 pi eta d, and thus is proportional to the
viscosity of the fluid and the particle diameter.

In the current implementation, rather than have the user specify a viscosity, gamma is specified directly in
force/velocity units. If needed, gamma can be adjusted for atoms of different sizes (i.e. sigma) by using the
scale keyword.

Note that Brownian dynamics models also typically include a randomized force term to thermostat the system
at a chosen temperature. The fix langevin command does this. It has the same viscous damping term as fix
viscous and adds a random force to each atom. The random force term is proportional to the sqrt of the chosen
thermostatting temperature. Thus if you use fix langevin with a target T = 0, its random force term is zero, and
you are essentially performing the same operation as fix viscous. Also note that the gamma of fix viscous is

LIGGGHTS Users Manual

fix viscous command 596

http://lammps.sandia.gov

related to the damping parameter of fix langevin, however the former is specified in units of force/velocity
and the latter in units of time, so that it can more easily be used as a thermostat.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have
been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the
manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
This fix should only be used with damped dynamics minimizers that allow for non-conservative forces. See
the min_style command for details.

Restrictions: none

Related commands:

fix langevin

Default: none

LIGGGHTS Users Manual

fix viscous/cuda command 597

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix wall/gran command

Syntax:

fix ID group-ID style model_keyword model_values wallstyle wallstyleargs general_keywords general_values ...

ID, group-ID are documented in fix command•
style = wall/gran•
zero or more model_keyword/value pairs may be appended

model values = described here
tangential values = described here
rolling_friction values = described here
cohesion values = described here
surface values = described here
temperature value = T0

 T0 = Temperature of the wall (temperature units)

•

wallstyle = mesh or primitive•
wallstyle args for wallstyle mesh = n_meshes and meshes

n_meshes value = nm
 nm = # of meshes (see fix mesh/surface) to use for the wall (positive integer)

meshes values = meshlist
 meshlist = id(s) of the mesh(es) (see fix mesh/surface) to be used. These must be defined before

•

wallstyle args for wallstyle primitive = type or xplane or yplane or zplane or xcylinder or ycylinder or
zcylinder

type args = tp
 tp = atom_type (material type) of the wall

xplane or yplane or zplane args = pos
 pos = position plane (distance units)

xcylinder or ycylinder or zcylinder args = radius c1 c2
 radius = cylinder radius (distance units)
 c1,c2 = coordinates of center axis in other 2 dims (distance units)

•

zero or more general_keyword/value pairs may be appended•
general_keyword = shear or store_force

shear values = dim vshear
 dim = x or y or z
 vshear = magnitude of shear velocity (velocity units)

store_force value = 'yes' or 'no' yes, no = determines if the wall force exerted on the particles is stored
in a fix property/atom with id force_(ID), where (ID) is the id of the fix wall/gran command.

•

Examples:

fix zwalls all wall/gran model hertz tangential history primitive type 1 zplane 0.15
fix meshwalls all wall/gran model hertz tangential history mesh n_meshes 2 meshes cad1 cad2

LIGGGHTS vs. LAMMPS Info:

This command has been improved in accordance with the overhauled pair gran styles. Furthermore, it offers
the new wallstyle mesh, which enables fix wall/gran to handle complex wall geometries imported from CAD.

Description:

LIGGGHTS Users Manual

fix wall/gran command 598

http://www.cfdem.com
http://lammps.sandia.gov

Bound the simulation domain of a granular system with a frictional wall. All particles in the group interact
with the wall when they are close enough to touch it. The equation for the force between the wall and particles
touching it is the same as the corresponding equation on the pair_style granular doc page, in the limit of one
of the two particles going to infinite radius and mass (flat wall).

You must choose the models matching the pair style used, otherwise an error is created. As with pair_style
granular, you have to define the mechanical properties for each material you are used in the simulation with
fix property commands. See pair_style gran for more details and the model doc page for details.

For wallstyle mesh, fix_id1, fix_id2 etc. must be IDs of valid fixes of type fix mesh/surface, defining the
granular mesh to be used for the wall. Triangle-particle neighbor lists are built to efficiently track
particle-triangle contacts. Particle-tri neighbor list build is triggered if any particle moves more than half the
skin distance or (in case of moving mesh) if the mesh itself moves more than half the skin distance since the
last build. A warning is generated if a dangerous particle-tri neigh list build is detected (e.g. if particles are
inserted too close to a wall, see section 'Restrictions'). For style mesh, the atom_type (material type) is
inherited from the atom style provided in the fix mesh/surface command.

For wallstyle primitive, the atom_type (material type) has to be provided via keyword type. Primitve walls can
be xplane or yplane or zplane or cylindrical. The 3 planar options specify a single wall in a dimension. Wall
positions are given by values for lo and hi. For an xcylinder, ycylinder or zcylinder, the radius and the cylinder
axis in the other two dims is specified.

Optionally, primitive walls can be moving, if the shear keyword is appended.

For the shear keyword, the wall moves continuously in the specified dimension with velocity vshear. The
dimension must be tangential to walls with a planar wallstyle, e.g. in the y or z directions for an xplane wall.
For zcylinder walls, a dimension of z means the cylinder is moving in the z-direction along it's axis. A
dimension of x or y means the cylinder is spinning around the z-axis, either in the clockwise direction for
vshear > 0 or counter-clockwise for vshear < 0. In this case, vshear is the tangential velocity of the wall at
whatever radius has been defined. The same applies to xcylinder and ycylinder accordingly.

NOTE: The keywords wiggle or shear can NOT be used for wallstyle mesh. For a moving a granular wall with
wallstyle mesh, use the more flexible command "fix move/mesh"fix_move_mesh.html, or use the keywords
velocity or angular_velocity in fix mesh/surface.

The keyword temperature is used to assign a constant temperature to the wall. This setting gets effective in
conjunction with heat conduction via fix heat/gran. For wallstyle mesh, the value for the temperature given in
this command is ignored and the temperature value is specified per mesh via fix mesh/surface.

By specifying store_force = 'yes', you can instruct the command to store the wall force exerted on the particles
in a fix property/atom with id force_(ID), where (ID) is the id of the fix wall/gran command.

The effect of keyword rolling_friction, cohesion, tangential_damping, viscous and absolute_damping is
explanted in pair gran

Restart, fix_modify, output, run start/stop, minimize info:

If applicable, contact history is written to binary restart files so simulations can continue properly. None of the
fix_modify options are relevant to this fix. No global scalar or vector or are stored by this fix. If store_force =
'yes' is specified, the per-atom wall force can be accessed by the various output commands via f_force(ID)1,
f_force(ID)2, f_force(ID)3. (ID) is the id of the fix wall/gran command. No parameter of this fix can be used
with the start/stop keywords of the run command. This fix is not invoked during energy minimization .

Restrictions:

LIGGGHTS Users Manual

fix wall/gran command 599

There can be only one fix wall/gran command with style mesh. Note that this is not really a restriction because
you can include multiple fixes of type fix mesh/surface in the fix wall/gran command.

When using style style mesh, you have to use the style bin for the neighbor command.

Style mesh can not be used in conjunction with triclinic simulation boxes.

When using style mesh' in combination with a particle insertion command, you always have to keep a
minimum distance between the wall and the insertion region that is equal to maximum particle radius + half
the skin defined in the neighbor command. Otherwise, newly inserted particles interpenetrate the walls before
a triangle neighbor list is built the first time.

The keyword shear can NOT be used for style mesh. For moving granular wall with style mesh, use "fix
move/mesh"fix_move_mesh.html.

Any dimension (xyz) that has a planar granular wall must be non-periodic.

Related commands:

fix mesh/surface, fix_move_mesh, pair_style granular Models for use with this command are described here

Default:

model = 'hertz' tangential = 'history' rolling_friction = 'off' cohesion = 'off' surface = 'default'

LIGGGHTS Users Manual

fix wall/gran command 600

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix wall/lj93 command

fix wall/lj126 command

fix wall/lj1043 command

fix wall/colloid command

fix wall/harmonic command

Syntax:

fix ID group-ID style face args ... keyword value ...

ID, group-ID are documented in fix command•
style = wall/lj93 or wall/lj126 or wall/lj1043 or wall/colloid or wall/harmonic•
one or more face/arg pairs may be appended•
face = xlo or xhi or ylo or yhi or zlo or zhi

 args = coord epsilon sigma cutoff
 coord = position of wall = EDGE or constant or variable
 EDGE = current lo or hi edge of simulation box
 constant = number like 0.0 or -30.0 (distance units)
 variable = equal-style variable like v_x or v_wiggle
 epsilon = strength factor for wall-particle interaction (energy or energy/distance^2 units)
 epsilon can be a variable (see below)
 sigma = size factor for wall-particle interaction (distance units)
 sigma can be a variable (see below)
 cutoff = distance from wall at which wall-particle interaction is cut off (distance units)

•

zero or more keyword/value pairs may be appended•
keyword = units or fld

units value = lattice or box
lattice = the wall position is defined in lattice units
box = the wall position is defined in simulation box units

fld value = yes or no
yes = invoke the wall constraint to be compatible with implicit FLD
no = invoke the wall constraint in the normal way

pbc value = yes or no
yes = allow periodic boundary in a wall dimension
no = require non-perioidic boundaries in any wall dimension

•

Examples:

fix wallhi all wall/lj93 xlo -1.0 1.0 1.0 2.5 units box
fix wallhi all wall/lj93 xhi EDGE 1.0 1.0 2.5
fix wallhi all wall/lj126 v_wiggle 23.2 1.0 1.0 2.5
fix zwalls all wall/colloid zlo 0.0 1.0 1.0 0.858 zhi 40.0 1.0 1.0 0.858

Description:

Bound the simulation domain on one or more of its faces with a flat wall that interacts with the atoms in the
group by generating a force on the atom in a direction perpendicular to the wall. The energy of wall-particle
interactions depends on the style.

LIGGGHTS Users Manual

fix wall/lj93 command 601

http://lammps.sandia.gov

For style wall/lj93, the energy E is given by the 9/3 potential:

For style wall/lj126, the energy E is given by the 12/6 potential:

For style wall/lj1043, the energy E is given by the 10/4/3 potential:

For style wall/colloid, the energy E is given by an integrated form of the pair_style colloid potential:

For style wall/harmonic, the energy E is given by a harmonic spring potential:

In all cases, r is the distance from the particle to the wall at position coord, and Rc is the cutoff distance at
which the particle and wall no longer interact. The energy of the wall potential is shifted so that the
wall-particle interaction energy is 0.0 at the cutoff distance.

Up to 6 walls or faces can be specified in a single command: xlo, xhi, ylo, yhi, zlo, zhi. A lo face interacts with
particles near the lower side of the simulation box in that dimension. A hi face interacts with particles near the
upper side of the simulation box in that dimension.

LIGGGHTS Users Manual

fix wall/harmonic command 602

The position of each wall can be specified in one of 3 ways: as the EDGE of the simulation box, as a constant
value, or as a variable. If EDGE is used, then the corresponding boundary of the current simulation box is
used. If a numeric constant is specified then the wall is placed at that position in the appropriate dimension (x,
y, or z). In both the EDGE and constant cases, the wall will never move. If the wall position is a variable, it
should be specified as v_name, where name is an equal-style variable name. In this case the variable is
evaluated each timestep and the result becomes the current position of the reflecting wall. Equal-style
variables can specify formulas with various mathematical functions, and include thermo_style command
keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to specify a
time-dependent wall position. See examples below.

For the wall/lj93 and wall/lj126 and wall/lj1043 styles, epsilon and sigma are the usual Lennard-Jones
parameters, which determine the strength and size of the particle as it interacts with the wall. Epsilon has
energy units. Note that this epsilon and sigma may be different than any epsilon or sigma values defined for a
pair style that computes particle-particle interactions.

The wall/lj93 interaction is derived by integrating over a 3d half-lattice of Lennard-Jones 12/6 particles. The
wall/lj126 interaction is effectively a harder, more repulsive wall interaction. The wall/lj1043 interaction is
yet a different form of wall interaction, described in Magda et al in (Magda).

For the wall/colloid style, R is the radius of the colloid particle, D is the distance from the surface of the
colloid particle to the wall (r-R), and sigma is the size of a constituent LJ particle inside the colloid particle
and wall. Note that the cutoff distance Rc in this case is the distance from the colloid particle center to the
wall. The prefactor epsilon can be thought of as an effective Hamaker constant with energy units for the
strength of the colloid-wall interaction. More specifically, the epsilon pre-factor = 4 * pi^2 * rho_wall *
rho_colloid * epsilon * sigma^6, where epsilon and sigma are the LJ parameters for the constituent LJ
particles. Rho_wall and rho_colloid are the number density of the constituent particles, in the wall and colloid
respectively, in units of 1/volume.

The wall/colloid interaction is derived by integrating over constituent LJ particles of size sigma within the
colloid particle and a 3d half-lattice of Lennard-Jones 12/6 particles of size sigma in the wall. As mentioned in
the preceeding paragraph, the density of particles in the wall and colloid can be different, as specified by the
epsilon pre-factor.

For the wall/harmonic style, epsilon is effectively the spring constant K, and has units (energy/distance^2).
The input parameter sigma is ignored. The minimum energy position of the harmonic spring is at the cutoff.
This is a repulsive-only spring since the interaction is truncated at the cutoff

For any wall, the epsilon and/or sigma parameter can be specified as an equal-style variable, in which case it
should be specified as v_name, where name is the variable name. As with a variable wall position, the
variable is evaluated each timestep and the result becomes the current epsilon or sigma of the wall.
Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent wall interaction.

IMPORTANT NOTE: For all of the styles, you must insure that r is always > 0 for all particles in the group,
or LAMMPS will generate an error. This means you cannot start your simulation with particles at the wall
position coord (r = 0) or with particles on the wrong side of the wall (r < 0). For the wall/lj93 and wall/lj126
styles, the energy of the wall/particle interaction (and hence the force on the particle) blows up as r -> 0. The
wall/colloid style is even more restrictive, since the energy blows up as D = r-R -> 0. This means the
finite-size particles of radius R must be a distance larger than R from the wall position coord. The harmonic
style is a softer potential and does not blow up as r -> 0, but you must use a large enough epsilon that particles
always reamin on the correct side of the wall (r > 0).

The units keyword determines the meaning of the distance units used to define a wall position, but only when

LIGGGHTS Users Manual

fix wall/harmonic command 603

a numeric constant or variable is used. It is not relevant when EDGE is used to specify a face position. In the
variable case, the variable is assumed to produce a value compatible with the units setting you specify.

A box value selects standard distance units as defined by the units command, e.g. Angstroms for units = real
or metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacings.

The fld keyword can be used with a yes setting to invoke the wall constraint before pairwise interactions are
computed. This allows an implicit FLD model using pair_style lubricateU to include the wall force in its
calculations. If the setting is no, wall forces are imposed after pairwise interactions, in the usual manner.

The pbc keyword can be used with a yes setting to allow walls to be specified in a periodic dimension. See the
boundary command for options on simulation box boundaries. The default for pbc is no, which means the
system must be non-periodic when using a wall. But you may wish to use a periodic box. E.g. to allow some
particles to interact with the wall via the fix group-ID, and others to pass through it and wrap around a
periodic box. In this case you should insure that the wall if sufficiently far enough away from the box
boundary. If you do not, then particles may interact with both the wall and with periodic images on the other
side of the box, which is probably not what you want.

Here are examples of variable definitions that move the wall position in a time-dependent fashion using
equal-style variables. The wall interaction parameters (epsilon, sigma) could be varied with additional
variable definitions.

variable ramp equal ramp(0,10)
fix 1 all wall xlo v_ramp 1.0 1.0 2.5

variable linear equal vdisplace(0,20)
fix 1 all wall xlo v_linear 1.0 1.0 2.5

variable wiggle equal swiggle(0.0,5.0,3.0)
fix 1 all wall xlo v_wiggle 1.0 1.0 2.5

variable wiggle equal cwiggle(0.0,5.0,3.0)
fix 1 all wall xlo v_wiggle 1.0 1.0 2.5

The ramp(lo,hi) function adjusts the wall position linearly from lo to hi over the course of a run. The
vdisplace(c0,velocity) function does something similar using the equation position = c0 + velocity*delta,
where delta is the elapsed time.

The swiggle(c0,A,period) function causes the wall position to oscillate sinusoidally according to this equation,
where omega = 2 PI / period:

position = c0 + A sin(omega*delta)

The cwiggle(c0,A,period) function causes the wall position to oscillate sinusoidally according to this
equation, which will have an initial wall velocity of 0.0, and thus may impose a gentler perturbation on the
particles:

position = c0 + A (1 - cos(omega*delta))

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the energy of interaction between atoms and each
wall to the system's potential energy as part of thermodynamic output.

LIGGGHTS Users Manual

fix wall/harmonic command 604

This fix computes a global scalar energy and a global vector of forces, which can be accessed by various
output commands. Note that the scalar energy is the sum of interactions with all defined walls. If you want the
energy on a per-wall basis, you need to use multiple fix wall commands. The length of the vector is equal to
the number of walls defined by the fix. Each vector value is the normal force on a specific wall. Note that an
outward force on a wall will be a negative value for lo walls and a positive value for hi walls. The scalar and
vector values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

IMPORTANT NOTE: If you want the atom/wall interaction energy to be included in the total potential energy
of the system (the quantity being minimized), you MUST enable the fix_modify energy option for this fix.

Restrictions: none

Related commands:

fix wall/reflect, fix wall/gran, fix wall/region

Default:

The option defaults units = lattice, fld = no, and pbc = no.

(Magda) Magda, Tirrell, Davis, J Chem Phys, 83, 1888-1901 (1985).

LIGGGHTS Users Manual

fix wall/harmonic command 605

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix wall/piston command

Syntax:

fix ID group-ID wall/piston face ... keyword value ...

ID, group-ID are documented in fix command•
wall/piston = style name of this fix command•
face = zlo•
zero or more keyword/value pairs may be appended•
keyword = pos or vel or ramp or units

pos args = z
 z = z coordinate at which the piston begins (distance units)

vel args = vz
 vz = final velocity of the piston (velocity units)

ramp = use a linear velocity ramp from 0 to vz
temp args = target damp seed extent

 target = target velocity for region immediately ahead of the piston
 damp = damping paramter (time units)
 seed = random number seed for langevin kicks
 extent = extent of thermostated region (distance units)

units value = lattice or box
lattice = the wall position is defined in lattice units
box = the wall position is defined in simulation box units

•

Examples:

fix xwalls all wall/piston zlo
fix walls all wall/piston zlo pos 1.0 0.0 0.0 vel 0.0 0.0 10.0 units box
fix top all wall/piston zlo vel 0.0 0.0 10.0 ramp

Description:

Bound the simulation with a moving wall which reflect particles in the specified group and drive the system
with an effective infinite-mass piston capable of driving shock waves.

A momentum mirror technique is used, which means that if an atom (or the wall) moves such that an atom is
outside the wall on a timestep by a distance delta (e.g. due to fix nve), then it is put back inside the face by the
same delta, and the velocity relative to the moving wall is flipped in z. For instance, a stationary particle hit
with a piston wall with velocity vz, will end the timestep with a velocity of 2*vz.

Currently the face keyword can only be zlo. This creates a piston moving in the positive z direction. Particles
with z coordinate less than the wall position are reflected to a z coordinate greater than the wall position. If the
piston velocity is vpz and the particle velocity before reflection is vzi, the particle velocity after reflection is
-vzi + 2*vpz.

The initial position of the wall can be specified by the pos keyword.

The final velocity of the wall can be specified by the vel keyword

The ramp keyword will cause the wall/piston to adjust the velocity linearly from zero velocity to vel over the
course of the run. If the ramp keyword is omitted then the wall/piston moves at a constant velocity defined by
vel.

LIGGGHTS Users Manual

fix wall/piston command 606

http://lammps.sandia.gov

The temp keyword will cause the region immediately in front of the wall/piston to be thermostated with a
Langevin thermostat. This region moves with the piston. The damping and kicking are measured in the
reference frame of the piston. So, a temperature of zero would mean all particles were moving at exactly the
speed of the wall/piston.

The units keyword determines the meaning of the distance units used to define a wall position, but only when
a numeric constant is used.

A box value selects standard distance units as defined by the units command, e.g. Angstroms for units = real
or metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacings.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix style is part of the SHOCK package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

The face that has the wall/piston must be boundary type 's' (shrink-wrapped). The opposing face can be any
boundary type other than periodic.

A wall/piston should not be used with rigid bodies such as those defined by a "fix rigid" command. This is
because the wall/piston displaces atoms directly rather than exerting a force on them.

Related commands:

fix wall/reflect command, fix append/atoms command

Default:

The keyword defaults are pos = 0, vel = 0, units = lattice.

LIGGGHTS Users Manual

fix wall/piston command 607

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix wall/reflect command

Syntax:

fix ID group-ID wall/reflect face arg ... keyword value ...

ID, group-ID are documented in fix command•
wall/reflect = style name of this fix command•
one or more face/arg pairs may be appended•
face = xlo or xhi or ylo or yhi or zlo or zhi

xlo,ylo,zlo arg = EDGE or constant or variable
 EDGE = current lo edge of simulation box
 constant = number like 0.0 or -30.0 (distance units)
 variable = equal-style variable like v_x or v_wiggle

xhi,yhi,zhi arg = EDGE or constant or variable
 EDGE = current hi edge of simulation box
 constant = number like 50.0 or 100.3 (distance units)
 variable = equal-style variable like v_x or v_wiggle

•

zero or more keyword/value pairs may be appended•
keyword = units

units value = lattice or box
lattice = the wall position is defined in lattice units
box = the wall position is defined in simulation box units

•

Examples:

fix xwalls all wall/reflect xlo EDGE xhi EDGE
fix walls all wall/reflect xlo 0.0 ylo 10.0 units box
fix top all wall/reflect zhi v_pressdown

Description:

Bound the simulation with one or more walls which reflect particles in the specified group when they attempt
to move thru them.

Reflection means that if an atom moves outside the wall on a timestep by a distance delta (e.g. due to fix nve),
then it is put back inside the face by the same delta, and the sign of the corresponding component of its
velocity is flipped.

When used in conjunction with fix nve and run_style verlet, the resultant time-integration algorithm is
equivalent to the primitive splitting algorithm (PSA) described by Bond. Because each reflection event
divides the corresponding timestep asymmetrically, energy conservation is only satisfied to O(dt), rather than
to O(dt^2) as it would be for velocity-Verlet integration without reflective walls.

Up to 6 walls or faces can be specified in a single command: xlo, xhi, ylo, yhi, zlo, zhi. A lo face reflects
particles that move to a coordinate less than the wall position, back in the hi direction. A hi face reflects
particles that move to a coordinate higher than the wall position, back in the lo direction.

The position of each wall can be specified in one of 3 ways: as the EDGE of the simulation box, as a constant
value, or as a variable. If EDGE is used, then the corresponding boundary of the current simulation box is
used. If a numeric constant is specified then the wall is placed at that position in the appropriate dimension (x,
y, or z). In both the EDGE and constant cases, the wall will never move. If the wall position is a variable, it
should be specified as v_name, where name is an equal-style variable name. In this case the variable is

LIGGGHTS Users Manual

fix wall/reflect command 608

http://lammps.sandia.gov

evaluated each timestep and the result becomes the current position of the reflecting wall. Equal-style
variables can specify formulas with various mathematical functions, and include thermo_style command
keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to specify a
time-dependent wall position.

The units keyword determines the meaning of the distance units used to define a wall position, but only when
a numeric constant or variable is used. It is not relevant when EDGE is used to specify a face position. In the
variable case, the variable is assumed to produce a value compatible with the units setting you specify.

A box value selects standard distance units as defined by the units command, e.g. Angstroms for units = real
or metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacings.

Here are examples of variable definitions that move the wall position in a time-dependent fashion using
equal-style variables.

variable ramp equal ramp(0,10)
fix 1 all wall/reflect xlo v_ramp

variable linear equal vdisplace(0,20)
fix 1 all wall/reflect xlo v_linear

variable wiggle equal swiggle(0.0,5.0,3.0)
fix 1 all wall/reflect xlo v_wiggle

variable wiggle equal cwiggle(0.0,5.0,3.0)
fix 1 all wall/reflect xlo v_wiggle

The ramp(lo,hi) function adjusts the wall position linearly from lo to hi over the course of a run. The
vdisplace(c0,velocity) function does something similar using the equation position = c0 + velocity*delta,
where delta is the elapsed time.

The swiggle(c0,A,period) function causes the wall position to oscillate sinusoidally according to this equation,
where omega = 2 PI / period:

position = c0 + A sin(omega*delta)

The cwiggle(c0,A,period) function causes the wall position to oscillate sinusoidally according to this
equation, which will have an initial wall velocity of 0.0, and thus may impose a gentler perturbation on the
particles:

position = c0 + A (1 - cos(omega*delta))

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

Any dimension (xyz) that has a reflecting wall must be non-periodic.

A reflecting wall should not be used with rigid bodies such as those defined by a "fix rigid" command. This is
because the wall/reflect displaces atoms directly rather than exerts a force on them. For rigid bodies, use a soft

LIGGGHTS Users Manual

fix wall/reflect command 609

wall instead, such as fix wall/lj93. LAMMPS will flag the use of a rigid fix with fix wall/reflect with a
warning, but will not generate an error.

Related commands:

fix wall/lj93 command

Default: none

(Bond) Bond and Leimkuhler, SIAM J Sci Comput, 30, p 134 (2007).

LIGGGHTS Users Manual

fix wall/reflect command 610

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix wall/region command

Syntax:

fix ID group-ID wall/region region-ID style epsilon sigma cutoff

ID, group-ID are documented in fix command•
wall/region = style name of this fix command•
region-ID = region whose boundary will act as wall•
style = lj93 or lj126 or colloid or harmonic•
epsilon = strength factor for wall-particle interaction (energy or energy/distance^2 units)•
sigma = size factor for wall-particle interaction (distance units)•
cutoff = distance from wall at which wall-particle interaction is cut off (distance units)•

Examples:

fix wall all wall/region mySphere lj93 1.0 1.0 2.5

Description:

Treat the surface of the geometric region defined by the region-ID as a bounding wall which interacts with
nearby particles according to the specified style. The distance between a particle and the surface is the
distance to the nearest point on the surface and the force the wall exerts on the particle is along the direction
between that point and the particle, which is the direction normal to the surface at that point.

Regions are defined using the region command. Note that the region volume can be interior or exterior to the
bounding surface, which will determine in which direction the surface interacts with particles, i.e. the
direction of the surface normal. Regions can either be primitive shapes (block, sphere, cylinder, etc) or
combinations of primitive shapes specified via the union or intersect region styles. These latter styles can be
used to construct particle containers with complex shapes. Regions can also change over time via the region
command keywords (move) and rotate. If such a region is used with this fix, then the of region surface will
move over time in the corresponding manner.

IMPORTANT NOTE: As discussed on the region command doc page, regions in LAMMPS do not get
wrapped across periodic boundaries. It is up to you to insure that periodic or non-periodic boundaries are
specified appropriately via the boundary command when using a region as a wall that bounds particle motion.
This also means that if you embed a region in your simulation box and want it to repulse particles from its
surface (using the "side out" option in the region command), that its repulsive force will not be felt across a
periodic boundary.

IMPORTANT NOTE: For primitive regions with sharp corners and/or edges (e.g. a block or cylinder),
wall/particle forces are computed accurately for both interior and exterior regions. For union and intersect
regions, additional sharp corners and edges may be present due to the intersection of the surfaces of 2 or more
primitive volumes. These corners and edges can be of two types: concave or convex. Concave points/edges
are like the corners of a cube as seen by particles in the interior of a cube. Wall/particle forces around these
features are computed correctly. Convex points/edges are like the corners of a cube as seen by particles
exterior to the cube, i.e. the points jut into the volume where particles are present. LAMMPS does NOT
compute the location of these convex points directly, and hence wall/particle forces in the cutoff volume
around these points suffer from inaccuracies. The basic problem is that the outward normal of the surface is
not continuous at these points. This can cause particles to feel no force (they don't "see" the wall) when in one
location, then move a distance epsilon, and suddenly feel a large force because they now "see" the wall. In the
worst-case scenario, this can blow particles out of the simulation box. Thus, as a general rule you should not

LIGGGHTS Users Manual

fix wall/region command 611

http://lammps.sandia.gov

use the fix wall/region command with union or interesect regions that have convex points or edges.

The energy of wall-particle interactions depends on the specified style.

For style lj93, the energy E is given by the 9/3 potential:

For style lj126, the energy E is given by the 12/6 potential:

For style colloid, the energy E is given by an integrated form of the pair_style colloid potential:

For style wall/harmonic, the energy E is given by a harmonic spring potential:

In all cases, r is the distance from the particle to the region surface, and Rc is the cutoff distance at which the
particle and surface no longer interact. The energy of the wall potential is shifted so that the wall-particle
interaction energy is 0.0 at the cutoff distance.

For the lj93 and lj126 styles, epsilon and sigma are the usual Lennard-Jones parameters, which determine the
strength and size of the particle as it interacts with the wall. Epsilon has energy units. Note that this epsilon
and sigma may be different than any epsilon or sigma values defined for a pair style that computes
particle-particle interactions.

The lj93 interaction is derived by integrating over a 3d half-lattice of Lennard-Jones 12/6 particles. The lj126
interaction is effectively a harder, more repulsive wall interaction.

For the colloid style, epsilon is effectively a Hamaker constant with energy units for the colloid-wall
interaction, R is the radius of the colloid particle, D is the distance from the surface of the colloid particle to

LIGGGHTS Users Manual

fix wall/region command 612

the wall (r-R), and sigma is the size of a constituent LJ particle inside the colloid particle. Note that the cutoff
distance Rc in this case is the distance from the colloid particle center to the wall.

The colloid interaction is derived by integrating over constituent LJ particles of size sigma within the colloid
particle and a 3d half-lattice of Lennard-Jones 12/6 particles of size sigma in the wall.

For the wall/harmonic style, epsilon is effectively the spring constant K, and has units (energy/distance^2).
The input parameter sigma is ignored. The minimum energy position of the harmonic spring is at the cutoff.
This is a repulsive-only spring since the interaction is truncated at the cutoff

IMPORTANT NOTE: For all of the styles, you must insure that r is always > 0 for all particles in the group,
or LAMMPS will generate an error. This means you cannot start your simulation with particles on the region
surface (r = 0) or with particles on the wrong side of the region surface (r < 0). For the wall/lj93 and
wall/lj126 styles, the energy of the wall/particle interaction (and hence the force on the particle) blows up as r
-> 0. The wall/colloid style is even more restrictive, since the energy blows up as D = r-R -> 0. This means the
finite-size particles of radius R must be a distance larger than R from the region surface. The harmonic style is
a softer potential and does not blow up as r -> 0, but you must use a large enough epsilon that particles always
reamin on the correct side of the region surface (r > 0).

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the energy of interaction between atoms and the
wall to the system's potential energy as part of thermodynamic output.

This fix computes a global scalar energy and a global 3-length vector of forces, which can be accessed by
various output commands. The scalar energy is the sum of energy interactions for all particles interacting with
the wall represented by the region surface. The 3 vector quantities are the x,y,z components of the total force
acting on the wall due to the particles. The scalar and vector values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

IMPORTANT NOTE: If you want the atom/wall interaction energy to be included in the total potential energy
of the system (the quantity being minimized), you MUST enable the fix_modify energy option for this fix.

Restrictions: none

Related commands:

fix wall/lj93, fix wall/lj126, fix wall/colloid, fix wall/gran

Default: none

LIGGGHTS Users Manual

fix wall/region command 613

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

fix wall/srd command

Syntax:

fix ID group-ID wall/srd face arg ... keyword value ...

ID, group-ID are documented in fix command•
wall/srd = style name of this fix command•
one or more face/arg pairs may be appended•
face = xlo or xhi or ylo or yhi or zlo or zhi

xlo,ylo,zlo arg = EDGE or constant or variable
 EDGE = current lo edge of simulation box
 constant = number like 0.0 or -30.0 (distance units)
 variable = equal-style variable like v_x or v_wiggle

xhi,yhi,zhi arg = EDGE or constant or variable
 EDGE = current hi edge of simulation box
 constant = number like 50.0 or 100.3 (distance units)
 variable = equal-style variable like v_x or v_wiggle

•

zero or more keyword/value pairs may be appended•
keyword = units

units value = lattice or box
lattice = the wall position is defined in lattice units
box = the wall position is defined in simulation box units

•

Examples:

fix xwalls all wall/srd xlo EDGE xhi EDGE
fix walls all wall/srd xlo 0.0 ylo 10.0 units box
fix top all wall/srd zhi v_pressdown

Description:

Bound the simulation with one or more walls which interact with stochastic reaction dynamics (SRD)
particles as slip (smooth) or no-slip (rough) flat surfaces. The wall interaction is actually invoked via the fix
srd command, only on the group of SRD particles it defines, so the group setting for the fix wall/srd command
is ignored.

A particle/wall collision occurs if an SRD particle moves outside the wall on a timestep. This alters the
position and velocity of the SRD particle and imparts a force to the wall.

The collision and Tsrd settings specified via the fix srd command affect the SRD/wall collisions. A slip
setting for the collision keyword means that the tangential component of the SRD particle momentum is
preserved. Thus only a normal force is imparted to the wall. The normal component of the new SRD velocity
is sampled from a Gaussian distribution at temperature Tsrd.

For a noslip setting of the collision keyword, both the normal and tangential components of the new SRD
velocity are sampled from a Gaussian distribution at temperature Tsrd. Additionally, a new tangential
direction for the SRD velocity is chosen randomly. This collision style imparts both a normal and tangential
force to the wall.

Up to 6 walls or faces can be specified in a single command: xlo, xhi, ylo, yhi, zlo, zhi. A lo face reflects
particles that move to a coordinate less than the wall position, back in the hi direction. A hi face reflects
particles that move to a coordinate higher than the wall position, back in the lo direction.

LIGGGHTS Users Manual

fix wall/srd command 614

http://lammps.sandia.gov

The position of each wall can be specified in one of 3 ways: as the EDGE of the simulation box, as a constant
value, or as a variable. If EDGE is used, then the corresponding boundary of the current simulation box is
used. If a numeric constant is specified then the wall is placed at that position in the appropriate dimension (x,
y, or z). In both the EDGE and constant cases, the wall will never move. If the wall position is a variable, it
should be specified as v_name, where name is an equal-style variable name. In this case the variable is
evaluated each timestep and the result becomes the current position of the reflecting wall. Equal-style
variables can specify formulas with various mathematical functions, and include thermo_style command
keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to specify a
time-dependent wall position.

IMPORTANT NOTE: Because the trajectory of the SRD particle is tracked as it collides with the wall, you
must insure that r = distance of the particle from the wall, is always > 0 for SRD particles, or LAMMPS will
generate an error. This means you cannot start your simulation with SRD particles at the wall position coord
(r = 0) or with particles on the wrong side of the wall (r < 0).

IMPORTANT NOTE: If you have 2 or more walls that come together at an edge or corner (e.g. walls in the x
and y dimensions), then be sure to set the overlap keyword to yes in the fix srd command, since the walls
effectively overlap when SRD particles collide with them. LAMMPS will issue a warning if you do not do
this.

IMPORTANT NOTE: The walls of this fix only interact with SRD particles, as defined by the fix srd
command. If you are simulating a mixture containing other kinds of particles, then you should typically use
another wall command to act on the other particles. Since SRD particles will be colliding both with the walls
and the other particles, it is important to insure that the other particle's finite extent does not overlap an SRD
wall. If you do not do this, you may generate errors when SRD particles end up "inside" another particle or a
wall at the beginning of a collision step.

The units keyword determines the meaning of the distance units used to define a wall position, but only when
a numeric constant is used. It is not relevant when EDGE or a variable is used to specify a face position.

A box value selects standard distance units as defined by the units command, e.g. Angstroms for units = real
or metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacings.

Here are examples of variable definitions that move the wall position in a time-dependent fashion using
equal-style variables.

variable ramp equal ramp(0,10)
fix 1 all wall/srd xlo v_ramp

variable linear equal vdisplace(0,20)
fix 1 all wall/srd xlo v_linear

variable wiggle equal swiggle(0.0,5.0,3.0)
fix 1 all wall/srd xlo v_wiggle

variable wiggle equal cwiggle(0.0,5.0,3.0)
fix 1 all wall/srd xlo v_wiggle

The ramp(lo,hi) function adjusts the wall position linearly from lo to hi over the course of a run. The
displace(c0,velocity) function does something similar using the equation position = c0 + velocity*delta, where
delta is the elapsed time.

The swiggle(c0,A,period) function causes the wall position to oscillate sinusoidally according to this equation,
where omega = 2 PI / period:

LIGGGHTS Users Manual

fix wall/srd command 615

position = c0 + A sin(omega*delta)

The cwiggle(c0,A,period) function causes the wall position to oscillate sinusoidally according to this
equation, which will have an initial wall velocity of 0.0, and thus may impose a gentler perturbation on the
particles:

position = c0 + A (1 - cos(omega*delta))

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global array of values which can be accessed by various output commands. The number
of rows in the array is equal to the number of walls defined by the fix. The number of columns is 3, for the
x,y,z components of force on each wall.

Note that an outward normal force on a wall will be a negative value for lo walls and a positive value for hi
walls. The array values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

Any dimension (xyz) that has an SRD wall must be non-periodic.

Related commands:

fix srd

Default: none

LIGGGHTS Users Manual

fix wall/srd command 616

CFDEMproject WWW Site - CFDEM Commands

githubAccess_public

Description:

This routine describes how to setup a github account and pull repositories of the CFDEMproject.

Procedure:

Basically the following steps have to be performed: git clone the desired repository•
update your repositories by git pull•

git clone the desired repository:

To clone the public LIGGGHTS repository, open a terminal and execute:

git clone git@github.com:CFDEMproject/LIGGGHTS-PUBLIC.git

Note: the git protocol will not work if your computer is behind a firewall which blocks the relevant TCP port,
you can use alternatively:

git clone https://github.com/CFDEMproject/LIGGGHTS-PUBLIC.git

To clone the public CFDEMcoupling repository, open a terminal and execute:

git clone git@github.com:CFDEMproject/CFDEMcoupling-PUBLIC.git

Note: the git protocol will not work if your computer is behind a firewall which blocks the relevant TCP port,
you can use alternatively:

git clone https://github.com/CFDEMproject/CFDEMcoupling-PUBLIC.git

Update your repositories by git pull:

To get the latest version, open a terminal, go to the location of your local installation and type:

git pull

LIGGGHTS Users Manual

githubAccess_public 617

http://www.cfdem.com

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

gran cohesion sjkr2

Syntax:

cohesion sjkr2

LIGGGHTS vs. LAMMPS Info:

This part of pair gran and fix wall/gran is not availabe in LAMMPS.

Description:

This model can be used as part of pair gran and fix wall/gran

The modified simplified JKR - Johnson-Kendall-Roberts (SJKR2) model adds an additional normal force
contribution. If two particle are in contact, it adds an additional normal force tending to maintain the contact,
which writes

F = k A,

where A is the particle contact area and k is the cohesion energy density in J/m3. For sjkr2, the sphere-sphere
contact area is calculated as

A = 2*Pi * delta_n * (2R*)

If you are using the SJKR2 model, you must also define the cohesion energy density:

fix id all property/global cohesionEnergyDensity peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for the cohesion energy density (in Energy/Length3 units) between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)

IMPORTANT NOTE: The cohesion model has been derived for the Hertzian Style, it may note be appropriate
for the Hookean styles.

IMPORTANT NOTE: You have to use atom styles beginning from 1, e.g. 1,2,3,...

Restrictions:

The cohesion model has been derived for the Hertzian Style, it may note be appropriate for the Hookean
styles.

LIGGGHTS Users Manual

gran cohesion sjkr2 618

http://www.cfdem.com
http://lammps.sandia.gov

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

gran cohesion sjkr

Syntax:

cohesion sjkr

LIGGGHTS vs. LAMMPS Info:

This part of pair gran and fix wall/gran is not availabe in LAMMPS.

Description:

This model can be used as part of pair gran and fix wall/gran

The simplified JKR - Johnson-Kendall-Roberts (SJKR) model adds an additional normal force contribution. If
two particle are in contact, it adds an additional normal force tending to maintain the contact, which writes

F = k A,

where A is the particle contact area and k is the cohesion energy density in J/m3. For sjkr, the sphere-sphere
contact area is calculated as (http://mathworld.wolfram.com/Sphere-SphereIntersection.html)

A = Pi/4 * ((dist-Ri-Rj)*(dist+Ri-Rj)*(dist-Ri+Rj)*(dist+Ri+Rj))/(dist*dist)

where dist is the distance between the particle centers.

If you are using the SJKR model, you must also define the cohesion energy density:

fix id all property/global cohesionEnergyDensity peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for the cohesion energy density (in Energy/Length3 units) between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)

IMPORTANT NOTE: You have to use atom styles beginning from 1, e.g. 1,2,3,...

Restrictions:

The cohesion model has been derived for the Hertzian Style, it may note be appropriate for the Hookean
styles.

LIGGGHTS Users Manual

gran cohesion sjkr 619

http://www.cfdem.com
http://lammps.sandia.gov

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

gran model hertz

Syntax:

model hertz keyword values

zero or more keyword/value pairs may be appended

tangential_damping values = 'on' or 'off'
 on = activates tangential damping
 off = no tangential damping

LIGGGHTS vs. LAMMPS Info:

This part of pair gran and fix wall/gran is not availabe in LAMMPS.

Description:

This granular model uses the following formula for the frictional force between two granular particles,
when the distance r between two particles of radii Ri and Rj is less than their contact distance d = Ri + Rj.
There is no force between the particles when r > d:

In the first term is the normal force between the two particles and the second term is the tangential force.
The normal force has 2 terms, a spring force and a damping force. The tangential force also has 2 terms: a
shear force and a damping force. The shear force is a "history" effect that accounts for the tangential
displacement ("tangential overlap") between the particles for the duration of the time they are in contact.
This term is controlled by the tangential model in action Keyword tangential_damping can be used to
eliminate the second part of the force in tangential direction. The way how the Coulomb friction limit acts
is also controlled by the tangential model chosen by the user.

The quantities in the equations are as follows:

delta_n = d - r = overlap distance of 2 particles•
k_n = elastic constant for normal contact•
k_t = elastic constant for tangential contact•
gamma_n = viscoelastic damping constant for normal contact•

•

LIGGGHTS Users Manual

gran model hertz 620

http://www.cfdem.com
http://lammps.sandia.gov

gamma_t = viscoelastic damping constant for tangential contact•
delta_t = tangential displacement vector between 2 spherical particles which is truncated to satisfy
a frictional yield criterion

•

rmu = coefficient of rolling friction•
contactradius = contact radius, equal to particle radius - 0.5 * delta_n•
v_n = normal component of the relative velocity of the 2 particles•
v_t = tangential component of the relative velocity of the 2 particles•
w_r = relative rotational velocity of the 2 particles•

The Kn, Kt, gamma_n, and gamma_t coefficients are calculated as follows from the material properties:

To define those material properties, it is mandatory to use multiple fix property/global commands:

fix id all property/global youngsModulus peratomtype value_1 value_2 ...
 (value_i=value for Youngs Modulus of atom type i)
fix id all property/global poissonsRatio peratomtype value_1 value_2 ...

LIGGGHTS Users Manual

gran model hertz 621

 (value_i=value for Poisson ratio of atom type i)
fix id all property/global coefficientRestitution peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for the coefficient of restitution between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)
fix id all property/global coefficientFriction peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for the (static) coefficient of friction between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)

IMPORTANT NOTE: You have to use atom styles beginning from 1, e.g. 1,2,3,...

Restrictions:

If using SI units, youngsModulus must be > 5e6 If using CGS units, youngsModulus must be > 5e5

Default:

tangential_damping = 'on'

(Di Renzo) Alberto Di Renzo, Francesco Paolo Di Maio, CES, 59 (3), p 525âΦ�541 (2004).

(Ai) Jun Ai, Jian-Fei Chen, J. Michael Rotter, Jin Y. Ooi, Powder Technology, 206 (3), p 269-282 (2011).

(Brilliantov) Brilliantov, Spahn, Hertzsch, Poschel, Phys Rev E, 53, p 5382-5392 (1996).

(Silbert) Silbert, Ertas, Grest, Halsey, Levine, Plimpton, Phys Rev E, 64, p 051302 (2001).

(Zhang) Zhang and Makse, Phys Rev E, 72, p 011301 (2005).

LIGGGHTS Users Manual

gran model hertz 622

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

gran model hertz/stiffness

Syntax:

model hertz keyword values

zero or more keyword/value pairs may be appended

tangential_damping values = 'on' or 'off'
 on = activates tangential damping
 off = no tangential damping

LIGGGHTS vs. LAMMPS Info:

This part of pair gran and fix wall/gran is not availabe in LAMMPS.

Description:

This granular model uses the following formula for the frictional force between two granular particles,
when the distance r between two particles of radii Ri and Rj is less than their contact distance d = Ri + Rj.
There is no force between the particles when r > d:

In the first term is the normal force between the two particles and the second term is the tangential force.
The normal force has 2 terms, a spring force and a damping force. The tangential force also has 2 terms: a
shear force and a damping force. The shear force is a "history" effect that accounts for the tangential
displacement ("tangential overlap") between the particles for the duration of the time they are in contact.
This term is controlled by the tangential model in action Keyword tangential_damping can be used to
eliminate the second part of the force in tangential direction. The way how the Coulomb friction limit acts
is also controlled by the tangential model chosen by the user.

The quantities in the equations are as follows:

delta_n = d - r = overlap distance of 2 particles•
k_n = elastic constant for normal contact•
k_t = elastic constant for tangential contact•
gamma_n = viscoelastic damping constant for normal contact•

•

LIGGGHTS Users Manual

gran model hertz/stiffness 623

http://www.cfdem.com
http://lammps.sandia.gov

gamma_t = viscoelastic damping constant for tangential contact•
delta_t = tangential displacement vector between 2 spherical particles which is truncated to satisfy
a frictional yield criterion

•

rmu = coefficient of rolling friction•
contactradius = contact radius, equal to particle radius - 0.5 * delta_n•
v_n = normal component of the relative velocity of the 2 particles•
v_t = tangential component of the relative velocity of the 2 particles•
w_r = relative rotational velocity of the 2 particles•

To define those k_n_specified, k_t_specified, gamma_n_specified, and gamma_t_specified coefficients
(material properties), it is mandatory to use multiple fix property/global commands:

fix id all property/global kn peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for k_n between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)
fix id all property/global kt peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for k_t between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)
fix id all property/global gamman peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for gamma_n between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)
fix id all property/global gammat peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for gamma_t between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)

IMPORTANT NOTE: You have to use atom styles beginning from 1, e.g. 1,2,3,...

The coefficient of friction cof is the upper limit of the tangential force through the Coulomb criterion Ft =
cof*Fn, where Ft and Fn are the total tangential and normal force components in the formulas above. Thus
in the Hookean case, the tangential force between 2 particles grows according to a tangential spring and
dash-pot model until Ft/Fn = cof and is then held at Ft = Fn*cof until the particles lose contact. In the
Hertzian case, a similar analogy holds, though the spring is no longer linear.

Restrictions:

If using SI units, youngsModulus must be > 5e6 If using CGS units, youngsModulus must be > 5e5

Default:

tangential_damping = 'on'

(Di Renzo) Alberto Di Renzo, Francesco Paolo Di Maio, CES, 59 (3), p 525âΦ�541 (2004).

(Ai) Jun Ai, Jian-Fei Chen, J. Michael Rotter, Jin Y. Ooi, Powder Technology, 206 (3), p 269-282 (2011).

(Brilliantov) Brilliantov, Spahn, Hertzsch, Poschel, Phys Rev E, 53, p 5382-5392 (1996).

(Silbert) Silbert, Ertas, Grest, Halsey, Levine, Plimpton, Phys Rev E, 64, p 051302 (2001).

(Zhang) Zhang and Makse, Phys Rev E, 72, p 011301 (2005).

LIGGGHTS Users Manual

gran model hertz/stiffness 624

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

gran model hooke

Syntax:

model hertz keyword values

zero or more keyword/value pairs may be appended

tangential_damping values = 'on' or 'off'
 on = activates tangential damping
 off = no tangential damping

viscous = 'stokes' or 'off'
 viscous = restitution coefficient varies with a local Stokes number of the particle
 off = no modification to the restitution coefficient

LIGGGHTS vs. LAMMPS Info:

This part of pair gran and fix wall/gran is not availabe in LAMMPS.

Description:

This granular model uses the following formula for the frictional force between two granular particles,
when the distance r between two particles of radii Ri and Rj is less than their contact distance d = Ri + Rj.
There is no force between the particles when r > d:

In the first term is the normal force between the two particles and the second term is the tangential force.
The normal force has 2 terms, a spring force and a damping force. The tangential force also has 2 terms: a
shear force and a damping force. The shear force is a "history" effect that accounts for the tangential
displacement ("tangential overlap") between the particles for the duration of the time they are in contact.
This term is controlled by the tangential model in action

Keyword tangential_damping can be used to eliminate the second part of the force in tangential direction.

The quantities in the equations are as follows:

delta_n = d - r = overlap distance of 2 particles•

•

LIGGGHTS Users Manual

gran model hooke 625

http://www.cfdem.com
http://lammps.sandia.gov

k_n = elastic constant for normal contact•
k_t = elastic constant for tangential contact•
gamma_n = viscoelastic damping constant for normal contact•
gamma_t = viscoelastic damping constant for tangential contact•
delta_t = tangential displacement vector between 2 spherical particles which is truncated to satisfy
a frictional yield criterion

•

rmu = coefficient of rolling friction•
contactradius = contact radius, equal to particle radius - 0.5 * delta_n•
v_n = normal component of the relative velocity of the 2 particles•
v_t = tangential component of the relative velocity of the 2 particles•
w_r = relative rotational velocity of the 2 particles•

The Kn, Kt, gamma_n, and gamma_t coefficients are calculated as follows from the material properties:

LIGGGHTS Users Manual

gran model hooke 626

To define those material properties, it is mandatory to use multiple fix property/global commands:

fix id all property/global youngsModulus peratomtype value_1 value_2 ...
 (value_i=value for Youngs Modulus of atom type i)
fix id all property/global poissonsRatio peratomtype value_1 value_2 ...
 (value_i=value for Poisson ratio of atom type i)
fix id all property/global coefficientRestitution peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for the coefficient of restitution between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)
fix id all property/global coefficientFriction peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for the (static) coefficient of friction between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)

IMPORTANT NOTE: You have to use atom styles beginning from 1, e.g. 1,2,3,...

The "characteristic impact velocity" is additionally used for hooke:

fix id all property/global characteristicVelocity scalar value
 (value=value for characteristic impact velocity)

IMPORTANT NOTE: You have to use atom styles beginning from 1, e.g. 1,2,3,...

Viscous model:

Using option viscous = stokes adapts the coefficient of restitution as proposed by (Legendre), viscous = off
performs no modification.

One has to provide the 3 peratomtypepair parameters via a fix property/global command needed for the
viscous damping:

fix id all property/global FluidViscosity peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for fluid viscosity between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)
fix id all property/global CriticalStokes peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for critical Stokes number between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)
fix id all property/global MaximumRestitution peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for maximum coefficient of restitution between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)

IMPORTANT NOTE: You have to use atom styles beginning from 1, e.g. 1,2,3,...

The coefficient of friction cof is the upper limit of the tangential force through the Coulomb criterion Ft =
cof*Fn, where Ft and Fn are the total tangential and normal force components in the formulas above. Thus
in the Hookean case, the tangential force between 2 particles grows according to a tangential spring and
dash-pot model until Ft/Fn = cof and is then held at Ft = Fn*cof until the particles lose contact. In the
Hertzian case, a similar analogy holds, though the spring is no longer linear.

Restrictions:

If using SI units, youngsModulus must be > 5e6 If using CGS units, youngsModulus must be > 5e5 When
using viscous, FluidViscosity has to be > 0

Default:

viscous = 'off' tangential_damping = 'on'

(Legendre) Legendre, Daniel and Guiraud. Phys. Fluids 17, 097105 (2005).

(Di Renzo) Alberto Di Renzo, Francesco Paolo Di Maio, CES, 59 (3), p 525âΦ�541 (2004).

LIGGGHTS Users Manual

gran model hooke 627

(Ai) Jun Ai, Jian-Fei Chen, J. Michael Rotter, Jin Y. Ooi, Powder Technology, 206 (3), p 269-282 (2011).

(Brilliantov) Brilliantov, Spahn, Hertzsch, Poschel, Phys Rev E, 53, p 5382-5392 (1996).

(Silbert) Silbert, Ertas, Grest, Halsey, Levine, Plimpton, Phys Rev E, 64, p 051302 (2001).

(Zhang) Zhang and Makse, Phys Rev E, 72, p 011301 (2005).

LIGGGHTS Users Manual

gran model hooke 628

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

gran model hooke/stiffness

Syntax:

model hertz keyword values

zero or more keyword/value pairs may be appended

absolute_damping values = 'on' or 'off'
 on = activates tangential damping
 off = no tangential damping

tangential_damping values = 'on' or 'off'
 on = activates tangential damping
 off = no tangential damping

LIGGGHTS vs. LAMMPS Info:

This part of pair gran and fix wall/gran is not availabe in LAMMPS.

Description:

This granular model uses the following formula for the frictional force between two granular particles,
when the distance r between two particles of radii Ri and Rj is less than their contact distance d = Ri + Rj.
There is no force between the particles when r > d.

For the case of absolute_damping = 'off' (which is default), the specified damping coefficient is multiplied
by the effective mass. The forces are implemented as

For the case of absolute_damping = 'on', this multiplication is omitted and the forces become

•

LIGGGHTS Users Manual

gran model hooke/stiffness 629

http://www.cfdem.com
http://lammps.sandia.gov

In the first term is the normal force between the two particles and the second term is the tangential force.
The normal force has 2 terms, a spring force and a damping force. The tangential force also has 2 terms: a
shear force and a damping force. The shear force is a "history" effect that accounts for the tangential
displacement ("tangential overlap") between the particles for the duration of the time they are in contact.
This term is controlled by the tangential model in action Keyword tangential_damping can be used to
eliminate the second part of the force in tangential direction. The way how the Coulomb friction limit acts
is also controlled by the tangential model chosen by the user.

The quantities in the equations are as follows:

delta_n = d - r = overlap distance of 2 particles•
k_n = elastic constant for normal contact•
k_t = elastic constant for tangential contact•
gamma_n = viscoelastic damping constant for normal contact•
gamma_t = viscoelastic damping constant for tangential contact•
delta_t = tangential displacement vector between 2 spherical particles which is truncated to satisfy
a frictional yield criterion

•

rmu = coefficient of rolling friction•
contactradius = contact radius, equal to particle radius - 0.5 * delta_n•
v_n = normal component of the relative velocity of the 2 particles•
v_t = tangential component of the relative velocity of the 2 particles•
w_r = relative rotational velocity of the 2 particles•

To define those k_n_specified, k_t_specified, gamma_n_specified, and gamma_t_specified coefficients
(material properties), it is mandatory to use multiple fix property/global commands:

fix id all property/global kn peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for k_n between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)
fix id all property/global kt peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for k_t between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)
fix id all property/global gamman peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for gamma_n between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)
fix id all property/global gammat peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for gamma_t between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)

If the absolute damping implementation is used (absolute_damping = 'on'), the damping coefficients must
be named gamman_abs and gammat_abs instead of gamman, gammat as follows:

fix id all property/global gamman_abs peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .

LIGGGHTS Users Manual

gran model hooke/stiffness 630

 (value_ij=value for gamma_n between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)
fix id all property/global gammat_abs peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for gamma_t between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)

IMPORTANT NOTE: You have to use atom styles beginning from 1, e.g. 1,2,3,...

The coefficient of friction cof is the upper limit of the tangential force through the Coulomb criterion Ft =
cof*Fn, where Ft and Fn are the total tangential and normal force components in the formulas above. Thus
in the Hookean case, the tangential force between 2 particles grows according to a tangential spring and
dash-pot model until Ft/Fn = cof and is then held at Ft = Fn*cof until the particles lose contact. In the
Hertzian case, a similar analogy holds, though the spring is no longer linear.

Restrictions:

If using SI units, youngsModulus must be > 5e6 If using CGS units, youngsModulus must be > 5e5

Default:

tangential_damping = 'on'

(Di Renzo) Alberto Di Renzo, Francesco Paolo Di Maio, CES, 59 (3), p 525âΦ�541 (2004).

(Ai) Jun Ai, Jian-Fei Chen, J. Michael Rotter, Jin Y. Ooi, Powder Technology, 206 (3), p 269-282 (2011).

(Brilliantov) Brilliantov, Spahn, Hertzsch, Poschel, Phys Rev E, 53, p 5382-5392 (1996).

(Silbert) Silbert, Ertas, Grest, Halsey, Levine, Plimpton, Phys Rev E, 64, p 051302 (2001).

(Zhang) Zhang and Makse, Phys Rev E, 72, p 011301 (2005).

LIGGGHTS Users Manual

gran model hooke/stiffness 631

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

gran rolling_friction cdt

Syntax:

rolling_friction cdt

LIGGGHTS vs. LAMMPS Info:

This part of pair gran and fix wall/gran is not availabe in LAMMPS.

Description:

This model can be used as part of pair gran and fix wall/gran

The constant directional torque (CDT) model adds an additional torque contribution, equal to

torque_rf = rmu*k_n*delta_n*w_r_shear/mag(w_r_shear)*(R*).

w_r_shear is the projection of w_r into the shear plane, where w_r = w1-w2

If the rolling friction model is activated, the coefficient of rolling friction (rmu) must be defined as

fix id all property/global coefficientRollingFriction peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for the coefficient of rolling friction between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)

IMPORTANT NOTE: You have to use atom styles beginning from 1, e.g. 1,2,3,...

(Ai) Jun Ai, Jian-Fei Chen, J. Michael Rotter, Jin Y. Ooi, Powder Technology, 206 (3), p 269-282 (2011).

LIGGGHTS Users Manual

gran rolling_friction cdt 632

http://www.cfdem.com
http://lammps.sandia.gov

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

gran rolling_friction epsd

Syntax:

rolling_friction epsd

LIGGGHTS vs. LAMMPS Info:

This part of pair gran and fix wall/gran is not availabe in LAMMPS.

Description:

This model can be used as part of pair gran and fix wall/gran

The alternative elastic-plastic spring-dashpot (EPSD2) model (see Iwashita and Oda) adds an additional
torque contribution. It is similar to the EPSD model, but in contrast to the original model the rolling stiffness
k_r is defined as

where k_t is the abovementioned tangential stiffness. Furthermore, the viscous damping torque M_rd is
disabled at all.

The coefficient of rolling friction (rmu) must be defined as

fix id all property/global coefficientRollingFriction peratomtypepair n_atomtypes value_11 value_12 ..
value_21 value_22 .. . (value_ij=value for the coefficient of rolling friction between atom type i and j;
n_atomtypes is the number of atom types you want to use in your simulation)

This coefficient rmu is equal to the rmu as defined in the CDT model.

IMPORTANT NOTE: You have to use atom styles beginning from 1, e.g. 1,2,3,...

(Ai) Jun Ai, Jian-Fei Chen, J. Michael Rotter, Jin Y. Ooi, Powder Technology, 206 (3), p 269-282 (2011).

LIGGGHTS Users Manual

gran rolling_friction epsd 633

http://www.cfdem.com
http://lammps.sandia.gov

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

gran rolling_friction epsd

Syntax:

rolling_friction epsd

LIGGGHTS vs. LAMMPS Info:

This part of pair gran and fix wall/gran is not availabe in LAMMPS.

Description:

This model can be used as part of pair gran and fix wall/gran

The elastic-plastic spring-dashpot (EPSD) model (see Ai et al.) adds an additional torque contribution, equal
to

where the torque due to the spring M_rk is calculated as

Here k_r denotes the rolling stiffness and dtheta_r is the incremental relative rotation between the particles.
The spring torque is limited by the full mobilisation torque M_rm that is determined by the normal force F_n
and the coefficient of rolling friction (rmu) (compare the CDT model).

The viscous damping torque M_rd is implemented as

where in the current implementation the damping is disabled in case of full mobilisation (f = 0). The damping
coefficient C_r may be expressed as:

LIGGGHTS Users Manual

gran rolling_friction epsd 634

http://www.cfdem.com
http://lammps.sandia.gov

Here I_i/j is the moment of inertia and m_i/j is the mass of the particles i and j, respectively.

The coefficient of rolling friction (rmu) must be defined as

fix id all property/global coefficientRollingFriction peratomtypepair n_atomtypes value_11 value_12 ..
value_21 value_22 .. . (value_ij=value for the coefficient of rolling friction between atom type i and j;
n_atomtypes is the number of atom types you want to use in your simulation)

This coefficient rmu is equal to the rmu as defined in the CDT model. In addition to rmu, eta_r is the required
material property that must be defined as

fix id all property/global coefficientRollingViscousDamping peratomtypepair n_atomtypes value_11 value_12 .. value_21 value_22 .. .
 (value_ij=value for the coefficient of rolling friction between atom type i and j; n_atomtypes is the number of atom types you want to use in your simulation)

IMPORTANT NOTE: You have to use atom styles beginning from 1, e.g. 1,2,3,...

(Ai) Jun Ai, Jian-Fei Chen, J. Michael Rotter, Jin Y. Ooi, Powder Technology, 206 (3), p 269-282 (2011).

LIGGGHTS Users Manual

gran rolling_friction epsd 635

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

gran tangential history

Syntax:

tangential history

LIGGGHTS vs. LAMMPS Info:

This part of pair gran and fix wall/gran is not availabe in LAMMPS.

Description:

This granular model is based on the general description of granular force interaction as described in pair gran.

The spring part of the tangential force (k_t) is a "history" effect that accounts for the tangential displacement
("tangential overlap") between the particles for the duration of the time they are in contact.

If this model is chose, then this "tangential overlap" spring force is actually calculated / taken into account.

The coefficient of friction cof is the upper limit of the tangential force through the Coulomb criterion Ft =
cof*Fn, where Ft and Fn are the tangential spring and normal force components in the formulas above.

LIGGGHTS Users Manual

gran tangential history 636

http://www.cfdem.com
http://lammps.sandia.gov

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

gran tangential no_history

Syntax:

tangential no_history

LIGGGHTS vs. LAMMPS Info:

This part of pair gran and fix wall/gran is not availabe in LAMMPS.

Description:

This granular model is based on the general description of granular force interaction as described in pair gran.

If this model is chose, then this "tangential overlap" spring force is NOT calculated / taken into account, i.e.
k_t = 0.

The coefficient of friction cof is the upper limit of the tangential force through the Coulomb criterion Ft =
cof*Fn, where Ft and Fn are the tangential spring and normal force components in the formulas above.

LIGGGHTS Users Manual

gran tangential no_history 637

http://www.cfdem.com
http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

group2ndx command

Syntax:

group2ndx file group-ID ...

file = name of index file to write out•
zero or more group IDs may be appended•

Examples:

group2ndx allindex.ndx
group2ndx someindex.ndx upper lower mobile

Description:

Write a Gromacs style index file in text format that associates atom IDs with the corresponding group
definitions. This index file can be used with in combination with Gromacs analysis tools or to import group
definitions into the fix colvars input file.

Without specifying any group IDs, all groups will be written to the index file. When specifying group IDs,
only those groups will be written to the index file. In order to follow the Gromacs conventions, the group all
will be renamed to System in the index file.

Restrictions:

This command requires that atoms have atom IDs, since this is the information that is written to the index file.

This fix is part of the USER-COLVARS package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

group, dump, fix colvars

Default: none

LIGGGHTS Users Manual

group2ndx command 638

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

group command

Syntax:

group ID style args

ID = user-defined name of the group•
style = delete or region or type or id or molecule or variable or subtract or union or intersect

delete = no args
region args = region-ID
type or id or molecule

 args = list of one or more atom types, atom IDs, or molecule IDs
 any entry in list can be a sequence formatted as A:B or A:B:C where
 A = starting index, B = ending index,
 C = increment between indices, 1 if not specified
 args = logical value
 logical = "" or ">=" or "==" or "!="
 value = an atom type or atom ID or molecule ID (depending on style)
 args = logical value1 value2
 logical = ""
 value1,value2 = atom types or atom IDs or molecule IDs (depending on style)

variable args = variable-ID
subtract args = two or more group IDs
union args = one or more group IDs
intersect args = two or more group IDs

•

Examples:

group edge region regstrip
group water type 3 4
group sub id 10 25 50
group sub id 10 25 50 500:1000
group sub id 100:10000:10
group sub id <= 150
group polyA molecule 50 250
group hienergy variable eng
group boundary subtract all a2 a3
group boundary union lower upper
group boundary intersect upper flow
group boundary delete

Description:

Identify a collection of atoms as belonging to a group. The group ID can then be used in other commands such
as fix, compute, dump, or velocity to act on those atoms together.

If the group ID already exists, the group command adds the specified atoms to the group.

The delete style removes the named group and un-assigns all atoms that were assigned to that group. Since
there is a restriction (see below) that no more than 32 groups can be defined at any time, the delete style
allows you to remove groups that are no longer needed, so that more can be specified. You cannot delete a
group if it has been used to define a current fix or compute or dump.

The region style puts all atoms in the region volume into the group. Note that this is a static one-time
assignment. The atoms remain assigned (or not assigned) to the group even in they later move out of the
region volume.

LIGGGHTS Users Manual

group command 639

http://lammps.sandia.gov

The type, id, and molecule styles put all atoms with the specified atom types, atom IDs, or molecule IDs into
the group. These 3 styles can use arguments specified in one of two formats.

The first format is a list of values (types or IDs). For example, the 2nd command in the examples above puts
all atoms of type 3 or 4 into the group named water. Each entry in the list can be a colon-separated sequence
A:B or A:B:C, as in two of the examples above. A "sequence" generates a sequence of values (types or IDs),
with an optional increment. The first example with 500:1000 has the default increment of 1 and would add all
atom IDs from 500 to 1000 (inclusive) to the group sub, along with 10,25,50 since they also appear in the list
of values. The second example with 100:10000:10 uses an increment of 10 and would thus would add atoms
IDs 100,110,120, ... 9990,10000 to the group sub.

The second format is a logical followed by one or two values (type or ID). The 7 valid logicals are listed
above. All the logicals except take a single argument. The 3rd example above adds all atoms with IDs from 1
to 150 to the group named sub. The logical means "between" and takes 2 arguments. The 4th example above
adds all atoms belonging to molecules with IDs from 50 to 250 (inclusive) to the group named polyA.

The variable style evaluates a variable to determine which atoms to add to the group. It must be an atom-style
variable previously defined in the input script. If the variable evaluates to a non-zero value for a particular
atom, then that atom is added to the specified group.

Atom-style variables can specify formulas that include thermodynamic quantities, per-atom values such as
atom coordinates, or per-atom quantities calculated by computes, fixes, or other variables. They can also
include Boolean logic where 2 numeric values are compared to yield a 1 or 0 (effectively a true or false). Thus
using the variable style, is a general way to flag specific atoms to include or exclude from a group.

For example, these lines define a variable "eatom" that calculates the potential energy of each atom and
includes it in the group if its potential energy is above the threshhold value -3.0.

compute 1 all pe/atom
compute 2 all reduce sum c_1
thermo_style custom step temp pe c_2
run 0

variable eatom atom "c_1 > -3.0"
group hienergy variable eatom

Note that these lines

compute 2 all reduce sum c_1
thermo_style custom step temp pe c_2
run 0

are necessary to insure that the "eatom" variable is current when the group command invokes it. Because the
eatom variable computes the per-atom energy via the pe/atom compute, it will only be current if a run has
been performed which evaluated pairwise energies, and the pe/atom compute was actually invoked during the
run. Printing the thermodyanmic info for compute 2 insures that this is the case, since it sums the pe/atom
compute values (in the reduce compute) to output them to the screen. See the "Variable Accuracy" section of
the variable doc page for more details on insuring that variables are current when they are evaluated between
runs.

The subtract style takes a list of two or more existing group names as arguments. All atoms that belong to the
1st group, but not to any of the other groups are added to the specified group.

The union style takes a list of one or more existing group names as arguments. All atoms that belong to any of
the listed groups are added to the specified group.

LIGGGHTS Users Manual

group command 640

The intersect style takes a list of two or more existing group names as arguments. Atoms that belong to every
one of the listed groups are added to the specified group.

A group with the ID all is predefined. All atoms belong to this group. This group cannot be deleted.

Restrictions:

There can be no more than 32 groups defined at one time, including "all".

Related commands:

dump, fix, region, velocity

Default:

All atoms belong to the "all" group.

LIGGGHTS Users Manual

group command 641

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

if command

Syntax:

if boolean then t1 t2 ... elif boolean f1 f2 ... elif boolean f1 f2 ... else e1 e2 ...

boolean = a Boolean expression evaluated as TRUE or FALSE (see below)•
then = required word•
t1,t2,...,tN = one or more LAMMPS commands to execute if condition is met, each enclosed in quotes•
elif = optional word, can appear multiple times•
f1,f2,...,fN = one or more LAMMPS commands to execute if elif condition is met, each enclosed in
quotes (optional arguments)

•

else = optional argument•
e1,e2,...,eN = one or more LAMMPS commands to execute if no condition is met, each enclosed in
quotes (optional arguments)

•

Examples:

if "${steps} > 1000" then quit
if "$x <= $y" then "print X is smaller = $x" else "print Y is smaller = $y"
if "(${eng} > 0.0) || ($n <1000)" then &
 "timestep 0.005" &
elif $n ${eng_previous}" then "jump file1" else "jump file2"

Description:

This command provides an if-then-else capability within an input script. A Boolean expression is evaluted and
the result is TRUE or FALSE. Note that as in the examples above, the expression can contain variables, as
defined by the variable command, which will be evaluated as part of the expression. Thus a user-defined
formula that reflects the current state of the simulation can be used to issue one or more new commands.

If the result of the Boolean expression is TRUE, then one or more commands (t1, t2, ..., tN) are executed. If it
is FALSE, then Boolean expressions associated with successive elif keywords are evaluated until one is found
to be true, in which case its commands (f1, f2, ..., fN) are executed. If no Boolean expression is TRUE, then
the commands associated with the else keyword, namely (e1, e2, ..., eN), are executed. The elif and else
keywords and their associated commands are optional. If they aren't specified and the initial Boolean
expression is FALSE, then no commands are executed.

The syntax for Boolean expressions is described below.

Each command (t1, f1, e1, etc) can be any valid LAMMPS input script command, except an include
command, which is not allowed. If the command is more than one word, it must enclosed in quotes, so it will
be treated as a single argument, as in the examples above.

IMPORTANT NOTE: If a command itself requires a quoted argument (e.g. a print command), then double
and single quotes can be used and nested in the usual manner, as in the examples above and below. See
Section_commands 2 of the manual for more details on using quotes in arguments. Only one of level of
nesting is allowed, but that should be sufficient for most use cases.

Note that by using the line continuation character "&", the if command can be spread across many lines,
though it is still a single command:

if "$a <$b" then &
 "print 'Minimum value = $a'" &

LIGGGHTS Users Manual

if command 642

http://lammps.sandia.gov

 "run 1000" &
else &
 'print "Minimum value = $b"' &
 "minimize 0.001 0.001 1000 10000"

Note that if one of the commands to execute is quit (of an invalid LAMMPS command such as "blah"), as in
the first example above, then executing the command will cause LAMMPS to halt.

Note that by jumping to a label in the same input script, the if command can be used to break out of a loop.
See the variable delete command for info on how to delete the associated loop variable, so that it can be
re-used later in the input script.

Here is an example of a double loop which uses the if and jump commands to break out of the inner loop
when a condition is met, then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 run 10000
 if '$b > 2' then "print 'Jumping to another script'" "jump in.script break"
 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

The Boolean expressions for the if and elif keywords have a C-like syntax. Note that each expression is a
single argument within the if command. Thus if you want to include spaces in the expression for clarity, you
must enclose the entire expression in quotes.

An expression is built out of numbers:

0.2, 100, 1.0e20, -15.4, etc

and Boolean operators:

A == B, A != B, A <B, A <= B, A > B, A >= B, A && B, A || B, !A

Each A and B is a number or a variable reference like $a or ${abc}, or another Boolean expression.

If a variable is used it must produce a number when evaluated and substituted for in the expression, else an
error will be generated.

Expressions are evaluated left to right and have the usual C-style precedence: the unary logical NOT operator
"!" has the highest precedence, the 4 relational operators "", and ">=" are next; the two remaining relational
operators "==" and "!=" are next; then the logical AND operator "&&"; and finally the logical OR operator
"||" has the lowest precedence. Parenthesis can be used to group one or more portions of an expression and/or
enforce a different order of evaluation than what would occur with the default precedence.

The 6 relational operators return either a 1.0 or 0.0 depending on whether the relationship between x and y is
TRUE or FALSE. The logical AND operator will return 1.0 if both its arguments are non-zero, else it returns
0.0. The logical OR operator will return 1.0 if either of its arguments is non-zero, else it returns 0.0. The
logical NOT operator returns 1.0 if its argument is 0.0, else it returns 0.0.

LIGGGHTS Users Manual

if command 643

The overall Boolean expression produces a TRUE result if the result is non-zero. If the result is zero, the
expression result is FALSE.

Restrictions: none

Related commands:

variable, print

Default: none

LIGGGHTS Users Manual

if command 644

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

improper_style class2 command

improper_style class2/omp command

Syntax:

improper_style class2

Examples:

improper_style class2
improper_coeff 1 100.0 0
improper_coeff * aa 0.0 0.0 0.0 115.06 130.01 115.06

Description:

The class2 improper style uses the potential

where Ei is the improper term and Eaa is an angle-angle term. The 3 X terms in Ei are an average over 3
out-of-plane angles.

The 4 atoms in an improper quadruplet (listed in the data file read by the read_data command) are ordered
I,J,K,L. X_IJKL refers to the angle between the plane of I,J,K and the plane of J,K,L, and the bond JK lies in
both planes. Similarly for X_KJLI and X_LJIK. Note that atom J appears in the common bonds (JI, JK, JL) of
all 3 X terms. Thus J (the 2nd atom in the quadruplet) is the atom of symmetry in the 3 X angles.

The subscripts on the various theta's refer to different combinations of 3 atoms (I,J,K,L) used to form a
particular angle. E.g. Theta_IJL is the angle formed by atoms I,J,L with J in the middle. Theta1, theta2, theta3
are the equilibrium positions of those angles. Again, atom J (the 2nd atom in the quadruplet) is the atom of
symmetry in the theta angles, since it is always the center atom.

Since atom J is the atom of symmetry, normally the bonds J-I, J-K, J-L would exist for an improper to be
defined between the 4 atoms, but this is not required.

See (Sun) for a description of the COMPASS class2 force field.

Coefficients for the Ei and Eaa formulas must be defined for each improper type via the improper_coeff
command as in the example above, or in the data file or restart files read by the read_data or read_restart
commands.

LIGGGHTS Users Manual

improper_style class2 command 645

http://lammps.sandia.gov

These are the 2 coefficients for the Ei formula:

K (energy/radian^2)•
X0 (degrees)•

X0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2.

For the Eaa formula, each line in a improper_coeff command in the input script lists 7 coefficients, the first of
which is "aa" to indicate they are AngleAngle coefficients. In a data file, these coefficients should be listed
under a "AngleAngle Coeffs" heading and you must leave out the "aa", i.e. only list 6 coefficients after the
improper type.

aa•
M1 (energy/distance)•
M2 (energy/distance)•
M3 (energy/distance)•
theta1 (degrees)•
theta2 (degrees)•
theta3 (degrees)•

The theta values are specified in degrees, but LAMMPS converts them to radians internally; hence the units of
M are in energy/radian^2.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This improper style can only be used if LAMMPS was built with the CLASS2 package. See the Making
LAMMPS section for more info on packages.

Related commands:

improper_coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

LIGGGHTS Users Manual

improper_style class2/omp command 646

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

improper_coeff command

Syntax:

improper_coeff N args

N = improper type (see asterisk form below)•
args = coefficients for one or more improper types•

Examples:

improper_coeff 1 300.0 0.0
improper_coeff * 80.2 -1 2
improper_coeff *4 80.2 -1 2

Description:

Specify the improper force field coefficients for one or more improper types. The number and meaning of the
coefficients depends on the improper style. Improper coefficients can also be set in the data file read by the
read_data command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild-card asterisk can be used to set the coefficients for multiple improper types. This takes the form "*" or
"*n" or "n*" or "m*n". If N = the number of improper types, then an asterisk with no numeric values means
all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all
types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using an improper_coeff command can override a previous setting for the same improper type. For
example, these commands set the coeffs for all improper types, then overwrite the coeffs for just improper
type 2:

improper_coeff * 300.0 0.0
improper_coeff 2 50.0 0.0

A line in a data file that specifies improper coefficients uses the exact same format as the arguments of the
improper_coeff command in an input script, except that wild-card asterisks should not be used since
coefficients for all N types must be listed in the file. For example, under the "Improper Coeffs" section of a
data file, the line that corresponds to the 1st example above would be listed as

1 300.0 0.0

The improper_style class2 is an exception to this rule, in that an additional argument is used in the input script
to allow specification of the cross-term coefficients. See its doc page for details.

Here is an alphabetic list of improper styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated improper_coeff command.

Note that there are also additional improper styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the improper section of this page.

improper_style none - turn off improper interactions•
improper_style hybrid - define multiple styles of improper interactions•

LIGGGHTS Users Manual

improper_coeff command 647

http://lammps.sandia.gov

improper_style class2 - COMPASS (class 2) improper•
improper_style cvff - CVFF improper•
improper_style harmonic - harmonic improper•
improper_style umbrella - DREIDING improper•

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

An improper style must be defined before any improper coefficients are set, either in the input script or in a
data file.

Related commands:

improper_style

Default: none

LIGGGHTS Users Manual

improper_coeff command 648

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

improper_style cossq command

improper_style cossq/omp command

Syntax:

improper_style cossq

Examples:

improper_style cossq
improper_coeff 1 4.0 0.0

Description:

The cossq improper style uses the potential

where x is the improper angle, x0 is its equilibrium value, and K is a prefactor.

If the 4 atoms in an improper quadruplet (listed in the data file read by the read_data command) are ordered
I,J,K,L then X is the angle between the plane of I,J,K and the plane of J,K,L. Alternatively, you can think of
atoms J,K,L as being in a plane, and atom I above the plane, and X as a measure of how far out-of-plane I is
with respect to the other 3 atoms.

Note that defining 4 atoms to interact in this way, does not mean that bonds necessarily exist between I-J, J-K,
or K-L, as they would in a linear dihedral. Normally, the bonds I-J, I-K, I-L would exist for an improper to be
defined between the 4 atoms.

The following coefficients must be defined for each improper type via the improper_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy/radian^2)•
X0 (degrees)•

X0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

LIGGGHTS Users Manual

improper_style cossq command 649

http://lammps.sandia.gov

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This improper style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

improper_coeff

Default: none

LIGGGHTS Users Manual

improper_style cossq/omp command 650

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

improper_style cvff command

improper_style cvff/omp command

Syntax:

improper_style cvff

Examples:

improper_style cvff
improper_coeff 1 80.0 -1 4

Description:

The cvff improper style uses the potential

where phi is the improper dihedral angle.

If the 4 atoms in an improper quadruplet (listed in the data file read by the read_data command) are ordered
I,J,K,L then the improper dihedral angle is between the plane of I,J,K and the plane of J,K,L. Note that
because this is effectively a dihedral angle, the formula for this improper style is the same as for
dihedral_style harmonic.

Note that defining 4 atoms to interact in this way, does not mean that bonds necessarily exist between I-J, J-K,
or K-L, as they would in a linear dihedral. Normally, the bonds I-J, I-K, I-L would exist for an improper to be
defined between the 4 atoms.

The following coefficients must be defined for each improper type via the improper_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•
d (+1 or -1)•
n (0,1,2,3,4,6)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

LIGGGHTS Users Manual

improper_style cvff command 651

http://lammps.sandia.gov

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This improper style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

improper_coeff

Default: none

LIGGGHTS Users Manual

improper_style cvff/omp command 652

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

improper_style fourier command

improper_style fourier/omp command

Syntax:

improper_style fourier

Examples:

improper_style fourier
improper_coeff 1 100.0 180.0

Description:

The fourier improper style uses the following potential:

where K is the force constant and omega is the angle between the IL axis and the IJK plane:

If all parameter (see bellow) is not zero, the all the three possible angles will taken in account.

The following coefficients must be defined for each improper type via the improper_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•
C0 (real)•
C1 (real)•
C2 (real)•
all (integer >= 0)•

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

LIGGGHTS Users Manual

improper_style fourier command 653

http://lammps.sandia.gov

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

improper_coeff

Default: none

LIGGGHTS Users Manual

improper_style fourier/omp command 654

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

improper_style harmonic command

improper_style harmonic/omp command

Syntax:

improper_style harmonic

Examples:

improper_style harmonic
improper_coeff 1 100.0 0

Description:

The harmonic improper style uses the potential

where X is the improper angle, X0 is its equilibrium value, and K is a prefactor. Note that the usual 1/2 factor
is included in K.

If the 4 atoms in an improper quadruplet (listed in the data file read by the read_data command) are ordered
I,J,K,L then X is the angle between the plane of I,J,K and the plane of J,K,L. Alternatively, you can think of
atoms J,K,L as being in a plane, and atom I above the plane, and X as a measure of how far out-of-plane I is
with respect to the other 3 atoms.

Note that defining 4 atoms to interact in this way, does not mean that bonds necessarily exist between I-J, J-K,
or K-L, as they would in a linear dihedral. Normally, the bonds I-J, I-K, I-L would exist for an improper to be
defined between the 4 atoms.

The following coefficients must be defined for each improper type via the improper_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy/radian^2)•
X0 (degrees)•

X0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

LIGGGHTS Users Manual

improper_style harmonic command 655

http://lammps.sandia.gov

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This improper style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

improper_coeff

Default: none

LIGGGHTS Users Manual

improper_style harmonic/omp command 656

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

improper_style hybrid command

Syntax:

improper_style hybrid style1 style2 ...

style1,style2 = list of one or more improper styles•

Examples:

improper_style hybrid harmonic helix
improper_coeff 1 harmonic 120.0 30
improper_coeff 2 cvff 20.0 -1 2

Description:

The hybrid style enables the use of multiple improper styles in one simulation. An improper style is assigned
to each improper type. For example, impropers in a polymer flow (of improper type 1) could be computed
with a harmonic potential and impropers in the wall boundary (of improper type 2) could be computed with a
cvff potential. The assignment of improper type to style is made via the improper_coeff command or in the
data file.

In the improper_coeff command, the first coefficient sets the improper style and the remaining coefficients are
those appropriate to that style. In the example above, the 2 improper_coeff commands would set impropers of
improper type 1 to be computed with a harmonic potential with coefficients 120.0, 30 for K, X0. Improper
type 2 would be computed with a cvff potential with coefficients 20.0, -1, 2 for K, d, n.

If the improper class2 potential is one of the hybrid styles, it requires additional AngleAngle coefficients be
specified in the data file. These lines must also have an additional "class2" argument added after the improper
type. For improper types which are assigned to other hybrid styles, use the style name (e.g. "harmonic")
appropriate to that style. The AngleAngle coeffs for that improper type will then be ignored.

An improper style of none can be specified as the 2nd argument to the improper_coeff command, if you desire
to turn off certain improper types.

Restrictions:

This improper style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Unlike other improper styles, the hybrid improper style does not store improper coefficient info for individual
sub-styles in a binary restart files. Thus when retarting a simulation from a restart file, you need to re-specify
improper_coeff commands.

Related commands:

improper_coeff

Default: none

LIGGGHTS Users Manual

improper_style hybrid command 657

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

improper_style none command

Syntax:

improper_style none

Examples:

improper_style none

Description:

Using an improper style of none means improper forces are not computed, even if quadruplets of improper
atoms were listed in the data file read by the read_data command.

Restrictions: none

Related commands: none

Default: none

LIGGGHTS Users Manual

improper_style none command 658

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

improper_style ring command

improper_style ring/omp command

Syntax:

improper_style ring

Examples:

improper_style ring
improper_coeff 1 8000 70.5

Description:

The ring improper style uses the potential

where K is a prefactor, theta is the angle formed by the atoms specified by (i,j,k,l) indices and theta0 its
equilibrium value.

If the 4 atoms in an improper quadruplet (listed in the data file read by the read_data command) are ordered
i,j,k,l then theta_ijl is the angle between atoms i,j and l, theta_ijk is the angle between atoms i,j and k,
theta_kjl is the angle between atoms j,k, and l.

The "ring" improper style implements the improper potential introduced by Destree et al., in Equation (9) of
(Destree). This potential does not affect small amplitude vibrations but is used in an ad-hoc way to prevent the
onset of accidentially large amplitude fluctuations leading to the occurrence of a planar conformation of the
three bonds i-j, j-k and j-l, an intermediate conformation toward the chiral inversion of a methine carbon. In
the "Impropers" section of data file four atoms: i, j, k and l are specified with i,j and l lying on the backbone of
the chain and k specifying the chirality of j.

The following coefficients must be defined for each improper type via the improper_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy/radian^2)•
theta0 (degrees)•

theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian^2.

LIGGGHTS Users Manual

improper_style ring command 659

http://lammps.sandia.gov

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This improper style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

improper_coeff

(Destree) M. Destree, F. Laupretre, A. Lyulin, and J.-P. Ryckaert, J Chem Phys, 112, 9632 (2000).

LIGGGHTS Users Manual

improper_style ring/omp command 660

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

improper_style command

Syntax:

improper_style style

style = none or hybrid or class2 or cvff or harmonic•

Examples:

improper_style harmonic
improper_style cvff
improper_style hybrid cvff harmonic

Description:

Set the formula(s) LAMMPS uses to compute improper interactions between quadruplets of atoms, which
remain in force for the duration of the simulation. The list of improper quadruplets is read in by a read_data or
read_restart command from a data or restart file. Note that the ordering of the 4 atoms in an improper
quadruplet determines the the definition of the improper angle used in the formula for each style. See the doc
pages of individual styles for details.

Hybrid models where impropers are computed using different improper potentials can be setup using the
hybrid improper style.

The coefficients associated with an improper style can be specified in a data or restart file or via the
improper_coeff command.

All improper potentials store their coefficient data in binary restart files which means improper_style and
improper_coeff commands do not need to be re-specified in an input script that restarts a simulation. See the
read_restart command for details on how to do this. The one exception is that improper_style hybrid only
stores the list of sub-styles in the restart file; improper coefficients need to be re-specified.

IMPORTANT NOTE: When both an improper and pair style is defined, the special_bonds command often
needs to be used to turn off (or weight) the pairwise interaction that would otherwise exist between a group of
4 bonded atoms.

Here is an alphabetic list of improper styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated improper_coeff command.

Note that there are also additional improper styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the improper section of this page.

improper_style none - turn off improper interactions•
improper_style hybrid - define multiple styles of improper interactions•

improper_style class2 - COMPASS (class 2) improper•
improper_style cvff - CVFF improper•
improper_style harmonic - harmonic improper•
improper_style umbrella - DREIDING improper•

Restrictions:

LIGGGHTS Users Manual

improper_style command 661

http://lammps.sandia.gov

Improper styles can only be set for atom_style choices that allow impropers to be defined.

Most improper styles are part of the MOLECULAR package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info on packages. The doc pages for individual
improper potentials tell if it is part of a package.

Related commands:

improper_coeff

Default:

improper_style none

LIGGGHTS Users Manual

improper_style command 662

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

improper_style umbrella command

improper_style umbrella/omp command

Syntax:

improper_style umbrella

Examples:

improper_style umbrella
improper_coeff 1 100.0 180.0

Description:

The umbrella improper style uses the following potential, which is commonly referred to as a classic
inversion and used in the DREIDING force field:

where K is the force constant and omega is the angle between the IL axis and the IJK plane:

If omega0 = 0 the potential term has a minimum for the planar structure. Otherwise it has two minima at +/-
omega0, with a barrier in between.

See (Mayo) for a description of the DREIDING force field.

The following coefficients must be defined for each improper type via the improper_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

K (energy)•
omega0 (degrees)•

LIGGGHTS Users Manual

improper_style umbrella command 663

http://lammps.sandia.gov

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This improper style can only be used if LAMMPS was built with the MOLECULAR package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

improper_coeff

Default: none

(Mayo) Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909 (1990),

LIGGGHTS Users Manual

improper_style umbrella/omp command 664

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

include command

Syntax:

include file

file = filename of new input script to switch to•

Examples:

include newfile
include in.run2

Description:

This command opens a new input script file and begins reading LAMMPS commands from that file. When
the new file is finished, the original file is returned to. Include files can be nested as deeply as desired. If input
script A includes script B, and B includes A, then LAMMPS could run for a long time.

If the filename is a variable (see the variable command), different processor partitions can run different input
scripts.

Restrictions: none

Related commands:

variable, jump

Default: none

LIGGGHTS Users Manual

include command 665

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

jump command

Syntax:

jump file label

file = filename of new input script to switch to•
label = optional label within file to jump to•

Examples:

jump newfile
jump in.run2 runloop
jump SELF runloop

Description:

This command closes the current input script file, opens the file with the specified name, and begins reading
LAMMPS commands from that file. Unlike the include command, the original file is not returned to, although
by using multiple jump commands it is possible to chain from file to file or back to the original file.

If the word "SELF" is used for the filename, then the current input script is re-opened and read again.

IMPORTANT NOTE: The SELF option is not guaranteed to work when the current input script is being read
through stdin (standard input), e.g.

lmp_g++ <in.script

since the SELF option invokes the C-library rewind() call, which may not be supported for stdin on some
systems. This can be worked around by using the -in command-line argument or the -var command-line
argument to pass the script name as a variable to the input script In the latter case, the "fname" variable could
be used in place of SELF. E.g.

lmp_g++ -in in.script

lmp_g++ -var fname n.script <in.script

The 2nd argument to the jump command is optional. If specified, it is treated as a label and the new file is
scanned (without executing commands) until the label is found, and commands are executed from that point
forward. This can be used to loop over a portion of the input script, as in this example. These commands
perform 10 runs, each of 10000 steps, and create 10 dump files named file.1, file.2, etc. The next command is
used to exit the loop after 10 iterations. When the "a" variable has been incremented for the tenth time, it will
cause the next jump command to be skipped.

variable a loop 10
label loop
dump 1 all atom 100 file.$a
run 10000
undump 1
next a
jump in.lj loop

If the jump file argument is a variable, the jump command can be used to cause different processor partitions
to run different input scripts. In this example, LAMMPS is run on 40 processors, with 4 partitions of 10 procs
each. An in.file containing the example variable and jump command will cause each partition to run a

LIGGGHTS Users Manual

jump command 666

http://lammps.sandia.gov

different simulation.

mpirun -np 40 lmp_ibm -partition 4x10 -in in.file

variable f world script.1 script.2 script.3 script.4
jump $f

Here is an example of a double loop which uses the if and jump commands to break out of the inner loop
when a condition is met, then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 run 10000
 if $b > 2 then "jump in.script break"
 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

Restrictions:

If you jump to a file and it does not contain the specified label, LAMMPS will come to the end of the file and
exit.

Related commands:

variable, include, label, next

Default: none

LIGGGHTS Users Manual

jump command 667

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

kspace_modify command

Syntax:

kspace_modify keyword value ...

one or more keyword/value pairs may be listed•
keyword = mesh or order or order/disp or overlap or minorder or force or gewald or gewald/disp or
slab or (nozforce or compute or cutoff/adjust or diff or kmax/ewald

mesh value = x y z
 x,y,z = grid size in each dimension for long-range Coulombics

mesh/disp value = x y z
 x,y,z = grid size in each dimension for 1/r^6 dispersion

order value = N
 N = extent of Gaussian for PPPM or MSM mapping of charge to grid

order/disp value = N
 N = extent of Gaussian for PPPM mapping of dispersion term to grid

overlap = yes or no = whether the grid stencil for PPPM is allowed to overlap into more than the nearest-neighbor processor
minorder value = M

 M = min allowed extent of Gaussian when auto-adjusting to minimize grid communication
force value = accuracy (force units)
gewald value = rinv (1/distance units)

 rinv = G-ewald parameter for Coulombics
gewald/disp value = rinv (1/distance units)

 rinv = G-ewald parameter for dispersion
slab value = volfactor or nozforce

 volfactor = ratio of the total extended volume used in the
 2d approximation compared with the volume of the simulation domain

nozforce turns off kspace forces in the z direction
compute value = yes or no
cutoff/adjust value = yes or no
fftbench value = yes or no
diff value = ad or ik = 2 or 4 FFTs for PPPM in smoothed or non-smoothed mode
kmax/ewald value = kx ky kz

 kx,ky,kz = number of Ewald sum kspace vectors in each dimension

•

Examples:

kspace_modify mesh 24 24 30 order 6
kspace_modify slab 3.0

Description:

Set parameters used by the kspace solvers defined by the kspace_style command. Not all parameters are
relevant to all kspace styles.

The mesh keyword sets the grid size for kspace style pppm or msm. In the case of PPPM, this is the FFT mesh,
and each dimension must be factorizable into powers of 2, 3, and 5. In the case of MSM, this is the finest scale
real-space mesh, and each dimension must be factorizable into powers of 2. When this option is not set, the
PPPM or MSM solver chooses its own grid size, consistent with the user-specified accuracy and pairwise
cutoff. Values for x,y,z of 0,0,0 unset the option.

The mesh/disp keyword sets the grid size for kspace style pppm/disp. This is the FFT mesh for long-range
dispersion and ach dimension must be factorizable into powers of 2, 3, and 5. When this option is not set, the
PPPM solver chooses its own grid size, consistent with the user-specified accuracy and pairwise cutoff.
Values for x,y,z of 0,0,0 unset the option.

LIGGGHTS Users Manual

kspace_modify command 668

http://lammps.sandia.gov

The order keyword determines how many grid spacings an atom's charge extends when it is mapped to the
grid in kspace style pppm or msm. The default for this parameter is 5 for PPPM and 8 for MSM, which means
each charge spans 5 or 8 grid cells in each dimension, respectively. For the LAMMPS implementation of
MSM, the order can range from 4 to 10 and must be even. For PPPM, the minimum allowed setting is 2 and
the maximum allowed setting is 7. The larger the value of this parameter, the smaller that LAMMPS will set
the grid size, to achieve the requested accuracy. Conversely, the smaller the order value, the larger the grid
size will be. Note that there is an inherent trade-off involved: a small grid will lower the cost of FFTs or MSM
direct sum, but a larger order parameter will increase the cost of interpolating charge/fields to/from the grid.

The order/disp keyword determines how many grid spacings an atom's dispersion term extends when it is
mapped to the grid in kspace style pppm/disp. It has the same meaning as the order setting for Coulombics.

The overlap keyword can be used in conjunction with the minorder keyword with the PPPM styles to adjust
the amount of communication that occurs when values on the FFT grid are exchangeed between processors.
This communication is distinct from the communication inherent in the parallel FFTs themselves, and is
required because processors interpolate charge and field values using grid point values owned by neighboring
processors (i.e. ghost point communication). If the overlap keyword is set to yes then this communication is
allowed to extend beyond nearest-neighbor processors, e.g. when using lots of processors on a small problem.
If it is set to no then the communication will be limited to nearest-neighbor processors and the order setting
will be reduced if necessary, as explained by the minorder keyword discussion. The overlap keyword is
always set to yes in MSM.

The minorder keyword allows LAMMPS to reduce the order setting if necessary to keep the communication
of ghost grid point limited to exchanges between nearest-neighbor processors. See the discussion of the
overlap keyword for details. If the overlap keyword is set to yes, which is the default, this is never needed. If
it set to no and overlap occurs, then LAMMPS will reduce the order setting, one step at a time, until the ghost
grid overlap only extends to nearest neighbor processors. The minorder keyword limits how small the order
setting can become. The minimum allowed value for PPPM is 2, which is the default. If minorder is set to the
same value as order then no reduction is allowed, and LAMMPS will generate an error if the grid
communcation is non-nearest-neighbor and overlap is set to no. The minorder keyword is not currently
supported in MSM.

The PPPM order parameter may be reset by LAMMPS when it sets up the FFT grid if the implied grid stencil
extends beyond the grid cells owned by neighboring processors. Typically this will only occur when small
problems are run on large numbers of processors. A warning will be generated indicating the order parameter
is being reduced to allow LAMMPS to run the problem. Automatic adjustment of the order parameter is not
supported in MSM.

The force keyword overrides the relative accuracy parameter set by the kspace_style command with an
absolute accuracy. The accuracy determines the RMS error in per-atom forces calculated by the long-range
solver and is thus specified in force units. A negative value for the accuracy setting means to use the relative
accuracy parameter. The accuracy setting is used in conjunction with the pairwise cutoff to determine the
number of K-space vectors for style ewald, the FFT grid size for style pppm, or the real space grid size for
style msm.

The gewald keyword sets the value of the Ewald or PPPM G-ewald parameter for charge as rinv in reciprocal
distance units. Without this setting, LAMMPS chooses the parameter automatically as a function of cutoff,
precision, grid spacing, etc. This means it can vary from one simulation to the next which may not be
desirable for matching a KSpace solver to a pre-tabulated pairwise potential. This setting can also be useful if
Ewald or PPPM fails to choose a good grid spacing and G-ewald parameter automatically. If the value is set to
0.0, LAMMPS will choose the G-ewald parameter automatically. MSM does not use the gewald parameter.

The gewald/disp keyword sets the value of the Ewald or PPPM G-ewald parameter for dispersion as rinv in
reciprocal distance units. It has the same meaning as the gewald setting for Coulombics.

LIGGGHTS Users Manual

kspace_modify command 669

The slab keyword allows an Ewald or PPPM solver to be used for a systems that are periodic in x,y but
non-periodic in z - a boundary setting of "boundary p p f". This is done by treating the system as if it were
periodic in z, but inserting empty volume between atom slabs and removing dipole inter-slab interactions so
that slab-slab interactions are effectively turned off. The volfactor value sets the ratio of the extended
dimension in z divided by the actual dimension in z. The recommended value is 3.0. A larger value is
inefficient; a smaller value introduces unwanted slab-slab interactions. The use of fixed boundaries in z means
that the user must prevent particle migration beyond the initial z-bounds, typically by providing a wall-style
fix. The methodology behind the slab option is explained in the paper by (Yeh). The slab option is also
extended to non-neutral systems (Ballenegger). An alternative slab option can be invoked with the nozforce
keyword in lieu of the volfactor. This turns off all kspace forces in the z direction. The nozforce option is not
supported by MSM. For MSM, any combination of periodic, non-periodic, or shrink-wrapped boundaries can
be set using boundary (the slab approximation in not needed). The slab keyword is not currently supported by
Ewald or PPPM when using a triclinic simulation cell.

The compute keyword allows Kspace computations to be turned off, even though a kspace_style is defined.
This is not useful for running a real simulation, but can be useful for debugging purposes or for computing
only partial forces that do not include the Kspace contribution. You can also do this by simply not defining a
kspace_style, but a Kspace-compatible pair_style requires a kspace style to be defined. This keyword gives
you that option.

The cutoff/adjust keyword applies only to MSM. If this option is turned on, the Coulombic cutoff will be
automatically adjusted at the beginning of the run to give the desired estimated error. Other cutoffs such as LJ
will not be affected. If the grid is not set using the mesh command, this command will also attempt to use the
optimal grid that minimizes cost using an estimate given by (Hardy). Note that this cost estimate is not exact,
somewhat experimental, and still may not yield the optimal parameters.

The fftbench keyword applies only to PPPM. It is on by default. If this option is turned off, LAMMPS will not
take the time at the end of a run to give FFT benchmark timings, and will finish a few seconds faster than it
would if this option were on.

The diff keyword specifies the differentiation scheme used by the PPPM method to compute forces on
particles given electrostatic potentials on the PPPM mesh. The ik approach is the default for PPPM and is the
original formulation used in (Hockney). It performs differentiation in Kspace, and uses 3 FFTs to transfer
each component of the computed fields back to real space for total of 4 FFTs per timestep.

The analytic differentiation ad approach uses only 1 FFT to transfer information back to real space for a total
of 2 FFTs per timestep. It then performs analytic differentiation on the single quantity to generate the 3
components of the electric field at each grid point. This is sometimes referred to as "smoothed" PPPM. This
approach requires a somewhat larger PPPM mesh to achieve the same accuracy as the ik method. Currently,
only the ik method (default) can be used for a triclinic simulation cell with PPPM. The ad method is always
used for MSM.

IMPORTANT NOTE: Currently, not all PPPM styles support the ad option. Support for those PPPM variants
will be added later.

The kmax/ewald keyword sets the number of kspace vectors in each dimension for kspace style ewald. The
three values must be positive integers, or else (0,0,0), which unsets the option. When this option is not set, the
Ewald sum scheme chooses its own kspace vectors, consistent with the user-specified accuracy and pairwise
cutoff. In any case, if kspace style ewald is invoked, the values used are printed to the screen and the log file
at the start of the run.

Restrictions: none

Related commands:

LIGGGHTS Users Manual

kspace_modify command 670

kspace_style, boundary

Default:

The option defaults are mesh = mesh/disp = 0 0 0, order = order/disp = 5 (PPPM), order = 10 (MSM),
minorder = 2, overlap = yes, force = -1.0, gewald = gewald/disp = 0.0, slab = 1.0, compute = yes, cutoff/adjust
= yes (MSM), fftbench = yes (PPPM), and diff = ik (PPPM).

(Hockney) Hockney and Eastwood, Computer Simulation Using Particles, Adam Hilger, NY (1989).

(Yeh) Yeh and Berkowitz, J Chem Phys, 111, 3155 (1999).

(Ballenegger) Ballenegger, Arnold, Cerda, J Chem Phys, 131, 094107 (2009).

(Hardy) David Hardy thesis: Multilevel Summation for the Fast Evaluation of Forces for the Simulation of
Biomolecules, University of Illinois at Urbana-Champaign, (2006).

LIGGGHTS Users Manual

kspace_modify command 671

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

kspace_style command

Syntax:

kspace_style style value

style = none or ewald or ewald/disp or ewald/omp or pppm or pppm/cg or pppm/disp or pppm/tip4p or
pppm/stagger or pppm/disp/tip4p or pppm/gpu or pppm/omp or pppm/cg/omp or pppm/tip4p/omp or
msm or msm/cg or msm/omp or msm/cg/omp

none value = none
ewald value = accuracy

 accuracy = desired relative error in forces
ewald/disp value = accuracy

 accuracy = desired relative error in forces
ewald/omp value = accuracy

 accuracy = desired relative error in forces
pppm value = accuracy

 accuracy = desired relative error in forces
pppm/cg value = accuracy (smallq)

 accuracy = desired relative error in forces
 smallq = cutoff for charges to be considered (optional) (charge units)

pppm/disp value = accuracy
 accuracy = desired relative error in forces

pppm/tip4p value = accuracy
 accuracy = desired relative error in forces

pppm/disp/tip4p value = accuracy
 accuracy = desired relative error in forces

pppm/gpu value = accuracy
 accuracy = desired relative error in forces

pppm/omp value = accuracy
 accuracy = desired relative error in forces

pppm/cg/omp value = accuracy
 accuracy = desired relative error in forces

pppm/tip4p/omp value = accuracy
 accuracy = desired relative error in forces

pppm/stagger value = accuracy
 accuracy = desired relative error in forces

msm value = accuracy
 accuracy = desired relative error in forces

msm/cg value = accuracy (smallq)
 accuracy = desired relative error in forces
 smallq = cutoff for charges to be considered (optional) (charge units)

msm/omp value = accuracy
 accuracy = desired relative error in forces

msm/cg/omp value = accuracy (smallq)
 accuracy = desired relative error in forces
 smallq = cutoff for charges to be considered (optional) (charge units)

•

Examples:

kspace_style pppm 1.0e-4
kspace_style pppm/cg 1.0e-5 1.0e-6
kspace style msm 1.0e-4
kspace_style none

Description:

Define a long-range solver for LAMMPS to use each timestep to compute long-range Coulombic interactions
or long-range 1/r^6 interactions. Most of the long-range solvers perform their computation in K-space, hence

LIGGGHTS Users Manual

kspace_style command 672

http://lammps.sandia.gov

the name of this command.

When such a solver is used in conjunction with an appropriate pair style, the cutoff for Coulombic or 1/r^N
interactions is effectively infinite. If the Coulombic case, this means each charge in the system interacts with
charges in an infinite array of periodic images of the simulation domain.

Note that using a long-range solver requires use of a matching pair style to perform consistent short-range
pairwise calculations. This means that the name of the pair style contains a matching keyword to the name of
the KSpace style, as in this table:

Pair style KSpace style
coul/long ewald or pppm
coul/msm msm

lj/long or buck/long disp (for dispersion)
tip4p/long tip4p

The ewald style performs a standard Ewald summation as described in any solid-state physics text.

The ewald/disp style adds a long-range dispersion sum option for 1/r^6 potentials and is useful for simulation
of interfaces (Veld). It also performs standard Coulombic Ewald summations, but in a more efficient manner
than the ewald style. The 1/r^6 capability means that Lennard-Jones or Buckingham potentials can be used
without a cutoff, i.e. they become full long-range potentials. The ewald/disp style can also be used with
point-dipoles (Toukmaji) and is currently the only kspace solver in LAMMPS with this capability.

The pppm style invokes a particle-particle particle-mesh solver (Hockney) which maps atom charge to a 3d
mesh, uses 3d FFTs to solve Poisson's equation on the mesh, then interpolates electric fields on the mesh
points back to the atoms. It is closely related to the particle-mesh Ewald technique (PME) (Darden) used in
AMBER and CHARMM. The cost of traditional Ewald summation scales as N^(3/2) where N is the number
of atoms in the system. The PPPM solver scales as Nlog(N) due to the FFTs, so it is almost always a faster
choice (Pollock).

The pppm/cg style is identical to the pppm style except that it has an optimization for systems where most
particles are uncharged. Similarly the msm/cg style implements the same optimization for msm. The optional
smallq argument defines the cutoff for the absolute charge value which determines whether a particle is
considered charged or not. Its default value is 1.0e-5.

The pppm/tip4p style is identical to the pppm style except that it adds a charge at the massless 4th site in each
TIP4P water molecule. It should be used with pair styles with a tip4p/long in their style name.

The pppm/stagger style performs calculations using two different meshes, one shifted slightly with respect to
the other. This can reduce force aliasing errors and increase the accuracy of the method for a given mesh size.
Or a coarser mesh can be used for the same target accuracy, which saves CPU time. However, there is a
trade-off since FFTs on two meshes are now performed which increases the compuation required. See
(Cerutti), (Neelov), and (Hockney) for details of the method.

For high relative accuracy, using staggered PPPM allows the mesh size to be reduced by a factor of 2 in each
dimension as compared to regular PPPM (for the same target accuracy). This can give up to a 4x speedup in
the KSpace time (8x less mesh points, 2x more expensive). However, for low relative accuracy, the staggered
PPPM mesh size may be essentially the same as for regular PPPM, which means the method will be up to 2x
slower in the KSpace time (simply 2x more expensive). For more details and timings, see Section_accelerate.

IMPORTANT NOTE: Using pppm/stagger may not give the same increase in the accuracy of energy and
pressure as it does in forces, so some caution must be used if energy and/or pressure are quantities of interest,

LIGGGHTS Users Manual

kspace_style command 673

such as when using a barostat.

The pppm/disp and pppm/disp/tip4p styles add a mesh-based long-range dispersion sum option for 1/r^6
potentials (Isele-Holder), similar to the ewald/disp style. The 1/r^6 capability means that Lennard-Jones or
Buckingham potentials can be used without a cutoff, i.e. they become full long-range potentials.

For these styles, it is currently recommended that you set the dispersion mesh size and other parameters
explicitly via the kspace_modify command, rather than let LAMMPS set them automatically. For example, a
set of parameters that works well for surface systems when using real units is a LJ cutoff of 10 Angstrom,
interpolation order = 5 (the default), grid spacing = 4.17 Angstroms, and Ewald parameter = 0.28. These
parameters work well for the ik differentiation. For the ad setting, a smaller grid spacing is needed, e.g. 3
Angstroms. Further information on the influence of the parameters and how to choose them is described in
(Isele-Holder).

IMPORTANT NOTE: All of the PPPM styles can be used with single-precision FFTs by using the compiler
switch -DFFT_SINGLE for the FFT_INC setting in your lo-level Makefile. This setting also changes some of
the PPPM operations (e.g. mapping charge to mesh and interpolating electric fields to particles) to be
performed in single precision. This option can speed-up long-range calulations, particularly in parallel or on
GPUs. The use of the -DFFT_SINGLE flag is discussed in this section of the manual. MSM does not
currently support the -DFFT_SINGLE compiler switch.

The msm style invokes a multi-level summation method MSM solver, (Hardy) or (Hardy2), which maps atom
charge to a 3d mesh, and uses a multi-level hierarchy of coarser and coarser meshes on which direct coulomb
solves are done. This method does not use FFTs and scales as N. It may therefore be faster than the other
K-space solvers for relatively large problems when running on large core counts. MSM can also be used for
non-periodic boundary conditions and for mixed periodic and non-periodic boundaries.

MSM is most competitive versus Ewald and PPPM when only relatively low accuracy forces, about 1e-4
relative error or less accurate, are needed. Note that use of a larger coulomb cutoff (i.e. 15 angstroms instead
of 10 angstroms) provides better MSM accuracy for both the real space and grid computed forces.

Currently the pressure calculation in MSM is expensive, so calculating the pressure at every timestep or using
a fixed pressure simulation with MSM will cause the code to run slower.

The specified accuracy determines the relative RMS error in per-atom forces calculated by the long-range
solver. It is set as a dimensionless number, relative to the force that two unit point charges (e.g. 2 monovalent
ions) exert on each other at a distance of 1 Angstrom. This reference value was chosen as representative of the
magnitude of electrostatic forces in atomic systems. Thus an accuracy value of 1.0e-4 means that the RMS
error will be a factor of 10000 smaller than the reference force.

The accuracy setting is used in conjunction with the pairwise cutoff to determine the number of K-space
vectors for style ewald or the grid size for style pppm or msm.

Note that style pppm only computes the grid size at the beginning of a simulation, so if the length or triclinic
tilt of the simulation cell increases dramatically during the course of the simulation, the accuracy of the
simulation may degrade. For example, for a triclinic system with all three tilt factors set to the maximum
limit, the PPPM grid should be increased roughly by a factor of 1.5 in the y direction and 2.0 in the z direction
as compared to the same system using a cubic orthogonal simulation cell. One way to ensure the accuracy
requirement is being met is to run a short simulation at the maximum expected tilt or length, note the required
grid size, and then use the kspace_modify mesh command to manually set the PPPM grid size to this value.

RMS force errors in real space for ewald and pppm are estimated using equation 18 of (Kolafa), which is also
referenced as equation 9 of (Petersen). RMS force errors in K-space for ewald are estimated using equation 11
of (Petersen), which is similar to equation 32 of (Kolafa). RMS force errors in K-space for pppm are estimated

LIGGGHTS Users Manual

kspace_style command 674

using equation 38 of (Deserno). RMS force errors for msm are estimated using ideas from chapter 3 of
(Hardy), with equation 3.197 of particular note. When using msm with non-periodic boundary conditions, it is
expected that the error estimation will be too pessimistic. RMS force errors for dipoles when using ewald/disp
are estimated using equations 33 and 46 of (Wang).

See the kspace_modify command for additional options of the K-space solvers that can be set, including a
force option for setting an absoulte RMS error in forces, as opposed to a relative RMS error.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

More specifically, the pppm/gpu style performs charge assignment and force interpolation calculations on the
GPU. These processes are performed either in single or double precision, depending on whether the
-DFFT_SINGLE setting was specified in your lo-level Makefile, as discussed above. The FFTs themselves
are still calculated on the CPU. If pppm/gpu is used with a GPU-enabled pair style, part of the PPPM
calculation can be performed concurrently on the GPU while other calculations for non-bonded and bonded
force calculation are performed on the CPU.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP, and OPT packages respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

Note that the long-range electrostatic solvers in LAMMPS assume conducting metal (tinfoil) boundary
conditions for both charge and dipole interactions. Vacuum boundary conditions are not currently supported.

The ewald/disp, ewald, pppm, and msm styles support non-orthogonal (triclinic symmetry) simulation boxes.
However, triclinic simulation cells may not yet be supported by suffix versions of these styles (such as
pppm/cuda).

All of the kspace styles are part of the KSPACE package. They are only enabled if LAMMPS was built with
that package. See the Making LAMMPS section for more info. Note that the KSPACE package is installed by
default.

For MSM, a simulation must be 3d and one can use any combination of periodic, non-periodic, or
shrink-wrapped boundaries (specified using the boundary command).

For Ewald and PPPM, a simulation must be 3d and periodic in all dimensions. The only exception is if the
slab option is set with kspace_modify, in which case the xy dimensions must be periodic and the z dimension
must be non-periodic.

Related commands:

kspace_modify, pair_style lj/cut/coul/long, pair_style lj/charmm/coul/long, pair_style lj/long/coul/long,
pair_style buck/coul/long

Default:

kspace_style none

LIGGGHTS Users Manual

kspace_style command 675

(Darden) Darden, York, Pedersen, J Chem Phys, 98, 10089 (1993).

(Deserno) Deserno and Holm, J Chem Phys, 109, 7694 (1998).

(Hockney) Hockney and Eastwood, Computer Simulation Using Particles, Adam Hilger, NY (1989).

(Kolafa) Kolafa and Perram, Molecular Simualtion, 9, 351 (1992).

(Petersen) Petersen, J Chem Phys, 103, 3668 (1995).

(Wang) Wang and Holm, J Chem Phys, 115, 6277 (2001).

(Pollock) Pollock and Glosli, Comp Phys Comm, 95, 93 (1996).

(Cerutti) Cerutti, Duke, Darden, Lybrand, Journal of Chemical Theory and Computation 5, 2322 (2009)

(Neelov) Neelov, Holm, J Chem Phys 132, 234103 (2010)

(Veld) In 't Veld, Ismail, Grest, J Chem Phys, 127, 144711 (2007).

(Toukmaji) Toukmaji, Sagui, Board, and Darden, J Chem Phys, 113, 10913 (2000).

(Isele-Holder) Isele-Holder, Mitchell, Ismail, J Chem Phys, 137, 174107 (2012).

(Hardy) David Hardy thesis: Multilevel Summation for the Fast Evaluation of Forces for the Simulation of
Biomolecules, University of Illinois at Urbana-Champaign, (2006).

(Hardy) Hardy, Stone, Schulten, Parallel Computing 35 (2009) 164-177.

LIGGGHTS Users Manual

kspace_style command 676

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

label command

Syntax:

label ID

ID = string used as label name•

Examples:

label xyz
label loop

Description:

Label this line of the input script with the chosen ID. Unless a jump command was used previously, this does
nothing. But if a jump command was used with a label argument to begin invoking this script file, then all
command lines in the script prior to this line will be ignored. I.e. execution of the script will begin at this line.
This is useful for looping over a section of the input script as discussed in the jump command.

Restrictions: none

Related commands: none

Default: none

LIGGGHTS Users Manual

label command 677

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

lattice command

Syntax:

lattice style scale keyword values ...

style = none or sc or bcc or fcc or hcp or diamond or sq or sq2 or hex or custom•
scale = scale factor between lattice and simulation box

 scale = reduced density rho* (for LJ units)
 scale = lattice constant in distance units (for all other units)

•

zero or more keyword/value pairs may be appended•
keyword = origin or orient or spacing or a1 or a2 or a3 or basis

origin values = x y z
 x,y,z = fractions of a unit cell (0 <= x,y,z <1)

orient values = dim i j k
 dim = x or y or z
 i,j,k = integer lattice directions

spacing values = dx dy dz
 dx,dy,dz = lattice spacings in the x,y,z box directions

a1,a2,a3 values = x y z
 x,y,z = primitive vector components that define unit cell

basis values = x y z
 x,y,z = fractional coords of a basis atom (0 <= x,y,z <1)

•

Examples:

lattice fcc 3.52
lattice hex 0.85
lattice sq 0.8 origin 0.0 0.5 0.0 orient x 1 1 0 orient y -1 1 0
lattice custom 3.52 a1 1.0 0.0 0.0 a2 0.5 1.0 0.0 a3 0.0 0.0 0.5 &
 basis 0.0 0.0 0.0 basis 0.5 0.5 0.5
lattice none 2.0

Description:

Define a lattice for use by other commands. In LAMMPS, a lattice is simply a set of points in space,
determined by a unit cell with basis atoms, that is replicated infinitely in all dimensions. The arguments of the
lattice command can be used to define a wide variety of crystallographic lattices.

A lattice is used by LAMMPS in two ways. First, the create_atoms command creates atoms on the lattice
points inside the simulation box. Note that the create_atoms command allows different atom types to be
assigned to different basis atoms of the lattice. Second, the lattice spacing in the x,y,z dimensions implied by
the lattice, can be used by other commands as distance units (e.g. create_box, region and velocity), which are
often convenient to use when the underlying problem geometry is atoms on a lattice.

The lattice style must be consistent with the dimension of the simulation - see the dimension command. Styles
sc or bcc or fcc or hcp or diamond are for 3d problems. Styles sq or sq2 or hex are for 2d problems. Style
custom can be used for either 2d or 3d problems.

A lattice consists of a unit cell, a set of basis atoms within that cell, and a set of transformation parameters
(scale, origin, orient) that map the unit cell into the simulation box. The vectors a1,a2,a3 are the edge vectors
of the unit cell. This is the nomenclature for "primitive" vectors in solid-state crystallography, but in
LAMMPS the unit cell they determine does not have to be a "primitive cell" of minimum volume.

LIGGGHTS Users Manual

lattice command 678

http://lammps.sandia.gov

A lattice of style none does not define a unit cell and basis set, so it cannot be used with the create_atoms
command. However it does define a lattice spacing via the specified scale parameter. As explained above the
lattice spacings in x,y,z can be used by other commands as distance units. No additional keyword/value pairs
can be specified for the none style. By default, a "lattice none 1.0" is defined, which means the lattice spacing
is the same as one distance unit, as defined by the units command.

Lattices of style sc, fcc, bcc, and diamond are 3d lattices that define a cubic unit cell with edge length = 1.0.
This means a1 = 1 0 0, a2 = 0 1 0, and a3 = 0 0 1. Style hcp has a1 = 1 0 0, a2 = 0 sqrt(3) 0, and a3 = 0 0
sqrt(8/3). The placement of the basis atoms within the unit cell are described in any solid-state physics text. A
sc lattice has 1 basis atom at the lower-left-bottom corner of the cube. A bcc lattice has 2 basis atoms, one at
the corner and one at the center of the cube. A fcc lattice has 4 basis atoms, one at the corner and 3 at the cube
face centers. A hcp lattice has 4 basis atoms, two in the z = 0 plane and 2 in the z = 0.5 plane. A diamond
lattice has 8 basis atoms.

Lattices of style sq and sq2 are 2d lattices that define a square unit cell with edge length = 1.0. This means a1
= 1 0 0 and a2 = 0 1 0. A sq lattice has 1 basis atom at the lower-left corner of the square. A sq2 lattice has 2
basis atoms, one at the corner and one at the center of the square. A hex style is also a 2d lattice, but the unit
cell is rectangular, with a1 = 1 0 0 and a2 = 0 sqrt(3) 0. It has 2 basis atoms, one at the corner and one at the
center of the rectangle.

A lattice of style custom allows you to specify a1, a2, a3, and a list of basis atoms to put in the unit cell. By
default, a1 and a2 and a3 are 3 orthogonal unit vectors (edges of a unit cube). But you can specify them to be
of any length and non-orthogonal to each other, so that they describe a tilted parallelepiped. Via the basis
keyword you add atoms, one at a time, to the unit cell. Its arguments are fractional coordinates (0.0 <= x,y,z <
1.0), so that a value of 0.5 means a position half-way across the unit cell in that dimension.

This sub-section discusses the arguments that determine how the idealized unit cell is transformed into a
lattice of points within the simulation box.

The scale argument determines how the size of the unit cell will be scaled when mapping it into the
simulation box. I.e. it determines a multiplicative factor to apply to the unit cell, to convert it to a lattice of the
desired size and distance units in the simulation box. The meaning of the scale argument depends on the units
being used in your simulation.

For all unit styles except lj, the scale argument is specified in the distance units defined by the unit style. For
example, in real or metal units, if the unit cell is a unit cube with edge length 1.0, specifying scale = 3.52
would create a cubic lattice with a spacing of 3.52 Angstroms. In cgs units, the spacing would be 3.52 cm.

For unit style lj, the scale argument is the Lennard-Jones reduced density, typically written as rho*. LAMMPS
converts this value into the multiplicative factor via the formula "factor^dim = rho/rho*", where rho = N/V
with V = the volume of the lattice unit cell and N = the number of basis atoms in the unit cell (described
below), and dim = 2 or 3 for the dimensionality of the simulation. Effectively, this means that if LJ particles
of size sigma = 1.0 are used in the simulation, the lattice of particles will be at the desired reduced density.

The origin option specifies how the unit cell will be shifted or translated when mapping it into the simulation
box. The x,y,z values are fractional values (0.0 <= x,y,z < 1.0) meaning shift the lattice by a fraction of the
lattice spacing in each dimension. The meaning of "lattice spacing" is discussed below.

The orient option specifies how the unit cell will be rotated when mapping it into the simulation box. The dim
argument is one of the 3 coordinate axes in the simulation box. The other 3 arguments are the crystallographic
direction in the lattice that you want to orient along that axis, specified as integers. E.g. "orient x 2 1 0" means
the x-axis in the simulation box will be the [210] lattice direction. The 3 lattice directions you specify must be
mutually orthogonal and obey the right-hand rule, i.e. (X cross Y) points in the Z direction. Note that this
description is really only valid for orthogonal lattices. If you are using the more general lattice style custom

LIGGGHTS Users Manual

lattice command 679

with non-orthogonal a1,a2,a3 vectors, then think of the 3 orient options as creating a 3x3 rotation matrix
which is applied to a1,a2,a3 to rotate the original unit cell to a new orientation in the simulation box.

Several LAMMPS commands have the option to use distance units that are inferred from "lattice spacing" in
the x,y,z box directions. E.g. the region command can create a block of size 10x20x20, where 10 means 10
lattice spacings in the x direction.

The spacing option sets the 3 lattice spacings directly. All must be non-zero (use 1.0 for dz in a 2d
simulation). The specified values are multiplied by the multiplicative factor described above that is associated
with the scale factor. Thus a spacing of 1.0 means one unit cell independent of the scale factor. This option
can be useful if the spacings LAMMPS computes are inconvenient to use in subsequent commands, which can
be the case for non-orthogonal or rotated lattices.

If the spacing option is not specified, the lattice spacings are computed by LAMMPS in the following way. A
unit cell of the lattice is mapped into the simulation box (scaled, shifted, rotated), so that it now has (perhaps)
a modified size and orientation. The lattice spacing in X is defined as the difference between the min/max
extent of the x coordinates of the 8 corner points of the modified unit cell. Similarly, the Y and Z lattice
spacings are defined as the difference in the min/max of the y and z coordinates.

Note that if the unit cell is orthogonal with axis-aligned edges (not rotated via the orient keyword), then the
lattice spacings in each dimension are simply the scale factor (described above) multiplied by the length of
a1,a2,a3. Thus a hex style lattice with a scale factor of 3.0 Angstroms, would have a lattice spacing of 3.0 in x
and 3*sqrt(3.0) in y.

IMPORTANT NOTE: For non-orthogonal unit cells and/or when a rotation is applied via the orient keyword,
then the lattice spacings may be less intuitive. In particular, in these cases, there is no guarantee that the lattice
spacing is an integer multiple of the periodicity of the lattice in that direction. Thus, if you create an
orthogonal periodic simulation box whose size in a dimension is a multiple of the lattice spacing, and then fill
it with atoms via the create_atoms command, you will NOT necessarily create a periodic system. I.e. atoms
may overlap incorrectly at the faces of the simulation box.

Regardless of these issues, the values of the lattice spacings LAMMPS calculates are printed out, so their
effect in commands that use the spacings should be decipherable.

Restrictions:

The a1,a2,a3,basis keywords can only be used with style custom.

Related commands:

dimension, create_atoms, region

Default:

lattice none 1.0

For other lattice styles, the option defaults are origin = 0.0 0.0 0.0, orient = x 1 0 0, orient = y 0 1 0, orient = z
0 0 1, a1 = 1 0 0, a2 = 0 1 0, and a3 = 0 0 1.

LIGGGHTS Users Manual

lattice command 680

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

LIGGGHTS 2.X Coding Manual

Introduction:

This is a short coding manual for LIGGGHTS 2.X

A short list of guidelines

class data members should be denoted with a _ (like x_)•
inline access functions should be used to get access to x_, like x()•
class data members , both x_particle_ and xParticle_ are allowed•
template params should be written in LARGE_CAPS•
file names like fix_mesh_gran.cpp, mesh_mover.h•
fix style fix move/mesh/gran is in file fix_move_mesh_gran.cpp/h•
header guard in file fix_foo_model.h like LMP_FIX_FOO_MODEL_H•
coding format should be ANSI•
for fixes, use error->fix_error to throw error messages in constructors, this enhances object orientation

Files which are especially

•

LIGGGHTS Users Manual

LIGGGHTS 2.X Coding Manual 681

http://www.cfdem.com
http://lammps.sandia.gov

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

LIGGGHTS 2.X vs. LIGGGHTS 1.5.3 - syntax
changes

Introduction:

This is a short outline of the most important changes in LIGGGHTS 2.X compared to LIGGGHTS 1.5.3
regarding the syntax of major commands. The motivation for these changes was to make the script language
more readable and to improve extendability (in the sense of object oriented programming) with respect to
modelling approaches.

Commands covered by this tutorial:

atom_style sphere (formerly atom_style granular)•
dump mesh/stl (formerly dump stl)•
dump mesh/vtk (formerly dump mesh/gran/VTK)•
fix heat/gran•
fix mesh/surface (formerly fix mesh/gran)•
fix mesh/surface/stress (formerly fix mesh/gran/stressanalysis)•
fix move/mesh (formerly fix move/mesh/gran)•
fix wall/gran/*•
pair_style gran/*

Changes in syntax for each command:

Changes are indicated as follows

OLD: old_syntax
NEW: new_syntax

where old_syntax refers to the syntax used in LIGGGHTS 1.5.3 and before, and new_syntax refers to the
syntax used in LIGGGHTS 2.X

atom_style sphere (formerly atom_style granular):

OLD: atom_style granular
NEW: atom_style sphere

NOTE: For compatibility reasons, the old syntax can still be used in LIGGGHTS 2.0

For details, see atom_style sphere.

dump mesh/stl:

OLD: dmpstl all stl 300 post/dump*.stl
NEW: dmpstl all mesh/stl 300 post/dump*.stl

NOTE: For compatibility reasons, the old syntax can still be used in LIGGGHTS 2.0

dump mesh/vtk:

•

LIGGGHTS Users Manual

LIGGGHTS 2.X vs. LIGGGHTS 1.5.3 - syntax changes 682

http://www.cfdem.com
http://lammps.sandia.gov

OLD: dmpstl all mesh/gran/VTK 300 post/dump*.stl id
NEW: dmpstl all mesh/vtk 300 post/dump*.stl id

NOTE: For compatibility reasons, the old syntax can still be used in LIGGGHTS 2.0

fix heat/gran:

OLD: fix ID group-ID heat/gran 273.15
NEW: fix ID group-ID heat/gran initial_temperature 273.15

OLD: fix ID group-ID heat/gran 273.15 + activate area correction via fix property/global
NEW: fix ID group-ID heat/gran initial_temperature 273.15 area_correction on

fix mesh/surface (formerly fix mesh/gran):

OLD: fix ID group-ID mesh/gran mesh.stl 1 1.0 0. 0. 0. 0. 0. 0.
NEW: fix ID group-ID mesh/surface file mesh.stl type 1

OLD: fix ID group-ID mesh/gran mesh.stl 1 0.001 0. 0. 0. -90. 0. 0.
NEW: fix ID group-ID mesh/surface file mesh.stl type 1 scale 0.001 rotate axis 1. 0. 0. angle -90.

OLD: fix ID group-ID mesh/gran mesh.stl 1 1.0 1. 2. 3. 0. 0. 0.
NEW: fix ID group-ID mesh/surface file mesh.stl type 1 move 1. 2. 3

OLD: fix ID group-ID mesh/gran mesh.stl 1 1.0 0. 0. 0. 0. 0. 0. conveyor 5. 0. 0.
NEW: fix ID group-ID mesh/surface file mesh.stl type 1 surface_vel 5. 0. 0.

OLD: fix ID group-ID mesh/gran mesh.stl 1 1.0 0. 0. 0. 0. 0. 0. rotate 0. 0. 0. 1. 0. 0. 5.
NEW: fix ID group-ID mesh/surface file mesh.stl type 1 surface_ang_vel origin 0. 0. 0. axis 1. 0. 0. omega 5.

For details, see fix mesh/surface.

fix mesh/surface/stress (formerly fix mesh/gran/stressanalysis):

OLD: fix ID group-ID mesh/gran/stressanalysis mesh.stl 1 1.0 0. 0. 0. 0. 0. 0. finnie yes
NEW: fix ID group-ID fix mesh/surface/stress file mesh.stl type 1 wear finnie

For details, see fix mesh/surface/stress.

fix move/mesh (formerly fix move/mesh/gran):

OLD: fix ID group-ID move/mesh/gran wiggle -0.1 0. 0. 0.02 cad1 1
NEW: fix ID group-ID move/mesh mesh cad1 wiggle amplitude -0.1 0. 0. period 0.02

OLD: fix ID group-ID move/mesh/gran rotate 0. 0. 0. 0. 0. 1. 0.05 cad1 1
NEW: fix ID group-ID move/mesh mesh cad1 rotate origin 0. 0. 0. axis 0. 0. 1. period 0.05

OLD: fix ID group-ID move/mesh/gran linear 20. 20. 0. cad1 1
NEW: fix ID group-ID move/mesh mesh cad1 linear 20. 20. 0.

NOTES:
The trailing "1" for the old_syntax was no longer used in LIGGGHTS 1.5.3•
For compatibility reasons, the command name fix move/mesh/gran can be used in LIGGGHTS 2.0.
However, the syntax has to follow the LIGGGHTS 2.0 syntax.

For details, see fix move/mesh.

fix wall/gran/*:

•

LIGGGHTS Users Manual

Changes in syntax for each command: 683

OLD: fix ID group-ID wall/gran/hertz/history 1 0 mesh/gran 2 cad1 cad2
NEW: fix ID group-ID wall/gran/hertz/history mesh n_meshes 2 meshes cad1 cad2

OLD: fix ID group-ID wall/gran/hertz/history 1 0 xplane -0.5 0.5 1
NEW: fix ID1 group-ID wall/gran/hertz/history type 1 xplane -0.5
 fix ID2 group-ID wall/gran/hertz/history type 1 xplane 0.5

OLD: fix ID group-ID wall/gran/hertz/history 3 0 xplane -0.5 0.5 1
NEW: fix ID1 group-ID wall/gran/hertz/history primitive type 1 xplane -0.5 rolling_friction cdt
 fix ID2 group-ID wall/gran/hertz/history primitive type 1 xplane 0.5 rolling_friction cdt

OLD: fix ID group-ID wall/gran/hertz/history 1 1 xplane -0.5 0.5 1
NEW: fix ID group-ID wall/gran/hertz/history primitive type 1 xplane -0.5 0.5 cohesion sjkr

OLD: fix ID group-ID wall/gran/hertz/history 0 0 zcylinder 0.05 1
NEW: fix ID group-ID wall/gran/hertz/history primitive type 1 zcylinder 0.05 0. 0. tangential_damping off

NOTES:
Same applies for hooke/history, hooke, hooke/history/simple, hertz/history/simple•
sjkr stands for 'simplified JKR (Johnson-Kendall-Roberts)' model, and cdt for 'constant directional torque'
model

•

styles xplane, yplane, zplane take only one arg now (the wall position), if you want two walls you have to
use two fix commands

•

in addition to the existing style zcylinder, there is now xcylinder and ycylinder as well•
xcylinder ycylinder and zcylinder take 3 args: the cylinder radius, and the location of the axis in the other
two dimensions

For details, see fix wall/gran.

pair_style gran/*:

OLD: pair_style gran/hertz/history 1 0
NEW: pair_style gran/hertz/history

OLD: pair_style gran/hertz/history 3 0
NEW: pair_style gran/hertz/history rolling_friction cdt

OLD: pair_style gran/hertz/history 1 1
NEW: pair_style gran/hertz/history cohesion sjkr

OLD: pair_style gran/hertz/history 0 0
NEW: pair_style gran/hertz/history tangential_damping off

NOTES:

•

Same applies for hooke/history, hooke, hooke/history/simple, hertz/history/simple•
sjkr stands for "simplified JKR (Johnson-Kendall-Roberts)" model, and cdt for "constant directional torque"
model

For details, see pair_style gran.

•

LIGGGHTS Users Manual

Changes in syntax for each command: 684

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

LIGGGHTS 3.X vs. LIGGGHTS 2.X - syntax changes

Introduction:

This is a short outline of the most important changes in LIGGGHTS 3.X compared to LIGGGHTS 2.X
regarding the syntax of major commands. The motivation for these changes was to make the script language
more readable and to improve extendability (in the sense of object oriented programming) with respect to
modelling approaches.

Commands covered by this tutorial:

fix wall/gran/*•
pair_style gran/*

Changes in syntax for each command:

Changes are indicated as follows

OLD: old_syntax
NEW: new_syntax

where old_syntax refers to the syntax used in LIGGGHTS 2.X and before, and new_syntax refers to the
syntax used in LIGGGHTS 3.X.

fix wall/gran/*:

OLD: fix ID group-ID wall/gran/* WALL-OPTIONS
NEW: fix ID group-ID wall/gran MODEL-SELECTION WALL-OPTIONS MODEL-SETTINGS

MODEL-SELECTION

MODEL-SELECTION = model M [tangential T] [cohesion C] [rolling_friction R]

M = hooke | hooke_stiffness | hooke_hysteresis | hertz | hertz_stiffness

T = no_history | history

C = off | sjkr | sjkr2 | hamaker

R = off | cdt | epsd

MODEL-SETTINGS

MODEL-SELECTION = [tangential_damping (on|off)] [absolute_damping (on|off)] [viscous (on|off)]

Examples

OLD: fix ID group-ID wall/gran/hertz/history mesh n_meshes 2 meshes cad1 cad2
NEW: fix ID group-ID wall/gran model hertz tangential history mesh n_meshes 2 meshes cad1 cad2

OLD: fix ID1 group-ID wall/gran/hooke/history type 1 xplane -0.5
NEW: fix ID1 group-ID wall/gran model hooke tangential history type 1 xplane -0.5

•

LIGGGHTS Users Manual

LIGGGHTS 3.X vs. LIGGGHTS 2.X - syntax changes 685

http://www.cfdem.com
http://lammps.sandia.gov

OLD: fix ID1 group-ID wall/gran/hertz/history primitive type 1 xplane -0.5 rolling_friction cdt
NEW: fix ID1 group-ID wall/gran model hertz tangential history rolling_friction cdt primitive type 1 xplane -0.5

OLD: fix ID group-ID wall/gran/hertz/history primitive type 1 xplane -0.5 0.5 cohesion sjkr
NEW: fix ID group-ID wall/gran model hertz tangential history cohesion sjkr primitive type 1 xplane -0.5 0.5

OLD: fix ID group-ID wall/gran/hertz/history primitive type 1 zcylinder 0.05 0. 0. tangential_damping off
NEW: fix ID group-ID wall/gran model hertz tangential history primitive type 1 zcylinder 0.05 0. 0. tangential_damping off

pair_style gran/*:

OLD: pair_style gran/* MODEL-SETTINGS
NEW: pair_style gran MODEL-SELECTION MODEL-SETTINGS

MODEL-SELECTION

Same as in fix wall/gran/*

MODEL-SETTINGS

Same as in fix wall/gran/*

Examples

OLD: pair_style gran/hertz/history
NEW: pair_style gran model hertz tangential history

OLD: pair_style gran/hertz/history rolling_friction cdt
NEW: pair_style gran model hertz tangential history rolling_friction cdt

OLD: pair_style gran/hertz/history cohesion sjkr
NEW: pair_style gran model hertz tangential history cohesion sjkr

OLD: pair_style gran/hertz/history tangential_damping off
OLD: pair_style gran model hertz tangential history tangential_damping off

LIGGGHTS Users Manual

Examples 686

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

log command

Syntax:

log file keyword

file = name of new logfile•
keyword = append if output should be appended to logfile (optional)•

Examples:

log log.equil
log log.equil append

Description:

This command closes the current LAMMPS log file, opens a new file with the specified name, and begins
logging information to it. If the specified file name is none, then no new log file is opened. If the optional
keyword append is specified, then output will be appended to an existing log file, instead of overwriting it.

If multiple processor partitions are being used, the file name should be a variable, so that different processors
do not attempt to write to the same log file.

The file "log.lammps" is the default log file for a LAMMPS run. The name of the initial log file can also be
set by the command-line switch -log. See Section_start 6 for details.

Restrictions: none

Related commands: none

Default:

The default LAMMPS log file is named log.lammps

LIGGGHTS Users Manual

Examples 687

http://lammps.sandia.gov

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

LIGGGHTS Documentation, Version 3.X

LIGGGHTS stands for LAMMPS Improved for General Granular and Granular Heat Transfer Simulations. It
is part of the CFDEMproject, www.cfdem.com

The core developers of LIGGGHTS are Christoph Kloss (DCS Computing GmbH, Linz and JKU Linz) and
Richard Berger (JKU Linz), with major contributions from Philippe Seil, Andreas Aigner and Stefan
Amberger (all JKU Linz) and Christoph Goniva (DCS Computing GmbH, Linz and JKU Linz)

CFDEMproject has more information about the code and its uses. For questions about the code, please use the
forums at CFDEMproject.

LIGGGHTS is based on LAMMPS (see below), and so is its manual. So if the manual says 'LAMMPS', you
could read 'LIGGGHTS' instead. However, we want to make clear which parts of the code and framework
stem from the LAMMPS base.

LIGGGHTS Version info:

All LIGGGHTS versions are based on a specific version of LAMMPS, as printed in the file src/version.h
LIGGGHTS version are identidied by a version number (e.g. '3.0'), a branch name (e.g.
'LIGGGHTS-PUBLIC' for the public release of LIGGGHTS), compilation info (date / time stamp and user
name), and a LAMMPS version number (which is the LAMMPS version that the LIGGGHTS release is based
on). For info on the LAMMPS version, see below.

LAMMPS Version info:

The LAMMPS "version" is the date when it was released, such as 1 May 2010. LAMMPS is updated
continuously. Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this
page of the WWW site. Each dated copy of LAMMPS contains all the features and bug-fixes up to and

LIGGGHTS Users Manual

LIGGGHTS Documentation, Version 3.X 688

http://www.cfdem.com
http://lammps.sandia.gov
http://www.cfdem.com
http://www.cfdem.com
http://www.cfdem.com
http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov/bug.html

including that version date. The version date is printed to the screen and logfile every time you run LAMMPS.
It is also in the file src/version.h and in the LAMMPS directory name created when you unpack a tarball, and
at the top of the first page of the manual (this page).

If you browse the HTML doc pages on the LAMMPS WWW site, they always describe the most
current version of LAMMPS.

•

If you browse the HTML doc pages included in your tarball, they describe the version you have.•
The PDF file on the WWW site or in the tarball is updated about once per month. This is because it is
large, and we don't want it to be part of every patch.

•

There is also a Developer.pdf file in the doc directory, which describes the internal structure and
algorithms of LAMMPS.

•

LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator.

LAMMPS is a classical molecular dynamics simulation code designed to run efficiently on parallel
computers. It was developed at Sandia National Laboratories, a US Department of Energy facility, with
funding from the DOE. It is an open-source code, distributed freely under the terms of the GNU Public
License (GPL).

The primary developers of LAMMPS are Steve Plimpton, Aidan Thompson, and Paul Crozier who can be
contacted at sjplimp,athomps,pscrozi at sandia.gov. The LAMMPS WWW Site at http://lammps.sandia.gov
has more information about the code and its uses.

The LAMMPS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the LAMMPS documentation.

Once you are familiar with LAMMPS, you may want to bookmark this page at
Section_commands.html#comm since it gives quick access to documentation for all LAMMPS commands.

PDF file of the entire manual, generated by htmldoc

Introduction
1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non-features
1.4 Open source distribution
1.5 Acknowledgments and citations

1.

Getting started
2.1 What's in the LAMMPS distribution
2.2 Making LAMMPS
2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS via the Make.py script
2.5 Building LAMMPS as a library
2.6 Running LAMMPS
2.7 Command-line options
2.8 Screen output
2.9 Tips for users of previous versions

2.

Commands
3.1 LAMMPS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically

3.

LIGGGHTS Users Manual

LAMMPS Version info: 689

http://www.sandia.gov/~sjplimp
http://lammps.sandia.gov
http://www.easysw.com/htmldoc

Packages
4.1 Standard packages
4.2 User packages

4.

Accelerating LAMMPS performance
5.1 Measuring performance
5.2 General strategies
5.3 Packages with optimized styles
5.4 OPT package
5.5 USER-OMP package
5.6 GPU package
5.7 USER-CUDA package
5.8 Comparison of GPU and USER-CUDA packages

5.

How-to discussions
6.1 Restarting a simulation
6.2 2d simulations
6.3 CHARMM and AMBER force fields
6.4 Running multiple simulations from one input script
6.5 Multi-replica simulations
6.6 Granular models
6.7 TIP3P water model
6.8 TIP4P water model
6.9 SPC water model
6.10 Coupling LAMMPS to other codes
6.11 Visualizing LAMMPS snapshots
6.12 Triclinic (non-orthogonal) simulation boxes
6.13 NEMD simulations
6.14 Finite-size spherical and aspherical particles
6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
6.16 Thermostatting, barostatting, and compute temperature
6.17 Walls
6.18 Elastic constants
6.19 Library interface to LAMMPS
6.20 Calculating thermal conductivity
6.21 Calculating viscosity

6.

Example problems7.
Performance & scalability8.
Additional tools9.
Modifying & extending LAMMPS
10.1 Atom styles
10.2 Bond, angle, dihedral, improper potentials
10.3 Compute styles
10.4 Dump styles
10.5 Dump custom output options
10.6 Fix styles
10.7 Input script commands
10.8 Kspace computations
10.9 Minimization styles
10.10 Pairwise potentials
10.11 Region styles
10.12 Body styles
10.13 Thermodynamic output options
10.14 Variable options
10.15 Submitting new features for inclusion in LAMMPS

10.

Python interface11.

LIGGGHTS Users Manual

LAMMPS Version info: 690

11.1 Building LAMMPS as a shared library
11.2 Installing the Python wrapper into Python
11.3 Extending Python with MPI to run in parallel
11.4 Testing the Python-LAMMPS interface
11.5 Using LAMMPS from Python
11.6 Example Python scripts that use LAMMPS
Errors
12.1 Common problems
12.2 Reporting bugs
12.3 Error & warning messages

12.

Future and history
13.1 Coming attractions
13.2 Past versions

13.

LIGGGHTS Users Manual

LAMMPS Version info: 691

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

mass command

Syntax:

mass I value

I = atom type (see asterisk form below)•
value = mass•

Examples:

mass 1 1.0
mass * 62.5
mass 2* 62.5

Description:

Set the mass for all atoms of one or more atom types. Per-type mass values can also be set in the read_data
data file using the "Masses" keyword. See the units command for what mass units to use.

The I index can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example
above. Or a wild-card asterisk can be used to set the mass for multiple atom types. This takes the form "*" or
"*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values means all
types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all
types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

A line in a data file that follows the "Masses" keyword specifies mass using the same format as the arguments
of the mass command in an input script, except that no wild-card asterisk can be used. For example, under the
"Masses" section of a data file, the line that corresponds to the 1st example above would be listed as

1 1.0

Note that the mass command can only be used if the atom style requires per-type atom mass to be set.
Currently, all but the sphere and ellipsoid and peri styles do. They require mass to be set for individual
particles, not types. Per-atom masses are defined in the data file read by the read_data command, or set to
default values by the create_atoms command. Per-atom masses can also be set to new values by the set mass
or set density commands.

Also note that pair_style eam defines the masses of atom types in the EAM potential file, in which case the
mass command is normally not used.

If you define a hybrid atom style which includes one (or more) sub-styles which require per-type mass and
one (or more) sub-styles which require per-atom mass, then you must define both. However, in this case the
per-type mass will be ignored; only the per-atom mass will be used by LAMMPS.

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

All masses must be defined before a simulation is run. They must also all be defined before a velocity or fix
shake command is used.

LIGGGHTS Users Manual

mass command 692

http://lammps.sandia.gov

The mass assigned to any type or atom must be > 0.0.

Related commands: none

Default: none

LIGGGHTS Users Manual

mass command 693

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

minimize command

Syntax:

minimize etol ftol maxiter maxeval

etol = stopping tolerance for energy (unitless)•
ftol = stopping tolerance for force (force units)•
maxiter = max iterations of minimizer•
maxeval = max number of force/energy evaluations•

Examples:

minimize 1.0e-4 1.0e-6 100 1000
minimize 0.0 1.0e-8 1000 100000

Description:

Perform an energy minimization of the system, by iteratively adjusting atom coordinates. Iterations are
terminated when one of the stopping criteria is satisfied. At that point the configuration will hopefully be in
local potential energy minimum. More precisely, the configuration should approximate a critical point for the
objective function (see below), which may or may not be a local minimum.

The minimization algorithm used is set by the min_style command. Other options are set by the min_modify
command. Minimize commands can be interspersed with run commands to alternate between relaxation and
dynamics. The minimizers bound the distance atoms move in one iteration, so that you can relax systems with
highly overlapped atoms (large energies and forces) by pushing the atoms off of each other.

Alternate means of relaxing a system are to run dynamics with a small or limited timestep. Or dynamics can
be run using fix viscous to impose a damping force that slowly drains all kinetic energy from the system. The
pair_style soft potential can be used to un-overlap atoms while running dynamics.

The minimization styles cg, sd, and hftn involves an outer iteration loop which sets the search direction along
which atom coordinates are changed. An inner iteration is then performed using a line search algorithm. The
line search typically evaluates forces and energies several times to set new coordinates. Currently, a
backtracking algorithm is used which may not be optimal in terms of the number of force evaulations
performed, but appears to be more robust than previous line searches we've tried. The backtracking method is
described in Nocedal and Wright's Numerical Optimization (Procedure 3.1 on p 41).

The minimization styles quickmin and fire perform damped dynamics using an Euler integration step. Thus
they require a timestep be defined, typically the same value used for running dynamics with the system,
though it may be more efficient to use a larger timestep.

The objective function being minimized is the total potential energy of the system as a function of the N atom
coordinates:

LIGGGHTS Users Manual

minimize command 694

http://lammps.sandia.gov

where the first term is the sum of all non-bonded pairwise interactions including long-range Coulombic
interactions, the 2nd thru 5th terms are bond, angle, dihedral, and improper interactions respectively, and the
last term is energy due to fixes which can act as constraints or apply force to atoms, such as thru interaction
with a wall. See the discussion below about how fix commands affect minimization.

The starting point for the minimization is the current configuration of the atoms.

The minimization procedure stops if any of several criteria are met:

the change in energy between outer iterations is less than etol•
the 2-norm (length) of the global force vector is less than the ftol•
the line search fails because the step distance backtracks to 0.0•
the number of outer iterations or timesteps exceeds maxiter•
the number of total force evaluations exceeds maxeval•

For the first criterion, the specified energy tolerance etol is unitless; it is met when the energy change between
successive iterations divided by the energy magnitude is less than or equal to the tolerance. For example, a
setting of 1.0e-4 for etol means an energy tolerance of one part in 10^4. For the damped dynamics minimizers
this check is not performed for a few steps after velocities are reset to 0, otherwise the minimizer would
prematurely converge.

For the second criterion, the specified force tolerance ftol is in force units, since it is the length of the global
force vector for all atoms, e.g. a vector of size 3N for N atoms. Since many of the components will be near
zero after minimization, you can think of ftol as an upper bound on the final force on any component of any
atom. For example, a setting of 1.0e-4 for ftol means no x, y, or z component of force on any atom will be
larger than 1.0e-4 (in force units) after minimization.

Either or both of the etol and ftol values can be set to 0.0, in which case some other criterion will terminate the
minimization.

During a minimization, the outer iteration count is treated as a timestep. Output is triggered by this timestep,
e.g. thermodynamic output or dump and restart files.

Using the thermo_style custom command with the fmax or fnorm keywords can be useful for monitoring the
progress of the minimization. Note that these outputs will be calculated only from forces on the atoms, and
will not include any extra degrees of freedom, such as from the fix box/relax command.

Following minimization, a statistical summary is printed that lists which convergence criterion caused the
minimizer to stop, as well as information about the energy, force, final line search, and iteration counts. An
example is as follows:

Minimization stats:
 Stopping criterion = max iterations
 Energy initial, next-to-last, final =
 -0.626828169302 -2.82642039062 -2.82643549739
 Force two-norm initial, final = 2052.1 91.9642
 Force max component initial, final = 346.048 9.78056

LIGGGHTS Users Manual

minimize command 695

 Final line search alpha, max atom move = 2.23899e-06 2.18986e-05
 Iterations, force evaluations = 2000 12724

The 3 energy values are for before and after the minimization and on the next-to-last iteration. This is what the
etol parameter checks.

The two-norm force values are the length of the global force vector before and after minimization. This is
what the ftol parameter checks.

The max-component force values are the absolute value of the largest component (x,y,z) in the global force
vector, i.e. the infinity-norm of the force vector.

The alpha parameter for the line-search, when multiplied by the max force component (on the last iteration),
gives the max distance any atom moved during the last iteration. Alpha will be 0.0 if the line search could not
reduce the energy. Even if alpha is non-zero, if the "max atom move" distance is tiny compared to typical
atom coordinates, then it is possible the last iteration effectively caused no atom movement and thus the
evaluated energy did not change and the minimizer terminated. Said another way, even with non-zero forces,
it's possible the effect of those forces is to move atoms a distance less than machine precision, so that the
energy cannot be further reduced.

The iterations and force evaluation values are what is checked by the maxiter and maxeval parameters.

IMPORTANT NOTE: There are several force fields in LAMMPS which have discontinuities or other
approximations which may prevent you from performing an energy minimization to high tolerances. For
example, you should use a pair style that goes to 0.0 at the cutoff distance when performing minimization
(even if you later change it when running dynamics). If you do not do this, the total energy of the system will
have discontinuities when the relative distance between any pair of atoms changes from cutoff+epsilon to
cutoff-epsilon and the minimizer may behave poorly. Some of the manybody potentials use splines and other
internal cutoffs that inherently have this problem. The long-range Coulombic styles (PPPM, Ewald) are
approximate to within the user-specified tolerance, which means their energy and forces may not agree to a
higher precision than the Kspace-specified tolerance. In all these cases, the minimizer may give up and stop
before finding a minimum to the specified energy or force tolerance.

Note that a cutoff Lennard-Jones potential (and others) can be shifted so that its energy is 0.0 at the cutoff via
the pair_modify command. See the doc pages for inidividual pair styles for details. Note that Coulombic
potentials always have a cutoff, unless versions with a long-range component are used (e.g. pair_style
lj/cut/coul/long). The CHARMM potentials go to 0.0 at the cutoff (e.g. pair_style lj/charmm/coul/charmm), as
do the GROMACS potentials (e.g. pair_style lj/gromacs).

If a soft potential (pair_style soft) is used the Astop value is used for the prefactor (no time dependence).

The fix box/relax command can be used to apply an external pressure to the simulation box and allow it to
shrink/expand during the minimization.

Only a few other fixes (typically those that apply force constraints) are invoked during minimization. See the
doc pages for individual fix commands to see which ones are relevant.

IMPORTANT NOTE: Some fixes which are invoked during minimization have an associated potential
energy. For that energy to be included in the total potential energy of the system (the quantity being
minimized), you MUST enable the fix_modify energy option for that fix. The doc pages for individual fix
commands specify if this should be done.

Restrictions:

Features that are not yet implemented are listed here, in case someone knows how they could be coded:

LIGGGHTS Users Manual

minimize command 696

It is an error to use fix shake with minimization because it turns off bonds that should be included in the
potential energy of the system. The effect of a fix shake can be approximated during a minimization by using
stiff spring constants for the bonds and/or angles that would normally be constrained by the SHAKE
algorithm.

Fix rigid is also not supported by minimization. It is not an error to have it defined, but the energy
minimization will not keep the defined body(s) rigid during the minimization. Note that if bonds, angles, etc
internal to a rigid body have been turned off (e.g. via neigh_modify exclude), they will not contribute to the
potential energy which is probably not what is desired.

Pair potentials that produce torque on a particle (e.g. granular potentials or the GayBerne potential for
ellipsoidal particles) are not relaxed by a minimization. More specifically, radial relaxations are induced, but
no rotations are induced by a minimization, so such a system will not fully relax.

Related commands:

min_modify, min_style, run_style

Default: none

LIGGGHTS Users Manual

minimize command 697

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

min_modify command

Syntax:

min_modify keyword values ...

one or more keyword/value pairs may be listed

keyword = dmax or line
dmax value = max

 max = maximum distance for line search to move (distance units)
line value = backtrack or quadraticor forcezero

 backtrack,quadratic,forcezero = style of linesearch to use

•

Examples:

min_modify dmax 0.2

Description:

This command sets parameters that affect the energy minimization algorithms selected by the min_style
command. The various settings may affect the convergence rate and overall number of force evaluations
required by a minimization, so users can experiment with these parameters to tune their minimizations.

The cg and sd minimization styles have an outer iteration and an inner iteration which is steps along a
one-dimensional line search in a particular search direction. The dmax parameter is how far any atom can
move in a single line search in any dimension (x, y, or z). For the quickmin and fire minimization styles, the
dmax setting is how far any atom can move in a single iteration (timestep). Thus a value of 0.1 in real units
means no atom will move further than 0.1 Angstroms in a single outer iteration. This prevents highly
overlapped atoms from being moved long distances (e.g. through another atom) due to large forces.

The choice of line search algorithm for the cg and sd minimization styles can be selected via the line keyword.
The default backtracking search is robust and should always find a local energy minimum. However, it will
"converge" when it can no longer reduce the energy of the system. Individual atom forces may still be larger
than desired at this point, because the energy change is measured as the difference of two large values (energy
before and energy after) and that difference may be smaller than machine epsilon even if atoms could move in
the gradient direction to reduce forces further.

By contrast, the quadratic line search algorithm tries to reduce the forces to zero, while guaranteeing that the
energy changes is not positive (uphill). For some systems, it may also be more efficient than the backtracking
algorithm by requiring fewer energy/force evaluations. The forcezero line search algorithm is similar to
quadratic. It may be more efficient than quadratic on some systems.

Restrictions: none

Related commands:

min_style, minimize

Default:

The option defaults are dmax = 0.1 and line = backtrack.

LIGGGHTS Users Manual

min_modify command 698

http://lammps.sandia.gov

LAMMPS WWW Page - LAMMPS Documentation - LAMMPS Commands

min_style command

Syntax:

min_style style

style = cg or hftn or sd or quickmin or fire•

Examples:

min_style cg
min_style fire

Description:

Choose a minimization algorithm to use when a minimize command is performed.

Style cg is the Polak-Ribiere version of the conjugate gradient (CG) algorithm. At each iteration the force
gradient is combined with the previous iteration information to compute a new search direction perpendicular
(conjugate) to the previous search direction. The PR variant affects how the direction is chosen and how the
CG method is restarted when it ceases to make progress. The PR variant is thought to be the most effective
CG choice for most problems.

Style hftn is a Hessian-free truncated Newton algorithm. At each iteration a quadratic model of the energy
potential is solved by a conjugate gradient inner iteration. The Hessian (second derivatives) of the energy is
not formed directly, but approximated in each conjugate search direction by a finite difference directional
derivative. When close to an energy minimum, the algorithm behaves like a Newton method and exhibits a
quadratic convergence rate to high accuracy. In most cases the behavior of hftn is similar to cg, but it offers an
alternative if cg seems to perform poorly. This style is not affected by the min_modify command.

Style sd is a steepest descent algorithm. At each iteration, the search direction is set to the downhill direction
corresponding to the force vector (negative gradient of energy). Typically, steepest descent will not converge
as quickly as CG, but may be more robust in some situations.

Style quickmin is a damped dynamics method described in (Sheppard), where the damping parameter is
related to the projection of the velocity vector along the current force vector for each atom. The velocity of
each atom is initialized to 0.0 by this style, at the beginning of a minimization.

Style fire is a damped dynamics method described in (Bitzek), which is similar to quickmin but adds a
variable timestep and alters the projection operation to maintain components of the velocity non-parallel to the
current force vector. The velocity of each atom is initialized to 0.0 by this style, at the beginning of a
minimization.

Either the quickmin and fire styles are useful in the context of nudged elastic band (NEB) calculations via the
neb command.

IMPORTANT NOTE: The quickmin and fire styles do not yet support the use of the fix box/relax command
or minimizations involving the electron radius in eFF models.

Restrictions: none

Related commands:

LIGGGHTS Users Manual

min_style command 699

http://lammps.sandia.gov

min_modify, minimize, neb

Default:

min_style cg

(Sheppard) Sheppard, Terrell, Henkelman, J Chem Phys, 128, 134106 (2008). See ref 1 in this paper for
original reference to Qmin in Jonsson, Mills, Jacobsen.

(Bitzek) Bitzek, Koskinen, Gahler, Moseler, Gumbsch, Phys Rev Lett, 97, 170201 (2006).

LIGGGHTS Users Manual

min_style command 700

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

neb command

Syntax:

neb etol ftol N1 N2 Nevery file-style arg

etol = stopping tolerance for energy (energy units)•
ftol = stopping tolerance for force (force units)•
N1 = max # of iterations (timesteps) to run initial NEB•
N2 = max # of iterations (timesteps) to run barrier-climbing NEB•
Nevery = print replica energies and reaction coordinates every this many timesteps•
file-style= final or each or none

final arg = filename
 filename = file with initial coords for final replica
 coords for intermediate replicas are linearly interpolated between first and last replica

each arg = filename
 filename = unique filename for each replica (except first) with its initial coords

none arg = no argument
 all replicas assumed to already have their initial coords

•

Examples:

neb 0.1 0.0 1000 500 50 final coords.final
neb 0.0 0.001 1000 500 50 each coords.initial.$i
neb 0.0 0.001 1000 500 50 none

Description:

Perform a nudged elastic band (NEB) calculation using multiple replicas of a system. Two or more replicas
must be used; the first and last are the end points of the transition path.

NEB is a method for finding both the atomic configurations and height of the energy barrier associated with a
transition state, e.g. for an atom to perform a diffusive hop from one energy basin to another in a coordinated
fashion with its neighbors. The implementation in LAMMPS follows the discussion in these 3 papers:
(Henkelman1), (Henkelman2), and (Nakano).

Each replica runs on a partition of one or more processors. Processor partitions are defined at run-time using
the -partition command-line switch; see Section_start 7 of the manual. Note that if you have MPI installed,
you can run a multi-replica simulation with more replicas (partitions) than you have physical processors, e.g
you can run a 10-replica simulation on just one or two processors. You will simply not get the performance
speed-up you would see with one or more physical processors per replica. See this section of the manual for
further discussion.

IMPORTANT NOTE: The current NEB implementation in LAMMPS only allows there to be one processor
per replica.

IMPORTANT NOTE: As explained below, a NEB calculation perfoms a damped-dynamics minimization
across all the replicas. This will use whatever timestep you have defined in your input script, via the timestep
command. You may get faster convergence for a NEB calculation if you use a larger timestep than you would
normally use for dynamics with the same system.

When a NEB calculation is performed, it is assumed that each replica is running the same system, though
LAMMPS does not check for this. I.e. the simulation domain, the number of atoms, the interaction potentials,

LIGGGHTS Users Manual

neb command 701

http://lammps.sandia.gov

and the starting configuration when the neb command is issued should be the same for every replica.

In a NEB calculation each atom in a replica is connected to the same atom in adjacent replicas by springs,
which induce inter-replica forces. These forces are imposed by the fix neb command, which must be used in
conjunction with the neb command. The group used to define the fix neb command defines the NEB atoms
which are the only ones that inter-replica springs are applied to. If the group does not include all atoms, then
non-NEB atoms have no inter-replica springs and the forces they feel and their motion is computed in the
usual way due only to other atoms within their replica. Conceptually, the non-NEB atoms provide a
background force field for the NEB atoms. They can be allowed to move during the NEB minimiation
procedure (which will typically induce different coordinates for non-NEB atoms in different replicas), or held
fixed using other LAMMPS commands such as fix setforce. Note that the partition command can be used to
invoke a command on a subset of the replicas, e.g. if you wish to hold NEB or non-NEB atoms fixed in only
the end-point replicas.

The initial atomic configuration for each of the replicas can be specified in different manners via the file-style
setting, as discussed below. Only atoms whose initial coordinates should differ from the current configuration
need be specified.

Conceptually, the initial configuration for the first replica should be a state with all the atoms (NEB and
non-NEB) having coordinates on one side of the energy barrier. A perfect energy minimum is not required,
since atoms in the first replica experience no spring forces from the 2nd replica. Thus the damped dynamics
minimizaiton will drive the first replica to an energy minimum if it is not already there. However, you will
typically get better convergence if the initial state is already at a minimum. For example, for a system with a
free surface, the surface should be fully relaxed before attempting a NEB calculation.

Likewise, the initial configuration of the final replica should be a state with all the atoms (NEB and non-NEB)
on the other side of the energy barrier. Again, a perfect energy minimum is not required, since the atoms in
the last replica also experience no spring forces from the next-to-last replica, and thus the damped dynamics
minimization will drive it to an energy minimum.

As explained below, the initial configurations of intermediate replicas can be atomic coordinates interpolated
in a linear fashion between the first and last replicas. This is often adequate state for simple transitions. For
more complex transitions, it may lead to slow convergence or even bad results if the minimum energy path
(MEP, see below) of states over the barrier cannot be correctly converged to from such an initial
configuration. In this case, you will want to generate initial states for the intermediate replicas that are
geometrically closer to the MEP and read them in.

For a file-style setting of final, a filename is specified which contains atomic coordinates for zero or more
atoms, in the format described below. For each atom that appears in the file, the new coordinates are assigned
to that atom in the final replica. Each intermediate replica also assigns a new position to that atom in an
interpolated manner. This is done by using the current position of the atom as the starting point and the
read-in position as the final point. The distance between them is calculated, and the new position is assigned
to be a fraction of the distance. E.g. if there are 10 replicas, the 2nd replica will assign a position that is 10%
of the distance along a line between the starting and final point, and the 9th replica will assign a position that
is 90% of the distance along the line. Note that this procedure to produce consistent coordinates across all the
replicas, the current coordinates need to be the same in all replicas. LAMMPS does not check for this, but
invalid initial configurations will likely result if it is not the case.

NOTE: The "distance" between the starting and final point is calculated in a minimum-image sense for a
periodic simulation box. This means that if the two positions are on opposite sides of a box (periodic in that
dimension), the distance between them will be small, because the periodic image of one of the atoms is close
to the other. Similarly, even if the assigned position resulting from the interpolation is outside the periodic
box, the atom will be wrapped back into the box when the NEB calculation begins.

LIGGGHTS Users Manual

neb command 702

For a file-style setting of each, a filename is specified which is assumed to be unique to each replica. This can
be done by using a variable in the filename, e.g.

variable i equal part
neb 0.0 0.001 1000 500 50 each coords.initial.$i

which in this case will substitute the partition ID (0 to N-1) for the variable I, which is also effectively the
replica ID. See the variable command for other options, such as using world-, universe-, or uloop-style
variables.

Each replica (except the first replica) will read its file, formatted as described below, and for any atom that
appears in the file, assign the specified coordinates to its atom. The various files do not need to contain the
same set of atoms.

For a file-style setting of none, no filename is specified. Each replica is assumed to already be in its initial
configuration at the time the neb command is issued. This allows each replica to define its own configuration
by reading a replica-specific data or restart or dump file, via the read_data, read_restart, or read_dump
commands. The replica-specific names of these files can be specified as in the discussion above for the each
file-style. Also see the section below for how a NEB calculation can produce restart files, so that a long
calculation can be restarted if needed.

IMPORTANT NOTE: None of the file-style settings change the initial configuration of any atom in the first
replica. The first replica must thus be in the correct initial configuration at the time the neb command is
issued.

A NEB calculation proceeds in two stages, each of which is a minimization procedure, performed via damped
dynamics. To enable this, you must first define a damped dynamics min_style, such as quickmin or fire. The
cg, sd, and hftn styles cannot be used, since they perform iterative line searches in their inner loop, which
cannot be easily synchronized across multiple replicas.

The minimizer tolerances for energy and force are set by etol and ftol, the same as for the minimize command.

A non-zero etol means that the NEB calculation will terminate if the energy criterion is met by every replica.
The energies being compared to etol do not include any contribution from the inter-replica forces, since these
are non-conservative. A non-zero ftol means that the NEB calculation will terminate if the force criterion is
met by every replica. The forces being compared to ftol include the inter-replica forces between an atom and
its images in adjacent replicas.

The maximum number of iterations in each stage is set by N1 and N2. These are effectively timestep counts
since each iteration of damped dynamics is like a single timestep in a dynamics run. During both stages, the
potential energy of each replica and its normalized distance along the reaction path (reaction coordinate RD)
will be printed to the screen and log file every Nevery timesteps. The RD is 0 and 1 for the first and last
replica. For intermediate replicas, it is the cumulative distance (normalized by the total cumulative distance)
between adjacent replicas, where "distance" is defined as the length of the 3N-vector of differences in atomic
coordinates, where N is the number of NEB atoms involved in the transition. These outputs allow you to
monitor NEB's progress in finding a good energy barrier. N1 and N2 must both be multiples of Nevery.

In the first stage of NEB, the set of replicas should converge toward the minimum energy path (MEP) of
conformational states that transition over the barrier. The MEP for a barrier is defined as a sequence of
3N-dimensional states that cross the barrier at its saddle point, each of which has a potential energy gradient
parallel to the MEP itself. The replica states will also be roughly equally spaced along the MEP due to the
inter-replica spring force added by the fix neb command.

In the second stage of NEB, the replica with the highest energy is selected and the inter-replica forces on it are
converted to a force that drives its atom coordinates to the top or saddle point of the barrier, via the

LIGGGHTS Users Manual

neb command 703

barrier-climbing calculation described in (Henkelman2). As before, the other replicas rearrange themselves
along the MEP so as to be roughly equally spaced.

When both stages are complete, if the NEB calculation was successful, one of the replicas should be an atomic
configuration at the top or saddle point of the barrier, the potential energies for the set of replicas should
represent the energy profile of the barrier along the MEP, and the configurations of the replicas should be a
sequence of configurations along the MEP.

A few other settings in your input script are required or advised to perform a NEB calculation. See the
IMPORTANT NOTE about the choice of timestep at the beginning of this doc page.

An atom map must be defined which it is not by default for atom_style atomic problems. The atom_modify
map command can be used to do this.

The "atom_modify sort 0 0.0" command should be used to turn off atom sorting.

NOTE: This sorting restriction will be removed in a future version of NEB in LAMMPS.

The minimizers in LAMMPS operate on all atoms in your system, even non-NEB atoms, as defined above. To
prevent non-NEB atoms from moving during the minimization, you should use the fix setforce command to
set the force on each of those atoms to 0.0. This is not required, and may not even be desired in some cases,
but if those atoms move too far (e.g. because the initial state of your system was not well-minimized), it can
cause problems for the NEB procedure.

The damped dynamics minimizers, such as quickmin and fire), adjust the position and velocity of the atoms
via an Euler integration step. Thus you must define an appropriate timestep to use with NEB. Using the same
timestep that would be used for a dynamics run of your system is advised.

Each file read by the neb command containing atomic coordinates used to initialize one or more replicas must
be formatted as follows.

The file can be ASCII text or a gzipped text file (detected by a .gz suffix). The file can contain initial blank
lines or comment lines starting with "#" which are ignored. The first non-blank, non-comment line should list
N = the number of lines to follow. The N successive lines contain the following information:

ID1 x1 y1 z1
ID2 x2 y2 z2
...
IDN xN yN zN

The fields are the the atom ID, followed by the x,y,z coordinates. The lines can be listed in any order.
Additional trailing information on the line is OK, such as a comment.

Note that for a typical NEB calculation you do not need to specify initial coordinates for very many atoms to
produce differing starting and final replicas whose intermediate replicas will converge to the energy barrier.
Typically only new coordinates for atoms geometrically near the barrier need be specified.

Also note there is no requirement that the atoms in the file correspond to the NEB atoms in the group defined
by the fix neb command. Not every NEB atom need be in the file, and non-NEB atoms can be listed in the
file.

Four kinds of output can be generated during a NEB calculation: energy barrier statistics, thermodynamic
output by each replica, dump files, and restart files.

LIGGGHTS Users Manual

neb command 704

When running with multiple partitions (each of which is a replica in this case), the print-out to the screen and
master log.lammps file contains a line of output, printed once every Nevery timesteps. It contains the timestep,
the maximum force per replica, the maximum force per atom (in any replica), potential gradients in the initial,
final, and climbing replicas, the forward and backward energy barriers, the total reaction coordinate (RDT),
and the normalized reaction coordinate and potential energy of each replica.

The "maximum force per replica" is the two-norm of the 3N-length force vector for the atoms in each replica,
maximized across replicas, which is what the ftol setting is checking against. In this case, N is all the atoms in
each replica. The "maximum force per atom" is the maximum force component of any atom in any replica.
The potential gradients are the two-norm of the 3N-length force vector solely due to the interaction potential
i.e. without adding in inter-replica forces. Note that inter-replica forces are zero in the initial and final
replicas, and only affect the direction in the climbing replica. For this reason, the "maximum force per replica"
is often equal to the potential gradient in the climbing replica. In the first stage of NEB, there is no climbing
replica, and so the potential gradient in the highest energy replica is reported, since this replica will become
the climbing replica in the second stage of NEB.

The "reaction coordinate" (RD) for each replica is the two-norm of the 3N-length vector of distances between
its atoms and the preceding replica's atoms, added to the RD of the preceding replica. The RD of the first
replica RD1 = 0.0; the RD of the final replica RDN = RDT, the total reaction coordinate. The normalized RDs
are divided by RDT, so that they form a monotonically increasing sequence from zero to one. When
computing RD, N only includes the atoms being operated on by the fix neb command.

The forward (reverse) energy barrier is the potential energy of the highest replica minus the energy of the first
(last) replica.

When running on multiple partitions, LAMMPS produces additional log files for each partition, e.g.
log.lammps.0, log.lammps.1, etc. For a NEB calculation, these contain the thermodynamic output for each
replica.

If dump commands in the input script define a filename that includes a universe or uloop style variable, then
one dump file (per dump command) will be created for each replica. At the end of the NEB calculation, the
final snapshot in each file will contain the sequence of snapshots that transition the system over the energy
barrier. Earlier snapshots will show the convergence of the replicas to the MEP.

Likewise, restart filenames can be specified with a universe or uloop style variable, to generate restart files for
each replica. These may be useful if the NEB calculation fails to converge properly to the MEP, and you wish
to restart the calculation from an intermediate point with altered parameters.

There are 2 Python scripts provided in the tools/python directory, neb_combine.py and neb_final.py, which
are useful in analyzing output from a NEB calculation. Assume a NEB simulation with M replicas, and the
NEB atoms labelled with a specific atom type.

The neb_combine.py script extracts atom coords for the NEB atoms from all M dump files and creates a
single dump file where each snapshot contains the NEB atoms from all the replicas and one copy of non-NEB
atoms from the first replica (presumed to be identical in other replicas). This can be visualized/animated to see
how the NEB atoms relax as the NEB calculation proceeds.

The neb_final.py script extracts the final snapshot from each of the M dump files to create a single dump file
with M snapshots. This can be visualized to watch the system make its transition over the energy barrier.

To illustrate, here are images from the final snapshot produced by the neb_combine.py script run on the dump
files produced by the two example input scripts in examples/neb. Click on them to see a larger image.

LIGGGHTS Users Manual

neb command 705

Restrictions:

This command can only be used if LAMMPS was built with the REPLICA package. See the Making
LAMMPS section for more info on packages.

Related commands:

prd, temper, fix langevin, fix viscous

Default: none

(Henkelman1) Henkelman and Jonsson, J Chem Phys, 113, 9978-9985 (2000).

(Henkelman2) Henkelman, Uberuaga, Jonsson, J Chem Phys, 113, 9901-9904 (2000).

(Nakano) Nakano, Comp Phys Comm, 178, 280-289 (2008).

LIGGGHTS Users Manual

neb command 706

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

neighbor command

Syntax:

neighbor skin style

skin = extra distance beyond force cutoff (distance units)•
style = bin or nsq or multi•

Examples:

neighbor 0.3 bin
neighbor 2.0 nsq

Description:

This command sets parameters that affect the building of pairwise neighbor lists. All atom pairs within a
neighbor cutoff distance equal to the their force cutoff plus the skin distance are stored in the list. Typically,
the larger the skin distance, the less often neighbor lists need to be built, but more pairs must be checked for
possible force interactions every timestep. The default value for skin depends on the choice of units for the
simulation; see the default values below.

The skin distance is also used to determine how often atoms migrate to new processors if the check option of
the neigh_modify command is set to yes. Atoms are migrated (communicated) to new processors on the same
timestep that neighbor lists are re-built.

The style value selects what algorithm is used to build the list. The bin style creates the list by binning which
is an operation that scales linearly with N/P, the number of atoms per processor where N = total number of
atoms and P = number of processors. It is almost always faster than the nsq style which scales as (N/P)^2. For
unsolvated small molecules in a non-periodic box, the nsq choice can sometimes be faster. Either style should
give the same answers.

The multi style is a modified binning algorithm that is useful for systems with a wide range of cutoff
distances, e.g. due to different size particles. For the bin style, the bin size is set to 1/2 of the largest cutoff
distance between any pair of atom types and a single set of bins is defined to search over for all atom types.
This can be inefficient if one pair of types has a very long cutoff, but other type pairs have a much shorter
cutoff. For style multi the bin size is set to 1/2 of the shortest cutoff distance and multiple sets of bins are
defined to search over for different atom types. This imposes some extra setup overhead, but the searches
themselves may be much faster for the short-cutoff cases. See the communicate multi command for a
communication option option that may also be beneficial for simulations of this kind.

The neigh_modify command has additional options that control how often neighbor lists are built and which
pairs are stored in the list.

When a run is finished, counts of the number of neighbors stored in the pairwise list and the number of times
neighbor lists were built are printed to the screen and log file. See this section for details.

Restrictions: none

Related commands:

neigh_modify, units, communicate

LIGGGHTS Users Manual

neighbor command 707

http://lammps.sandia.gov

Default:

0.3 bin for units = lj, skin = 0.3 sigma
2.0 bin for units = real or metal, skin = 2.0 Angstroms
0.001 bin for units = si, skin = 0.001 meters = 1.0 mm
0.1 bin for units = cgs, skin = 0.1 cm = 1.0 mm

LIGGGHTS Users Manual

neighbor command 708

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

neigh_modify command

Syntax:

neigh_modify keyword values ...

one or more keyword/value pairs may be listed

keyword = delay or every or check or once or cluster or include or exclude or page or one or binsize
delay value = N

 N = delay building until this many steps since last build
every value = M

 M = build neighbor list every this many steps
check value = yes or no

yes = only build if some atom has moved half the skin distance or more
no = always build on 1st step that every and delay are satisfied

once
yes = only build neighbor list once at start of run and never rebuild
no = rebuild neighbor list according to other settings

cluster
yes = check bond,angle,etc neighbor list for nearby clusters
no = do not check bond,angle,etc neighbor list for nearby clusters

include value = group-ID
 group-ID = only build pair neighbor lists for atoms in this group

exclude values:
 type M N
 M,N = exclude if one atom in pair is type M, other is type N
 group group1-ID group2-ID
 group1-ID,group2-ID = exclude if one atom is in 1st group, other in 2nd
 molecule group-ID
 groupname = exclude if both atoms are in the same molecule and in the same group
 none
 delete all exclude settings

page value = N
 N = number of pairs stored in a single neighbor page

one value = N
 N = max number of neighbors of one atom

contact_distance_factor value = N
 N = contact distance factor used to extend the range of granular neighbor lists (must be > 1).

binsize value = size
 size = bin size for neighbor list construction (distance units)

•

Examples:

neigh_modify every 2 delay 10 check yes page 100000
neigh_modify exclude type 2 3
neigh_modify exclude group frozen frozen check no
neigh_modify exclude group residue1 chain3
neigh_modify exclude molecule rigid
neigh_modify delay 0 contact_distance_factor 1.5

Description:

This command sets parameters that affect the building and use of pairwise neighbor lists.

The every, delay, check, and once options affect how often lists are built as a simulation runs. The delay
setting means never build a new list until at least N steps after the previous build. The every setting means
build the list every M steps (after the delay has passed). If the check setting is no, the list is built on the 1st
step that satisfies the delay and every settings. If the check setting is yes, then the list is only built on a

LIGGGHTS Users Manual

neigh_modify command 709

http://lammps.sandia.gov

particular step if some atom has moved more than half the skin distance (specified in the neighbor command)
since the last build. If the once setting is yes, then the neighbor list is only built once at the beginning of each
run, and never rebuilt. This should only be done if you are certain atoms will not move far enough that the list
should be rebuilt. E.g. running a simulation of a cold crystal. Note that it is not that expensive to check if
neighbor lists should be rebuilt.

When the rRESPA integrator is used (see the run_style command), the every and delay parameters refer to the
longest (outermost) timestep.

The contact_distance_factor setting can be used to increase the range of granular neighbor lists. When
contact_distance_factor > 1.0, instead of the standard criterion ri+rj+skin < distance, LIGGGHTS is checking
for contact_distance_factor *(ri+rj)+skin < distance to decided if a pair of granular particles goes into a
neighbor list.

The cluster option does a sanity test every time neighbor lists are built for bond, angle, dihedral, and improper
interactions, to check that each set of 2, 3, or 4 atoms is a cluster of nearby atoms. It does this by computing
the distance between pairs of atoms in the interaction and insuring they are not further apart than half the
periodic box length. If they are, an error is generated, since the interaction would be computed between
far-away atoms instead of their nearby periodic images. The only way this should happen is if the pairwise
cutoff is so short that atoms that are part of the same interaction are not communicated as ghost atoms. This is
an unusual model (e.g. no pair interactions at all) and the problem can be fixed by use of the communicate
cutoff command. Note that to save time, the default cluster setting is no, so that this check is not performed.

The include option limits the building of pairwise neighbor lists to atoms in the specified group. This can be
useful for models where a large portion of the simulation is particles that do not interact with other particles or
with each other via pairwise interactions. The group specified with this option must also be specified via the
atom_modify first command.

The exclude option turns off pairwise interactions between certain pairs of atoms, by not including them in the
neighbor list. These are sample scenarios where this is useful:

In crack simulations, pairwise interactions can be shut off between 2 slabs of atoms to effectively
create a crack.

•

When a large collection of atoms is treated as frozen, interactions between those atoms can be turned
off to save needless computation. E.g. Using the fix setforce command to freeze a wall or portion of a
bio-molecule.

•

When one or more rigid bodies are specified, interactions within each body can be turned off to save
needless computation. See the fix rigid command for more details.

•

The exclude type option turns off the pairwise interaction if one atom is of type M and the other of type N. M
can equal N. The exclude group option turns off the interaction if one atom is in the first group and the other
is the second. Group1-ID can equal group2-ID. The exclude molecule option turns off the interaction if both
atoms are in the specified group and in the same molecule, as determined by their molecule ID.

Each of the exclude options can be specified multiple times. The exclude type option is the most efficient
option to use; it requires only a single check, no matter how many times it has been specified. The other
exclude options are more expensive if specified multiple times; they require one check for each time they
have been specified.

Note that the exclude options only affect pairwise interactions; see the delete_bonds command for information
on turning off bond interactions.

IMPORTANT NOTE: Excluding pairwise interactions will not work correctly when also using a long-range
solver via the kspace_style command. LAMMPS will give a warning to this effect. This is because the

LIGGGHTS Users Manual

neigh_modify command 710

short-range pairwise interaction needs to subtract off a term from the total energy for pairs whose short-range
interaction is excluded, to compensate for how the long-range solver treats the interaction. This is done
correctly for pairwise interactions that are excluded (or weighted) via the special_bonds command. But it is
not done for interactions that are excluded via these neigh_modify exclude options.

The page and one options affect how memory is allocated for the neighbor lists. For most simulations the
default settings for these options are fine, but if a very large problem is being run or a very long cutoff is
being used, these parameters can be tuned. The indices of neighboring atoms are stored in "pages", which are
allocated one after another as they fill up. The size of each page is set by the page value. A new page is
allocated when the next atom's neighbors could potentially overflow the list. This threshold is set by the one
value which tells LAMMPS the maximum number of neighbor's one atom can have.

IMPORTANT NOTE: LAMMPS can crash without an error message if the number of neighbors for a single
particle is larger than the page setting, which means it is much, much larger than the one setting. This is
because LAMMPS doesn't error check these limits for every pairwise interaction (too costly), but only after
all the particle's neighbors have been found. This problem usually means something is very wrong with the
way you've setup your problem (particle spacing, cutoff length, neighbor skin distance, etc). If you really
expect that many neighbors per particle, then boost the one and page settings accordingly.

The binsize option allows you to specify what size of bins will be used in neighbor list construction to sort and
find neighboring atoms. By default, for neighbor style bin, LAMMPS uses bins that are 1/2 the size of the
maximum pair cutoff. For neighbor style multi, the bins are 1/2 the size of the minimum pair cutoff. Typically
these are good values values for minimizing the time for neighbor list construction. This setting overrides the
default. If you make it too big, there is little overhead due to looping over bins, but more atoms are checked. If
you make it too small, the optimal number of atoms is checked, but bin overhead goes up. If you set the
binsize to 0.0, LAMMPS will use the default binsize of 1/2 the cutoff.

Restrictions:

If the "delay" setting is non-zero, then it must be a multiple of the "every" setting.

The exclude molecule option can only be used with atom styles that define molecule IDs.

The value of the page setting must be at least 10x larger than the one setting. This insures neighbor pages are
not mostly empty space.

Related commands:

neighbor, delete_bonds

Default:

The option defaults are delay = 10, every = 1, check = yes, once = no, cluster = no, include = all, exclude =
none, page = 100000, one = 2000, and binsize = 0.0.

LIGGGHTS Users Manual

neigh_modify command 711

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

newton command

Syntax:

newton flag
newton flag1 flag2

flag = on or off for both pairwise and bonded interactions•
flag1 = on or off for pairwise interactions•
flag2 = on or off for bonded interactions•

Examples:

newton off
newton on off

Description:

This command turns Newton's 3rd law on or off for pairwise and bonded interactions. For most problems,
setting Newton's 3rd law to on means a modest savings in computation at the cost of two times more
communication. Whether this is faster depends on problem size, force cutoff lengths, a machine's
compute/communication ratio, and how many processors are being used.

Setting the pairwise newton flag to off means that if two interacting atoms are on different processors, both
processors compute their interaction and the resulting force information is not communicated. Similarly, for
bonded interactions, newton off means that if a bond, angle, dihedral, or improper interaction contains atoms
on 2 or more processors, the interaction is computed by each processor.

LAMMPS should produce the same answers for any newton flag settings, except for round-off issues.

With run_style respa and only bonded interactions (bond, angle, etc) computed in the innermost timestep, it
may be faster to turn newton off for bonded interactions, to avoid extra communication in the innermost loop.

Restrictions:

The newton bond setting cannot be changed after the simulation box is defined by a read_data or create_box
command.

Related commands:

run_style respa

Default:

newton on

LIGGGHTS Users Manual

newton command 712

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

next command

Syntax:

next variables

variables = one or more variable names•

Examples:

next x
next a t x myTemp

Description:

This command is used with variables defined by the variable command. It assigns the next value to the
variable from the list of values defined for that variable by the variable command. Thus when that variable is
subsequently substituted for in an input script command, the new value is used.

See the variable command for info on how to define and use different kinds of variables in LAMMPS input
scripts. If a variable name is a single lower-case character from "a" to "z", it can be used in an input script
command as $a or $z. If it is multiple letters, it can be used as ${myTemp}.

If multiple variables are used as arguments to the next command, then all must be of the same variable style:
index, loop, file, universe, or uloop. An exception is that universe- and uloop-style variables can be mixed in
the same next command.

All the variables specified with the next command are incremented by one value from their respective list of
values. A file-style variable reads the next line from its associated file. An atomfile-style variable reads the
next set of lines (one per atom) from its associated file. String- or atom- or equal- or world-style variables
cannot be used with the the next command, since they only store a single value.

When any of the variables in the next command has no more values, a flag is set that causes the input script to
skip the next jump command encountered. This enables a loop containing a next command to exit. As
explained in the variable command, the variable that has exhausted its values is also deleted. This allows it to
be used and re-defined later in the input script. File-style and atomfile-style variables are exhausted when the
end-of-file is reached.

When the next command is used with index- or loop-style variables, the next value is assigned to the variable
for all processors. When the next command is used with file-style variables, the next line is read from its file
and the string assigned to the variable. When the next command is used with atomfile-style variables, the next
set of per-atom values is read from its file and assigned to the variable. When the next command is used with
universe- or uloop-style variables, the next value is assigned to whichever processor partition executes the
command first. All processors in the partition are assigned the same value. Running LAMMPS on multiple
partitions of processors via the "-partition" command-line switch is described in this section of the manual.
Universe- and uloop-style variables are incremented using the files "tmp.lammps.variable" and
"tmp.lammps.variable.lock" which you will see in your directory during such a LAMMPS run.

Here is an example of running a series of simulations using the next command with an index-style variable. If
this input script is named in.polymer, 8 simulations would be run using data files from directories run1 thru
run8.

variable d index run1 run2 run3 run4 run5 run6 run7 run8

LIGGGHTS Users Manual

next command 713

http://lammps.sandia.gov

shell cd $d
read_data data.polymer
run 10000
shell cd ..
clear
next d
jump in.polymer

If the variable "d" were of style universe, and the same in.polymer input script were run on 3 partitions of
processors, then the first 3 simulations would begin, one on each set of processors. Whichever partition
finished first, it would assign variable "d" the 4th value and run another simulation, and so forth until all 8
simulations were finished.

Jump and next commands can also be nested to enable multi-level loops. For example, this script will run 15
simulations in a double loop.

variable i loop 3
 variable j loop 5
 clear
 ...
 read_data data.polymer.ij
 print Running simulation $i.$j
 run 10000
 next j
 jump in.script
next i
jump in.script

Here is an example of a double loop which uses the if and jump commands to break out of the inner loop
when a condition is met, then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 run 10000
 if $b > 2 then "jump in.script break"
 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

Restrictions: none

Related commands:

jump, include, shell, variable,

Default: none

LIGGGHTS Users Manual

next command 714

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

package command

Syntax:

package style args

style = gpu or cuda or omp•
args = arguments specific to the style

gpu args = mode first last split keyword value ...
 mode = force or force/neigh
 first = ID of first GPU to be used on each node
 last = ID of last GPU to be used on each node
 split = fraction of particles assigned to the GPU
 zero or more keyword/value pairs may be appended
 keywords = threads_per_atom or cellsize or device

threads_per_atom value = Nthreads
 Nthreads = # of GPU threads used per atom

cellsize value = dist
 dist = length (distance units) in each dimension for neighbor bins

device value = device_type
 device_type = kepler or fermi or cypress or generic

cuda args = keyword value ...
 one or more keyword/value pairs may be appended
 keywords = gpu/node or gpu/node/special or timing or test or override/bpa

gpu/node value = N
 N = number of GPUs to be used per node

gpu/node/special values = N gpu1 .. gpuN
 N = number of GPUs to be used per node
 gpu1 .. gpuN = N IDs of the GPUs to use

timing values = none
test values = id

 id = atom-ID of a test particle
override/bpa values = flag

 flag = 0 for TpA algorithm, 1 for BpA algorithm
omp args = Nthreads mode

 Nthreads = # of OpenMP threads to associate with each MPI process
 mode = force or force/neigh (optional)

•

Examples:

package gpu force 0 0 1.0
package gpu force 0 0 0.75
package gpu force/neigh 0 0 1.0
package gpu force/neigh 0 1 -1.0
package cuda gpu/node/special 2 0 2
package cuda test 3948
package omp * force/neigh
package omp 4 force

Description:

This command invokes package-specific settings. Currently the following packages use it: GPU,
USER-CUDA, and USER-OMP.

To use the accelerated GPU and USER-OMP styles, the use of the package command is required. However, as
described in the "Defaults" section below, if you use the "-sf gpu" or "-sf omp" command-line options to
enable use of these styles, then default package settings are enabled. In that case you only need to use the
package command if you want to change the defaults.

LIGGGHTS Users Manual

package command 715

http://lammps.sandia.gov

To use the accelerate USER-CUDA styles, the package command is not required as defaults are assigned
internally. You only need to use the package command if you want to change the defaults.

See Section_accelerate of the manual for more details about using these various packages for accelerating
LAMMPS calculations.

The gpu style invokes options associated with the use of the GPU package.

The mode setting specifies where neighbor list calculations will be performed. If mode is force, neighbor list
calculation is performed on the CPU. If mode is force/neigh, neighbor list calculation is performed on the
GPU. GPU neighbor list calculation currently cannot be used with a triclinic box. GPU neighbor list
calculation currently cannot be used with hybrid pair styles. GPU neighbor lists are not compatible with styles
that are not GPU-enabled. When a non-GPU enabled style requires a neighbor list, it will also be built using
CPU routines. In these cases, it will typically be more efficient to only use CPU neighbor list builds.

The first and last settings specify the GPUs that will be used for simulation. On each node, the GPU IDs in the
inclusive range from first to last will be used.

The split setting can be used for load balancing force calculation work between CPU and GPU cores in
GPU-enabled pair styles. If 0 < split < 1.0, a fixed fraction of particles is offloaded to the GPU while force
calculation for the other particles occurs simulataneously on the CPU. If splitsplit = 1.0, all force calculations
for GPU accelerated pair styles are performed on the GPU. In this case, hybrid, bond, angle, dihedral,
improper, and long-range calculations can be performed on the CPU while the GPU is performing force
calculations for the GPU-enabled pair style. If all CPU force computations complete before the GPU,
LAMMPS will block until the GPU has finished before continuing the timestep.

As an example, if you have two GPUs per node and 8 CPU cores per node, and would like to run on 4 nodes
(32 cores) with dynamic balancing of force calculation across CPU and GPU cores, you could specify

package gpu force/neigh 0 1 -1

In this case, all CPU cores and GPU devices on the nodes would be utilized. Each GPU device would be
shared by 4 CPU cores. The CPU cores would perform force calculations for some fraction of the particles at
the same time the GPUs performed force calculation for the other particles.

The threads_per_atom keyword allows control of the number of GPU threads used per-atom to perform the
short range force calculation. By default, the value will be chosen based on the pair style, however, the value
can be set with this keyword to fine-tune performance. For large cutoffs or with a small number of particles
per GPU, increasing the value can improve performance. The number of threads per atom must be a power of
2 and currently cannot be greater than 32.

The cellsize keyword can be used to control the size of the cells used for binning atoms in neighbor list
calculations. Setting this value is normally not needed; the optimal value is close to the default (equal to the
cutoff distance for the short range interactions plus the neighbor skin). GPUs can perform efficiently with
much larger cutoffs than CPUs and this can be used to reduce the time required for long-range calculations or
in some cases to eliminate them with models such as coul/wolf or coul/dsf. For very large cutoffs, it can be
more efficient to use smaller values for cellsize in parallel simulations. For example, with a cutoff of
20*sigma and a neighbor skin of sigma, a cellsize of 5.25*sigma can be efficient for parallel simulations.

The device keyword can be used to tune parameters to optimize for a specific accelerator when using
OpenCL. For CUDA, the device keyword is ignored. Currently, the device type is limited to NVIDIA Kepler,
NVIDIA Fermi, AMD Cypress, or a generic device. More devices will be added soon. The default device type
can be specified when building LAMMPS with the GPU library.

LIGGGHTS Users Manual

package command 716

The cuda style invokes options associated with the use of the USER-CUDA package.

The gpu/node keyword specifies the number N of GPUs to be used on each node. An MPI process with rank K
will use the GPU (K mod N). This implies that processes should be assigned with successive ranks on each
node, which is the default with most (or even all) MPI implementations. The default value for N is 2.

The gpu/node/special keyword also specifies the number (N) of GPUs to be used on each node, but allows
more control over their specification. An MPI process with rank K will use the GPU gpuI with l = (K mod N)
+ 1. This implies that processes should be assigned with successive ranks on each node, which is the default
with most (or even all) MPI implementations. For example if you have three GPUs on a machine, one of
which is used for the X-Server (the GPU with the ID 1) while the others (with IDs 0 and 2) are used for
computations you would specify:

package cuda gpu/node/special 2 0 2

A main purpose of the gpu/node/special optoin is to allow two (or more) simulations to be run on one
workstation. In that case one would set the first simulation to use GPU 0 and the second to use GPU 1. This is
not necessary though, if the GPUs are in what is called compute exclusive mode. Using that setting, every
process will get its own GPU automatically. This compute exclusive mode can be set as root using the
nvidia-smi tool which is part of the CUDA installation.

Note that if the gpu/node/special keyword is not used, the USER-CUDA package sorts existing GPUs on each
node according to their number of multiprocessors. This way, compute GPUs will be priorized over X-Server
GPUs.

Use of the timing keyword will output detailed timing information for various subroutines.

The test keyword will output info for the the specified atom at several points during each time step. This is
mainly usefull for debugging purposes. Note that the simulation will be severly slowed down if this option is
used.

The override/bpa keyword can be used to specify which mode is used for pair-force evaluation. TpA = one
thread per atom; BpA = one block per atom. If this keyword is not used, a short test at the begin of each run
will determine which method is more effective (the result of this test is part of the LAMMPS output).
Therefore it is usually not necessary to use this keyword.

The omp style invokes options associated with the use of the USER-OMP package.

The first argument allows to explicitly set the number of OpenMP threads to be allocated for each MPI
process. For example, if your system has nodes with dual quad-core processors, it has a total of 8 cores per
node. You could run MPI on 2 cores on each node (e.g. using options for the mpirun command), and set the
Nthreads setting to 4. This would effectively use all 8 cores on each node. Since each MPI process would
spawn 4 threads (one of which runs as part of the MPI process itself).

For performance reasons, you should not set Nthreads to more threads than there are physical cores (per MPI
task), but LAMMPS cannot check for this.

An Nthreads value of '*' instructs LAMMPS to use whatever is the default for the given OpenMP
environment. This is usually determined via the OMP_NUM_THREADS environment variable or the compiler
runtime. Please note that in most cases the default for OpenMP capable compilers is to use one thread for each
available CPU core when OMP_NUM_THREADS is not set, which can lead to extremely bad performance.

Which combination of threads and MPI tasks gives the best performance is difficult to predict and can depend
on many components of your input. Not all features of LAMMPS support OpenMP and the parallel efficiency
can be very different, too.

LIGGGHTS Users Manual

package command 717

The mode setting specifies where neighbor list calculations will be multi-threaded as well. If mode is force,
neighbor list calculation is performed in serial. If mode is force/neigh, a multi-threaded neighbor list build is
used. Using the force/neigh setting is almost always faster and should produce idential neighbor lists at the
expense of using some more memory (neighbor list pages are always allocated for all threads at the same time
and each thread works on its own pages).

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command.

The cuda style of this command can only be invoked if LAMMPS was built with the USER-CUDA package.
See the Making LAMMPS section for more info.

The gpu style of this command can only be invoked if LAMMPS was built with the GPU package. See the
Making LAMMPS section for more info.

The omp style of this command can only be invoked if LAMMPS was built with the USER-OMP package.
See the Making LAMMPS section for more info.

Related commands:

suffix

Default:

If the "-sf gpu" command-line switch is used then it is as if the command "package gpu force/neigh 0 0 1"
were invoked, to specify default settings for the GPU package. If the command-line switch is not used, then
no defaults are set, and you must specify the appropriate package command in your input script.

The default settings for the USER CUDA package are "package cuda gpu 2". This is the case whether the "-sf
cuda" command-line switch is used or not.

If the "-sf omp" command-line switch is used then it is as if the command "package omp *" were invoked, to
specify default settings for the USER-OMP package. If the command-line switch is not used, then no defaults
are set, and you must specify the appropriate package command in your input script.

LIGGGHTS Users Manual

package command 718

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style adp command

pair_style adp/omp command

Syntax:

pair_style adp

Examples:

pair_style adp
pair_coeff * * Ta.adp Ta
pair_coeff * * ../potentials/AlCu.adp Al Al Cu

Description:

Style adp computes pairwise interactions for metals and metal alloys using the angular dependent potential
(ADP) of (Mishin), which is a generalization of the embedded atom method (EAM) potential. The LAMMPS
implementation is discussed in (Singh). The total energy Ei of an atom I is given by

where F is the embedding energy which is a function of the atomic electron density rho, phi is a pair potential
interaction, alpha and beta are the element types of atoms I and J, and s and t = 1,2,3 and refer to the cartesian
coordinates. The mu and lambda terms represent the dipole and quadruple distortions of the local atomic
environment which extend the original EAM framework by introducing angular forces.

Note that unlike for other potentials, cutoffs for ADP potentials are not set in the pair_style or pair_coeff
command; they are specified in the ADP potential files themselves. Likewise, the ADP potential files list
atomic masses; thus you do not need to use the mass command to specify them.

The NIST WWW site distributes and documents ADP potentials:

http://www.ctcms.nist.gov/potentials

Note that these must be converted into the extended DYNAMO setfl format discussed below.

The NIST site is maintained by Chandler Becker (cbecker at nist.gov) who is good resource for info on
interatomic potentials and file formats.

LIGGGHTS Users Manual

pair_style adp command 719

http://lammps.sandia.gov

Only a single pair_coeff command is used with the adp style which specifies an extended DYNAMO setfl file,
which contains information for M elements. These are mapped to LAMMPS atom types by specifying N
additional arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom
types:

filename•
N element names = mapping of extended setfl elements to atom types•

See the pair_coeff doc page for alternate ways to specify the path for the potential file.

As an example, the potentials/AlCu.adp file, included in the potentials directory of the LAMMPS distrbution,
is an extended setfl file which has tabulated ADP values for w elements and their alloy interactions: Cu and
Al. If your LAMMPS simulation has 4 atoms types and you want the 1st 3 to be Al, and the 4th to be Cu, you
would use the following pair_coeff command:

pair_coeff * * AlCu.adp Al Al Al Cu

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first three Al arguments map
LAMMPS atom types 1,2,3 to the Al element in the extended setfl file. The final Cu argument maps
LAMMPS atom type 4 to the Al element in the extended setfl file. Note that there is no requirement that your
simulation use all the elements specified by the extended setfl file.

If a mapping value is specified as NULL, the mapping is not performed. This can be used when an adp
potential is used as part of the hybrid pair style. The NULL values are placeholders for atom types that will be
used with other potentials.

Adp files in the potentials directory of the LAMMPS distribution have an ".adp" suffix. A DYNAMO setfl file
extended for ADP is formatted as follows. Basically it is the standard setfl format with additional tabulated
functions u and w added to the file after the tabulated pair potentials. See the pair_eam command for further
details on the setfl format.

lines 1,2,3 = comments (ignored)•
line 4: Nelements Element1 Element2 ... ElementN•
line 5: Nrho, drho, Nr, dr, cutoff•

Following the 5 header lines are Nelements sections, one for each element, each with the following format:

line 1 = atomic number, mass, lattice constant, lattice type (e.g. FCC)•
embedding function F(rho) (Nrho values)•
density function rho(r) (Nr values)•

Following the Nelements sections, Nr values for each pair potential phi(r) array are listed for all i,j element
pairs in the same format as other arrays. Since these interactions are symmetric (i,j = j,i) only phi arrays with i
>= j are listed, in the following order: i,j = (1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1), ..., (Nelements,
Nelements). The tabulated values for each phi function are listed as r*phi (in units of eV-Angstroms), since
they are for atom pairs, the same as for other EAM files.

After the phi(r) arrays, each of the u(r) arrays are listed in the same order with the same assumptions of
symmetry. Directly following the u(r), the w(r) arrays are listed. Note that phi(r) is the only array tabulated
with a scaling by r.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in

LIGGGHTS Users Manual

pair_style adp/omp command 720

Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, where types I and J correspond to two different element types, no special
mixing rules are needed, since the ADP potential files specify alloy interactions explicitly.

This pair style does not support the pair_modify shift, table, and tail options.

This pair style does not write its information to binary restart files, since it is stored in tabulated potential files.
Thus, you need to re-specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the MANYBODY package. It is only enabled if LAMMPS was built with that
package (which it is by default).

Related commands:

pair_coeff, pair_eam

Default: none

(Mishin) Mishin, Mehl, and Papaconstantopoulos, Acta Mater, 53, 4029 (2005).

(Singh) Singh and Warner, Acta Mater, 58, 5797-5805 (2010),

LIGGGHTS Users Manual

pair_style adp/omp command 721

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style airebo command

pair_style airebo/omp command

pair_style rebo command

pair_style rebo/omp command

Syntax:

pair_style style cutoff LJ_flag TORSION_flag

style = airebo or rebo•
cutoff = LJ cutoff (sigma scale factor) (AIREBO only)•
LJ_flag = 0/1 to turn off/on the LJ term (AIREBO only, optional)•
TORSION_flag = 0/1 to turn off/on the torsion term (AIREBO only, optional)•

Examples:

pair_style airebo 3.0
pair_style airebo 2.5 1 0
pair_coeff * * ../potentials/CH.airebo H C

pair_style rebo
pair_coeff * * ../potentials/CH.airebo H C

Description:

The airebo pair style computes the Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO)
Potential of (Stuart) for a system of carbon and/or hydrogen atoms. Note that this is the initial formulation of
AIREBO from 2000, not the later formulation. The rebo pair style computes the Reactive Empirical Bond
Order (REBO) Potential of (Brenner). Note that this is the so-called 2nd generation REBO from 2002, not the
original REBO from 1990. As discussed below, 2nd generation REBO is closely related to the intial
AIREBO; it is just a subset of the potential energy terms.

The AIREBO potential consists of three terms:

By default, all three terms are included. For the airebo style, if the two optional flag arguments to the
pair_style command are included, the LJ and torsional terms can be turned off. Note that both or neither of the
flags must be included. If both of the LJ an torsional terms are turned off, it becomes the 2nd-generation
REBO potential, with a small caveat on the spline fitting procedure mentioned below. This can be specified
directly as pair_style rebo with no additional arguments.

The detailed formulas for this potential are given in (Stuart); here we provide only a brief description.

LIGGGHTS Users Manual

pair_style airebo command 722

http://lammps.sandia.gov

The E_REBO term has the same functional form as the hydrocarbon REBO potential developed in (Brenner).
The coefficients for E_REBO in AIREBO are essentially the same as Brenner's potential, but a few fitted
spline values are slightly different. For most cases the E_REBO term in AIREBO will produce the same
energies, forces and statistical averages as the original REBO potential from which it was derived. The
E_REBO term in the AIREBO potential gives the model its reactive capabilities and only describes
short-ranged C-C, C-H and H-H interactions (r < 2 Angstroms). These interactions have strong
coordination-dependence through a bond order parameter, which adjusts the attraction between the I,J atoms
based on the position of other nearby atoms and thus has 3- and 4-body dependence.

The E_LJ term adds longer-ranged interactions (2 < r < cutoff) using a form similar to the standard Lennard
Jones potential. The E_LJ term in AIREBO contains a series of switching functions so that the short-ranged
LJ repulsion (1/r^12) does not interfere with the energetics captured by the E_REBO term. The extent of the
E_LJ interactions is determined by the cutoff argument to the pair_style command which is a scale factor. For
each type pair (C-C, C-H, H-H) the cutoff is obtained by multiplying the scale factor by the sigma value
defined in the potential file for that type pair. In the standard AIREBO potential, sigma_CC = 3.4 Angstroms,
so with a scale factor of 3.0 (the argument in pair_style), the resulting E_LJ cutoff would be 10.2 Angstroms.

The E_TORSION term is an explicit 4-body potential that describes various dihedral angle preferences in
hydrocarbon configurations.

Only a single pair_coeff command is used with the airebo or rebo style which specifies an AIREBO potential
file with parameters for C and H. Note that the rebo style in LAMMPS uses the same AIREBO-formatted
potential file. These are mapped to LAMMPS atom types by specifying N additional arguments after the
filename in the pair_coeff command, where N is the number of LAMMPS atom types:

filename•
N element names = mapping of AIREBO elements to atom types•

See the pair_coeff doc page for alternate ways to specify the path for the potential file.

As an example, if your LAMMPS simulation has 4 atom types and you want the 1st 3 to be C, and the 4th to
be H, you would use the following pair_coeff command:

pair_coeff * * CH.airebo C C C H

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first three C arguments map
LAMMPS atom types 1,2,3 to the C element in the AIREBO file. The final H argument maps LAMMPS atom
type 4 to the H element in the SW file. If a mapping value is specified as NULL, the mapping is not
performed. This can be used when a airebo potential is used as part of the hybrid pair style. The NULL values
are placeholders for atom types that will be used with other potentials.

The parameters/coefficients for the AIREBO potentials are listed in the CH.airebo file to agree with the
original (Stuart) paper. Thus the parameters are specific to this potential and the way it was fit, so modifying
the file should be done cautiously.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

LIGGGHTS Users Manual

pair_style rebo/omp command 723

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

These pair styles do not support the pair_modify mix, shift, table, and tail options.

These pair styles do not write their information to binary restart files, since it is stored in potential files. Thus,
you need to re-specify the pair_style and pair_coeff commands in an input script that reads a restart file.

These pair styles can only be used via the pair keyword of the run_style respa command. They do not support
the inner, middle, outer keywords.

Restrictions:

These pair styles are part of the MANYBODY package. They are only enabled if LAMMPS was built with
that package (which it is by default). See the Making LAMMPS section for more info.

These pair potentials require the newton setting to be "on" for pair interactions.

The CH.airebo potential file provided with LAMMPS (see the potentials directory) is parameterized for metal
units. You can use the AIREBO or REBO potential with any LAMMPS units, but you would need to create
your own AIREBO potential file with coefficients listed in the appropriate units if your simulation doesn't use
"metal" units.

Related commands:

pair_coeff

Default: none

(Stuart) Stuart, Tutein, Harrison, J Chem Phys, 112, 6472-6486 (2000).

(Brenner) Brenner, Shenderova, Harrison, Stuart, Ni, Sinnott, J Physics: Condensed Matter, 14, 783-802
(2002).

LIGGGHTS Users Manual

pair_style rebo/omp command 724

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style awpmd/cut command

Syntax:

pair_style awpmd/cut Rc keyword value ...

Rc = global cutoff, -1 means cutoff of half the shortest box length•
zero or more keyword/value pairs may be appended•
keyword = hartree or dproduct or uhf or free or pbc or fix or harm or ermscale or flex_press

hartree value = none
dproduct value = none
uhf value = none
free value = none
pbc value = Plen

 Plen = periodic width of electron = -1 or positive value (distance units)
fix value = Flen

 Flen = fixed width of electron = -1 or positive value (distance units)
harm value = width

 width = harmonic width constraint
ermscale value = factor

 factor = scaling between electron mass and width variable mass
flex_press value = none

•

Examples:

pair_style awpmd/cut -1
pair_style awpmd/cut 40.0 uhf free
pair_coeff * *
pair_coeff 2 2 20.0

Description:

This pair style contains an implementation of the Antisymmetrized Wave Packet Molecular Dynamics
(AWPMD) method. Need citation here. Need basic formulas here. Could be links to other documents.

Rc is the cutoff.

The pair_style command allows for several optional keywords to be specified.

The hartree, dproduct, and uhf keywords specify the form of the initial trial wave function for the system. If
the hartree keyword is used, then a Hartree multielectron trial wave function is used. If the dproduct keyword
is used, then a trial function which is a product of two determinants for each spin type is used. If the uhf
keyword is used, then an unrestricted Hartree-Fock trial wave function is used.

The free, pbc, and fix keywords specify a width constraint on the electron wavepackets. If the free keyword is
specified, then there is no constraint. If the pbc keyword is used and Plen is specified as -1, then the maximum
width is half the shortest box length. If Plen is a positive value, then the value is the maximum width. If the fix
keyword is used and Flen is specified as -1, then electrons have a constant width that is read from the data
file. If Flen is a positive value, then the constant width for all electrons is set to Flen.

The harm keyword allow oscillations in the width of the electron wavepackets. More details are needed.

The ermscale keyword specifies a unitless scaling factor between the electron masses and the width variable
mass. More details needed.

LIGGGHTS Users Manual

pair_style awpmd/cut command 725

http://lammps.sandia.gov

If the flex_press keyword is used, then a contribution from the electrons is added to the total virial and
pressure of the system.

This potential is designed to be used with atom_style wavepacket definitions, in order to handle the
description of systems with interacting nuclei and explicit electrons.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

cutoff (distance units)•

For awpmd/cut, the cutoff coefficient is optional. If it is not used (as in some of the examples above), the
default global value specified in the pair_style command is used.

Mixing, shift, table, tail correction, restart, rRESPA info:

The pair_modify mix, shift, table, and tail options are not relevant for this pair style.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff

Default:

These are the defaults for the pair_style keywords: hartree for the initial wavefunction, free for the
wavepacket width.

LIGGGHTS Users Manual

pair_style awpmd/cut command 726

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style beck command

pair_style beck/gpu command

pair_style beck/omp command

Syntax:

pair_style beck Rc

Rc = cutoff for interactions (distance units)•

Examples:

pair_style beck 8.0
pair_coeff * * 399.671876712 0.0000867636112694 0.675 4.390 0.0003746
pair_coeff 1 1 399.671876712 0.0000867636112694 0.675 4.390 0.0003746 6.0

Description:

Style beck computes interactions based on the potential by (Beck), originally designed for simulation of
Helium. It includes truncation at a cutoff distance Rc.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands.

A (energy units)•
B (energy-distance^6 units)•
a (distance units)•
alpha (1/distance units)•
beta (1/distance^6 units)•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global cutoff Rc is used.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

LIGGGHTS Users Manual

pair_style beck command 727

http://lammps.sandia.gov

input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, coeffiecients must be specified. No default miture rules are used.

This pair style does not support the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long-range tail corrections.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff

Default: none

(Beck) Beck, Molecular Physics, 14, 311 (1968).

LIGGGHTS Users Manual

pair_style beck/omp command 728

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style body command

Syntax:

pair_style body cutoff

cutoff = global cutoff for interactions (distance units)

Examples:

pair_style body 3.0
pair_coeff * * 1.0 1.0
pair_coeff 1 1 1.0 1.5 2.5

Description:

Style body is for use with body particles and calculates pairwise body/body interactions as well as interactions
between body and point-particles. See Section_howto 14 of the manual and the body doc page for more
details on using body particles.

This pair style is designed for use with the "nparticle" body style, which is specified as an argument to the
"atom-style body" command. See the body doc page for more details about the body styles LAMMPS
supports. The "nparticle" style treats a body particle as a rigid body composed of N sub-particles.

The coordinates of a body particle are its center-of-mass (COM). If the COMs of a pair of body particles are
within the cutoff (global or type-specific, as specified above), then all interactions between pairs of
sub-particles in the two body particles are computed. E.g. if the first body particle has 3 sub-particles, and the
second has 10, then 30 interactions are computed and summed to yield the total force and torque on each body
particle.

IMPORTANT NOTE: In the example just described, all 30 interactions are computed even if the distance
between a particular pair of sub-particles is greater than the cutoff. Likewise, no interaction between two body
particles is computed if the two COMs are further apart than the cutoff, even if the distance between some
pairs of their sub-particles is within the cutoff. Thus care should be used in defining the cutoff distances for
body particles, depending on their shape and size.

Similar rules apply for a body particle interacting with a point particle. The distance between the two particles
is calculated using the COM of the body particle and the position of the point particle. If the distance is within
the cutoff and the body particle has N sub-particles, then N interactions with the point particle are computed
and summed. If the distance is not within the cutoff, no interactions between the body and point particle are
computed.

The interaction between two sub-particles, or a sub-particle and point particle, or betwee two point particles is
computed as a Lennard-Jones interaction, using the standard formula

LIGGGHTS Users Manual

pair_style body command 729

http://lammps.sandia.gov

where Rc is the cutoff. As explained above, an interaction involving one or two body sub-particles may be
computed even for r > Rc.

For style body, the following coefficients must be defined for each pair of atoms types via the pair_coeff
command as in the examples above, or in the data file or restart files read by the read_data or read_restart
commands:

epsilon (energy units)•
sigma (distance units)•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global cutoff is used.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of this pair
style can be mixed. The default mix value is geometric. See the "pair_modify" command for details.

This pair style does not support the pair_modify shift, table, and tail options.

This pair style does not write its information to binary restart files.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This style is part of the BODY package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Defining particles to be bodies so they participate in body/body or body/particle interactions requires the use
of the atom_style body command.

Related commands:

pair_coeff, fix_rigid

Default: none

LIGGGHTS Users Manual

pair_style body command 730

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style bop command

Syntax:

pair_style bop keyword ...

zero or more keywords may be appended•
keyword = table or save or sigmaoff

table = BOP potential file has tabulated form
save = pre-compute and save some values
sigmaoff = assume a_sigma = 0

•

Examples:

pair_style bop
pair_coeff * * ../potentials/CdTe_bop Cd Te
pair_style bop table save
pair_coeff * * ../potentials/CdTe.bop.table Cd Te Te
communicate single cutoff 14.70

Description:

The bop pair style computes Bond-Order Potentials (BOP) based on quantum mechanical theory incorporating
both sigma and pi bondings. By analytically deriving the BOP from quantum mechanical theory its
transferability to different phases can approach that of quantum mechanical methods. This particlular BOP is
extremely effective at modeling III-V and II-VI compounds such as GaAs and CdTe. This potential is similar
to the original BOP developed by Pettifor (Pettifor_1, Pettifor_2, Pettifor_3) and later updated by Murdick,
Zhou, and Ward (Murdick, Ward).

The BOP potential consists of three terms:

where phi_ij(r_ij) is a short-range two-body function representing the repulsion between a pair of ion cores,
beta_(sigma,ij)(r_ij) and beta_(sigma,ij)(r_ij) are respectively sigma and pi bond ingtegrals,
THETA_(sigma,ij) and THETA_(pi,ij) are sigma and pi bond-orders, and U_prom is the promotion energy for
sp-valent systems.

The detailed formulas for this potential are given in Ward (Ward); here we provide only a brief description.

The repulsive energy phi_ij(r_ij) and the bond integrals beta_(sigma,ij)(r_ij) and beta_(phi,ij)(r_ij) are
functions of the interatomic distance r_ij between atom i and j. Each of these potentials has a smooth cutoff at
a radius of r_(cut,ij). These smooth cutoffs ensure stable behavior at situations with high sampling near the
cutoff such as melts and surfaces.

The bond-orders can be viewed as environment-dependent local variables that are ij bond specific. The
maximum value of the sigma bond-order (THETA_sigma) is 1, while that of the pi bond-order (THETA_pi) is
2, attributing to a maximum value of the total bond-order (THETA_sigma+THETA_pi) of 3. The sigma and
pi bond-orders reflect the ubiquitous single-, double-, and triple- bond behavior of chemistry. Their analytical

LIGGGHTS Users Manual

pair_style bop command 731

http://lammps.sandia.gov

expressions can be derived from tight- binding theory by recursively expanding an inter-site Green's function
as a continued fraction. To accurately represent the bonding with a computationally efficient potential
formulation suitable for MD simulations, the derived BOP only takes (and retains) the first two levels of the
recursive representations for both the sigma and the pi bond-orders. Bond-order terms can be understood in
terms of molecular orbital hopping paths based upon the Cyrot-Lackmann theorem (Pettifor_1). The sigma
bond-order with a half-full valence band filling. This pi bond-order expression also contains also contains a
three-member ring term that allows implementation of an asymmetric density of states, which helps to either
stabilize or destabilize close-packed structures. The pi bond-order includes hopping paths of length 4. This
enables the incorporation of dihedral angles effects.

The cutoffs for the various interactions are defined in the BOP potential file.

IMPORTANT NOTE: You must use the communicate cutoff command to insure ghost atoms are acquired at
a distance 3x further than the largest BOP cutoff (for a particular pair of elements). E.g. if the BOP cutoff is
4.9 Angstroms, then the ghost atom communication needs to be 14.7 Angstroms or greater as in the example
above. This is because the BOP formulation uses neighbors of neighbors of neighbors to enumerate all the
required many-body interactions. LAMMPS will generate an error if you do not use an appropriate setting for
the communicate cutoff command.

Several options can be specified as keywords with the pair_style command.

The table keyword tells LAMMPS what format the BOP potential file is in. The default is a non-tabulated
form. If the table keyword is used, the file is in a tabulated form containing pre-tabulated pair functions for
phi_ij(r_ij), beta_(sigma,ij)(r_ij), and beta_(pi,ij)(r_ij). This allows you to use your own functional form for
various interactions.

The save keyword gives you the option to calculate and store in advance a set of distances, angles, and
derivatives of angles. The default is to not do this, but to calculate the various quantities on-the-fly each time
they are needed. The former may be faster, but takes more memory. The latter requires less memory, but may
be slower. It is best to test this option to see if it makes a difference on your machine for the specific problem
you are modeling.

The sigmaoff keyword optimizes the BOP equations for the case of a_sigma = 0. For some published BOP
potentials, a_sigma = 0 and several terms in the BOP equationas drop out. If this is the case, specifying
sigmaoff will typically speed up the BOP pair style.

Only a single pair_coeff command is used with the bop style which specifies a BOP potential file, with
parameters for all needed elements. These are mapped to LAMMPS atom types by specifying N additional
arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom types:

filename•
N element names = mapping of BOP elements to atom types•

See the pair_coeff doc page for alternate ways to specify the path for the potential file.

As an example, imagine the CdTe.bop file has BOP values for Cd and Te. If your LAMMPS simulation has 4
atoms types and you want the 1st 3 to be Cd, and the 4th to be Te, you would use the following pair_coeff
command:

pair_coeff * * CdTe Cd Cd Cd Te

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first three Cd arguments map
LAMMPS atom types 1,2,3 to the Cd element in the BOP file. The final Te argument maps LAMMPS atom
type 4 to the Te element in the BOP file. If a mapping value is specified as NULL, the mapping is not
performed. This can be used when a bop potential is used as part of the hybrid pair style. The NULL values

LIGGGHTS Users Manual

pair_style bop command 732

are placeholders for atom types that will be used with other potentials.

BOP files in the potentials directory of the LAMMPS distribution have a ".bop" or ".bop.table" suffix,
depending on whether they are of the non-tabulated or tabulated form, as described above.

The parameters/coefficients format for the both kinds of BOP files are given below with variables matching
the formulation of Ward (Ward). Each header line containing a ":" is preceded by a blank line.

Line 1: elements: (header)•
Line 2: #elements N•

The first two lines are followed by N lines containing the atomic number and mass of each element.

Non-tabulated potential file format:

Following the definition of the elements is the block of global variables for spline and quadratic fits of
THETA_(S,ij) and its components THETA_0, THETA_1, and S.

Line 1: global: (header)•
Line 2: delta_1-delta_7 (if all are not used in the particular formulation, set unused values to 0.0)•
Line 3: ncutoff, r_big, r_small (r_big and r_small are parameters for pairwise paramters gamma
typically set to 0.99 and 0.01, respectively)

•

Line 4: which, alpha, nfunc (these are options for the spline which=1.0 (means using a smooth
function); which=2.0 (spline), alpha is a parameter in the spline, nfunc is the type of GSP function
(f_ij) (nfunc=1 is the published equation from Ward (Ward); nfunc=2 f_ij(r_ij)=exp(n_ij*r_ij);
nfunc=3 f_ij(r_ij)=1/(r_ij)^(n_ij)).

•

Line 5: alpha_1, beta_1, gamma_1 (alpha_1=first coefficient for THETA_0; beta_1=first exponent for
THETA_0; gamma_1=second exponent for THETA_0)

•

Line 6: alpha_2, beta_2 (alpha_2=second coefficient for S; beta_2=first exponent for S)•
Line 7: alpha_3, beta_3 (alpha_3=first coefficient for THETA_1; beta_3=second coefficient for
THETA_1)

•

The next block contains constants for the environment depend promotional energy for sp-valent systems, each
of which are species dependent. Refer to Pettifor (Pettifor_3) for constant definitions. As well as one species
dependent parameter p_pi.

Line 1: ptrs: (header)•

Following the ptrs header there are N lines for e_1-e_N containing (A_ij)^(mu*nu), delta^mu, p_pi

Line 2: (A_ij)^(mu*nu), delta^mu, p_pi (for e_1)•
Line 3: (A_ij)^(mu*nu), delta^mu, p_pi (for e_2 and continues to e_N)•

The next block contains constants for the pair interactions.

Line 1: pairs: (header)•

Following the header the block contains a series of constants for the number of pair interaction types, the
block will be broken up into parameters for e_i-e_j with i=0->N, j=i->N. Each single interaction section for
this block will contain (see Ward for parameter definitions):

Line 2: r_0, r_c, r_1, r_cut (for e_1-e_2 interactions)•
Line 3: m, n, n_c•
Line 4: phi_0, beta_(sigma,0), beta_(pi,0)•

LIGGGHTS Users Manual

pair_style bop command 733

Line 5: a_sigma, c_sigma, delta_sigma (From complete formulation of 1/2 full valance shell for this
particular formulation delta_sigma=0)

•

Line 6: a_pi, c_pi, delta_pi•
Line 7: f_sigma, k_sigma, delta_3 (This delta_3 is similar to that of the previous section but is
interaction type dependent)

•

Line 8: r_0, r_c, r_1, r_cut (for e_1-e_2 interactions and repeats as above)•

The next block contains tris.

Line 1: tris: (header)•

Following the header there is a line for each three body interaction types as e_j-e_i-e_k with i->N, j->N,
k=j->N

Line 2: g_sigma0, g_sigma1, g_sigma2 (these are coefficients for g_(sigma,ijk)(theta_ijk) for
e_1-e_1-e_1 interaction. Ward contains the full expressions for the constants as functions of
b_(sigma,ijk), p_(sigma,ijk), u(sigma,ijk)

•

Line 3: g_sigma0, g_sigma1, g_sigma2 (for e_1-e_1-e_2)•

This would be the end of the potential parameter file without pre- tabulated data.

Tabulated potential file format:

The parameters/coefficients format for the BOP potentials input file containing pre-tabulated functions of is
given below with variables matching the formulation of Ward (Ward).

Line 1: # elements N•

The first two lines are followed by N lines containing the atomic number and mass of each element THETA_0
and THETA_1 (see Ward).

Following the definition of the elements several global variables for the tabulated functions are given.

Line 1: nr, nBOt (nr is the number of divisions the radius is broken into for function tables and MUST
be a factor of 5; nBOt is the number of divisions for the tabulated values of THETA_(S,ij)

•

Line 2: delta_1-delta_7 (if all are not used in the particular•
formulation, set unused values to 0.0)•

Following this N lines for e_1-e_N containing p_pi.

Line 3: p_pi (for e_1)•
Line 4: p_pi (for e_2 and continues to e_N)•

The next section contains several pair constants for the number of interaction types e_i-e_j, with i=1->N,
j=i->N

Line 1: r_cut (for e_1-e_1 interactions)•
Line 2: c_sigma, a_sigma, c_pi, a_pi•
Line 3: delta_sigma, delta_pi•
Line 4: f_sigma, k_sigma, delta_3 (This delta_3 is similar to that of the previous section but is
interaction type dependent)

•

The next section contains a line for each three body interaction type e_j-e_i-e_k with i=0->N, j=0->N, k=j->N

LIGGGHTS Users Manual

pair_style bop command 734

Line 1: g_(sigma0), g_(sigma1), g_(sigma2) (These are coefficients for g_(sigma,jik)(THETA_ijk)
for e_1-e_1-e_1 interaction. Ward contains the full expressions for the constants as functions of
b_(sigma,ijk), p_(sigma,ijk), u_(sigma,ijk))

•

Line 2: g_(sigma0), g_(sigma1), g_(sigma2) (for e_1-e_1-e_2)•

The next section contains a block for each interaction type for the phi_ij(r_ij). Each block has nr entries with 5
entries per line.

Line 1: phi(r1), phi(r2), phi(r3), phi(r4), phi(r5) (for the e_1-e_1 interaction type)•
Line 2: phi(r6), phi(r7), phi(r8), phi(r9), phi(r10) (this continues until nr)•
...•
Line nr/5_1: phi(r1), phi(r2), phi(r3), phi(r4), phi(r5), (for the e_1-e_1 interaction type)•

The next section contains a block for each interaction type for the beta_(sigma,ij)(r_ij). Each block has nr
entries with 5 entries per line.

Line 1: beta_sigma(r1), beta_sigma(r2), beta_sigma(r3), beta_sigma(r4), beta_sigma(r5) (for the
e_1-e_1 interaction type)

•

Line 2: beta_sigma(r6), beta_sigma(r7), beta_sigma(r8), beta_sigma(r9), beta_sigma(r10) (this
continues until nr)

•

...•
Line nr/5+1: beta_sigma(r1), beta_sigma(r2), beta_sigma(r3), beta_sigma(r4), beta_sigma(r5) (for the
e_1-e_2 interaction type)

•

The next section contains a block for each interaction type for beta_(pi,ij)(r_ij). Each block has nr entries with
5 entries per line.

Line 1: beta_pi(r1), beta_pi(r2), beta_pi(r3), beta_pi(r4), beta_pi(r5) (for the e_1-e_1 interaction type)•
Line 2: beta_pi(r6), beta_pi(r7), beta_pi(r8), beta_pi(r9), beta_pi(r10) (this continues until nr)•
...•
Line nr/5+1: beta_pi(r1), beta_pi(r2), beta_pi(r3), beta_pi(r4), beta_pi(r5) (for the e_1-e_2 interaction
type)

•

The next section contains a block for each interaction type for the THETA_(S,ij)((THETA_(sigma,ij))^(1/2),
f_(sigma,ij)). Each block has nBOt entries with 5 entries per line.

Line 1: THETA_(S,ij)(r1), THETA_(S,ij)(r2), THETA_(S,ij)(r3), THETA_(S,ij)(r4),
THETA_(S,ij)(r5) (for the e_1-e_2 interaction type)

•

Line 2: THETA_(S,ij)(r6), THETA_(S,ij)(r7), THETA_(S,ij)(r8), THETA_(S,ij)(r9),
THETA_(S,ij)(r10) (this continues until nBOt)

•

...•
Line nBOt/5+1: THETA_(S,ij)(r1), THETA_(S,ij)(r2), THETA_(S,ij)(r3), THETA_(S,ij)(r4),
THETA_(S,ij)(r5) (for the e_1-e_2 interaction type)

•

The next section contains a block of N lines for e_1-e_N

Line 1: delta^mu (for e_1)•
Line 2: delta^mu (for e_2 and repeats to e_N)•

The last section contains more constants for e_i-e_j interactions with i=0->N, j=i->N

Line 1: (A_ij)^(mu*nu) (for e1-e1)•
Line 2: (A_ij)^(mu*nu) (for e1-e2 and repeats as above)•

LIGGGHTS Users Manual

pair_style bop command 735

Mixing, shift, table tail correction, restart:

This pair style does not support the pair_modify mix, shift, table, and tail options.

This pair style does not write its information to binary restart files, since it is stored in potential files. Thus,
you need to re-specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

These pair styles are part of the MANYBODY package. They are only enabled if LAMMPS was built with
that package (which it is by default). See the Making LAMMPS section for more info.

These pair potentials require the newtion setting to be "on" for pair interactions.

The CdTe.bop and GaAs.bop potential files provided with LAMMPS (see the potentials directory) are
parameterized for metal units. You can use the BOP potential with any LAMMPS units, but you would need
to create your own BOP potential file with coefficients listed in the appropriate units if your simulation does
not use "metal" units.

Related commands:

pair_coeff

Default:

non-tabulated potential file, a_0 is non-zero.

(Pettifor_1) D.G. Pettifor and I.I. Oleinik, Phys. Rev. B, 59, 8487 (1999).

(Pettifor_2) D.G. Pettifor and I.I. Oleinik, Phys. Rev. Lett., 84, 4124 (2000).

(Pettifor_3) D.G. Pettifor and I.I. Oleinik, Phys. Rev. B, 65, 172103 (2002).

(Murdick) D.A. Murdick, X.W. Zhou, H.N.G. Wadley, D. Nguyen-Manh, R. Drautz, and D.G. Pettifor, Phys.
Rev. B, 73, 45206 (2006).

(Ward) D.K. Ward, X.W. Zhou, B.M. Wong, F.P. Doty, and J.A. Zimmerman, Phys. Rev. B, 85,115206
(2012).

LIGGGHTS Users Manual

pair_style bop command 736

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style born command

pair_style born/omp command

pair_style born/gpu command

pair_style born/coul/long command

pair_style born/coul/long/cuda command

pair_style born/coul/long/gpu command

pair_style born/coul/long/omp command

pair_style born/coul/msm command

pair_style born/coul/msm/omp command

pair_style born/coul/wolf command

pair_style born/coul/wolf/gpu command

pair_style born/coul/wolf/omp command

Syntax:

pair_style style args

style = born or born/coul/long or born/coul/msm or born/coul/wolf•
args = list of arguments for a particular style•

born args = cutoff
 cutoff = global cutoff for non-Coulombic interactions (distance units)

born/coul/long args = cutoff (cutoff2)
 cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

born/coul/msm args = cutoff (cutoff2)
 cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

born/coul/wolf args = alpha cutoff (cutoff2)
 alpha = damping parameter (inverse distance units)
 cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

Examples:

pair_style born 10.0
pair_coeff * * 6.08 0.317 2.340 24.18 11.51
pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51

pair_style born/coul/long 10.0
pair_style born/coul/long 10.0 8.0
pair_coeff * * 6.08 0.317 2.340 24.18 11.51

LIGGGHTS Users Manual

pair_style born command 737

http://lammps.sandia.gov

pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51

pair_style born/coul/msm 10.0
pair_style born/coul/msm 10.0 8.0
pair_coeff * * 6.08 0.317 2.340 24.18 11.51
pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51

pair_style born/coul/wolf 0.25 10.0
pair_style born/coul/wolf 0.25 10.0 9.0
pair_coeff * * 6.08 0.317 2.340 24.18 11.51
pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51

Description:

The born style computes the Born-Mayer-Huggins or Tosi/Fumi potential described in (Fumi and Tosi), given
by

where sigma is an interaction-dependent length parameter, rho is an ionic-pair dependent length parameter,
and Rc is the cutoff.

The styles with coul/long or coul/msm add a Coulombic term as described for the lj/cut pair styles. An
additional damping factor is applied to the Coulombic term so it can be used in conjunction with the
kspace_style command and its ewald or pppm of msm option. The Coulombic cutoff specified for this style
means that pairwise interactions within this distance are computed directly; interactions outside that distance
are computed in reciprocal space.

If one cutoff is specified for the born/coul/long and born/coul/msm style, it is used for both the A,C,D and
Coulombic terms. If two cutoffs are specified, the first is used as the cutoff for the A,C,D terms, and the
second is the cutoff for the Coulombic term.

The born/coul/wolf style adds a Coulombic term as described for the Wolf potential in the coul/wolf pair
style.

Note that these potentials are related to the Buckingham potential.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

A (energy units)•
rho (distance units)•
sigma (distance units)•
C (energy units * distance units^6)•
D (energy units * distance units^8)•
cutoff (distance units)•

The second coefficient, rho, must be greater than zero.

The last coefficient is optional. If not specified, the global A,C,D cutoff specified in the pair_style command
is used.

LIGGGHTS Users Manual

pair_style born/coul/wolf/omp command 738

For born/coul/long and born/coul/wolf no Coulombic cutoff can be specified for an individual I,J type pair.
All type pairs use the same global Coulombic cutoff specified in the pair_style command.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

These pair styles do not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

These styles support the pair_modify shift option for the energy of the exp(), 1/r^6, and 1/r^8 portion of the
pair interaction.

The born/coul/long pair style supports the pair_modify table option ti tabulate the short-range portion of the
long-range Coulombic interaction.

These styles support the pair_modify tail option for adding long-range tail corrections to energy and pressure.

Thess styles writes thei information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

These styles can only be used via the pair keyword of the run_style respa command. They do not support the
inner, middle, outer keywords.

Restrictions:

The born/coul/long style is part of the KSPACE package. It is only enabled if LAMMPS was built with that
package (which it is by default). See the Making LAMMPS section for more info.

Related commands:

pair_coeff, pair_style buck

Default: none

Fumi and Tosi, J Phys Chem Solids, 25, 31 (1964), Fumi and Tosi, J Phys Chem Solids, 25, 45 (1964).

LIGGGHTS Users Manual

pair_style born/coul/wolf/omp command 739

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style brownian command

pair_style brownian/omp command

pair_style brownian/poly command

pair_style brownian/poly/omp command

Syntax:

pair_style style mu flaglog flagfld cutinner cutoff t_target seed flagHI flagVF

style = brownian or brownian/poly•
mu = dynamic viscosity (dynamic viscosity units)•
flaglog = 0/1 log terms in the lubrication approximation on/off•
flagfld = 0/1 to include/exclude Fast Lubrication Dynamics effects•
cutinner = inner cutoff distance (distance units)•
cutoff = outer cutoff for interactions (distance units)•
t_target = target temp of the system (temperature units)•
seed = seed for the random number generator (positive integer)•
flagHI (optional) = 0/1 to include/exclude 1/r hydrodynamic interactions•
flagVF (optional) = 0/1 to include/exclude volume fraction corrections in the long-range isotropic
terms

•

Examples:

pair_style brownian 1.5 1 1 2.01 2.5 2.0 5878567 (assuming radius = 1)
pair_coeff 1 1 2.05 2.8
pair_coeff * *

Description:

Styles brownian and brownain/poly compute Brownian forces and torques on finite-size particles. The former
requires monodisperse spherical particles; the latter allows for polydisperse spherical particles.

These pair styles are designed to be used with either the pair_style lubricate or pair_style lubricateU
commands to provide thermostatting when dissipative lubrication forces are acting. Thus the parameters mu,
flaglog, flagfld, cutinner, and cutoff should be specified consistent with the settings in the lubrication pair
styles. For details, refer to either of the lubrication pair styles.

The t_target setting is used to specify the target temperature of the system. The random number seed is used
to generate random numbers for the thermostatting procedure.

The flagHI and flagVF settings are optional. Neither should be used, or both must be defined.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

cutinner (distance units)•
cutoff (distance units)•

LIGGGHTS Users Manual

pair_style brownian command 740

http://lammps.sandia.gov

The two coefficients are optional. If neither is specified, the two cutoffs specified in the pair_style command
are used. Otherwise both must be specified.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in this
section of the manual. The accelerated styles take the same arguments and should produce the same results,
except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See this section of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the two cutoff distances for this pair style can be mixed. The default mix
value is geometric. See the "pair_modify" command for details.

This pair style does not support the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

These styles are part of the FLD package. They are only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Only spherical monodisperse particles are allowed for pair_style brownian.

Only spherical particles are allowed for pair_style brownian/poly.

Related commands:

pair_coeff, pair_style lubricate, pair_style lubricateU

Default:

The default settings for the optional args are flagHI = 1 and flagVF = 1.

LIGGGHTS Users Manual

pair_style brownian/poly/omp command 741

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style buck command

pair_style buck/cuda command

pair_style buck/gpu command

pair_style buck/omp command

pair_style buck/coul/cut command

pair_style buck/coul/cut/cuda command

pair_style buck/coul/cut/gpu command

pair_style buck/coul/cut/omp command

pair_style buck/coul/long command

pair_style buck/coul/long/cuda command

pair_style buck/coul/long/gpu command

pair_style buck/coul/long/omp command

pair_style buck/coul/msm command

pair_style buck/coul/msm/omp command

Syntax:

pair_style style args

style = buck or buck/coul/cut or buck/coul/long or buck/coul/msm•
args = list of arguments for a particular style•

buck args = cutoff
 cutoff = global cutoff for Buckingham interactions (distance units)

buck/coul/cut args = cutoff (cutoff2)
 cutoff = global cutoff for Buckingham (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

buck/coul/long args = cutoff (cutoff2)
 cutoff = global cutoff for Buckingham (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

buck/coul/msm args = cutoff (cutoff2)
 cutoff = global cutoff for Buckingham (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

Examples:

pair_style buck 2.5
pair_coeff * * 100.0 1.5 200.0

LIGGGHTS Users Manual

pair_style buck command 742

http://lammps.sandia.gov

pair_coeff * * 100.0 1.5 200.0 3.0

pair_style buck/coul/cut 10.0
pair_style buck/coul/cut 10.0 8.0
pair_coeff * * 100.0 1.5 200.0
pair_coeff 1 1 100.0 1.5 200.0 9.0
pair_coeff 1 1 100.0 1.5 200.0 9.0 8.0

pair_style buck/coul/long 10.0
pair_style buck/coul/long 10.0 8.0
pair_coeff * * 100.0 1.5 200.0
pair_coeff 1 1 100.0 1.5 200.0 9.0

pair_style buck/coul/msm 10.0
pair_style buck/coul/msm 10.0 8.0
pair_coeff * * 100.0 1.5 200.0
pair_coeff 1 1 100.0 1.5 200.0 9.0

Description:

The buck style computes a Buckingham potential (exp/6 instead of Lennard-Jones 12/6) given by

where rho is an ionic-pair dependent length parameter, and Rc is the cutoff on both terms.

The styles with coul/cut or coul/long or coul/msm add a Coulombic term as described for the lj/cut pair styles.
For buck/coul/long and buc/coul/msm, an additional damping factor is applied to the Coulombic term so it can
be used in conjunction with the kspace_style command and its ewald or pppm or msm option. The Coulombic
cutoff specified for this style means that pairwise interactions within this distance are computed directly;
interactions outside that distance are computed in reciprocal space.

If one cutoff is specified for the born/coul/cut and born/coul/long and born/coul/msm styles, it is used for both
the A,C and Coulombic terms. If two cutoffs are specified, the first is used as the cutoff for the A,C terms, and
the second is the cutoff for the Coulombic term.

Note that these potentials are related to the Born-Mayer-Huggins potential.

IMPORTANT NOTE: For all these pair styles, the terms with A and C are always cutoff. The additional
Coulombic term can be cutoff or long-range (no cutoff) depending on whether the style name includes
coul/cut or coul/long or coul/msm. If you wish the C/r^6 term to be long-range (no cutoff), then see the
pair_style buck/long/coul/long command.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands:

A (energy units)•
rho (distance units)•
C (energy-distance^6 units)•
cutoff (distance units)•
cutoff2 (distance units)•

The second coefficient, rho, must be greater than zero.

LIGGGHTS Users Manual

pair_style buck/coul/msm/omp command 743

The latter 2 coefficients are optional. If not specified, the global A,C and Coulombic cutoffs are used. If only
one cutoff is specified, it is used as the cutoff for both A,C and Coulombic interactions for this type pair. If
both coefficients are specified, they are used as the A,C and Coulombic cutoffs for this type pair. You cannot
specify 2 cutoffs for style buck, since it has no Coulombic terms.

For buck/coul/long only the LJ cutoff can be specified since a Coulombic cutoff cannot be specified for an
individual I,J type pair. All type pairs use the same global Coulombic cutoff specified in the pair_style
command.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

These pair styles do not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

These styles support the pair_modify shift option for the energy of the exp() and 1/r^6 portion of the pair
interaction.

The buck/coul/long pair style supports the pair_modify table option ti tabulate the short-range portion of the
long-range Coulombic interaction.

These styles support the pair_modify tail option for adding long-range tail corrections to energy and pressure
for the A,C terms in the pair interaction.

These styles write their information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

These styles can only be used via the pair keyword of the run_style respa command. They do not support the
inner, middle, outer keywords.

Restrictions:

The buck/coul/long style is part of the KSPACE package. It is only enabled if LAMMPS was built with that
package (which it is by default). See the Making LAMMPS section for more info.

Related commands:

pair_coeff, pair_style born

Default: none

LIGGGHTS Users Manual

pair_style buck/coul/msm/omp command 744

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style buck/long/coul/long command

pair_style buck/long/coul/long/omp command

Syntax:

pair_style buck/long/coul/long flag_buck flag_coul cutoff (cutoff2)

flag_buck = long or cut

long = use Kspace long-range summation for the dispersion term 1/r^6
cut = use a cutoff

•

flag_coul = long or off

long = use Kspace long-range summation for the Coulombic term 1/r
off = omit the Coulombic term

•

cutoff = global cutoff for Buckingham (and Coulombic if only 1 cutoff) (distance units)•
cutoff2 = global cutoff for Coulombic (optional) (distance units)•

Examples:

pair_style buck/long/coul/long cut off 2.5
pair_style buck/long/coul/long cut long 2.5 4.0
pair_style buck/long/coul/long long long 2.5 4.0
pair_coeff * * 1 1
pair_coeff 1 1 1 3 4

Description:

The buck/long/coul/long style computes a Buckingham potential (exp/6 instead of Lennard-Jones 12/6) and
Coulombic potential, given by

Rc is the cutoff. If one cutoff is specified in the pair_style command, it is used for both the Buckingham and
Coulombic terms. If two cutoffs are specified, they are used as cutoffs for the Buckingham and Coulombic
terms respectively.

The purpose of this pair style is to capture long-range interactions resulting from both attractive 1/r^6
Buckingham and Coulombic 1/r interactions. This is done by use of the flag_buck and flag_coul settings. The
"Ismail paper has more details on when it is appropriate to include long-range 1/r^6 interactions, using this
potential.

LIGGGHTS Users Manual

pair_style buck/long/coul/long command 745

http://lammps.sandia.gov

If flag_buck is set to long, no cutoff is used on the Buckingham 1/r^6 dispersion term. The long-range portion
is calculated by using the kspace_style ewald/n command. The specified Buckingham cutoff then determines
which portion of the Buckingham interactions are computed directly by the pair potential versus which part is
computed in reciprocal space via the Kspace style. If flag_buck is set to cut, the Buckingham interactions are
simply cutoff, as with pair_style buck.

If flag_coul is set to long, no cutoff is used on the Coulombic interactions. The long-range portion is
calculated by using any style, including ewald/n of the kspace_style command. Note that if flag_buck is also
set to long, then only the ewald/n Kspace style can perform the long-range calculations for both the
Buckingham and Coulombic interactions. If flag_coul is set to off, Coulombic interactions are not computed.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands:

A (energy units)•
rho (distance units)•
C (energy-distance^6 units)•
cutoff (distance units)•
cutoff2 (distance units)•

The second coefficient, rho, must be greater than zero.

The latter 2 coefficients are optional. If not specified, the global Buckingham and Coulombic cutoffs specified
in the pair_style command are used. If only one cutoff is specified, it is used as the cutoff for both
Buckingham and Coulombic interactions for this type pair. If both coefficients are specified, they are used as
the Buckingham and Coulombic cutoffs for this type pair. Note that if you are using flag_buck set to long, you
cannot specify a Buckingham cutoff for an atom type pair, since only one global Buckingham cutoff is
allowed. Similarly, if you are using flag_coul set to long, you cannot specify a Coulombic cutoff for an atom
type pair, since only one global Coulombic cutoff is allowed.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

This pair styles does not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

This pair style supports the pair_modify shift option for the energy of the exp() and 1/r^6 portion of the pair
interaction, assuming flag_buck is cut.

This pair style does not support the pair_modify shift option for the energy of the Buckingham portion of the
pair interaction.

LIGGGHTS Users Manual

pair_style buck/long/coul/long/omp command 746

This pair style supports the pair_modify table and table/disp options since they can tabulate the short-range
portion of the long-range Coulombic and dispersion interactions.

This pair style write its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style supports the use of the inner, middle, and outer keywords of the run_style respa command,
meaning the pairwise forces can be partitioned by distance at different levels of the rRESPA hierarchy. See
the run_style command for details.

Restrictions:

This style is part of the KSPACE package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info. Note that the KSPACE package is installed by default.

Related commands:

pair_coeff

Default: none

(Ismail) Ismail, Tsige, In 't Veld, Grest, Molecular Physics (accepted) (2007).

LIGGGHTS Users Manual

pair_style buck/long/coul/long/omp command 747

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style lj/charmm/coul/charmm command

pair_style lj/charmm/coul/charmm/cuda command

pair_style lj/charmm/coul/charmm/omp command

pair_style lj/charmm/coul/charmm/implicit command

pair_style lj/charmm/coul/charmm/implicit/cuda command

pair_style lj/charmm/coul/charmm/implicit/omp command

pair_style lj/charmm/coul/long command

pair_style lj/charmm/coul/long/cuda command

pair_style lj/charmm/coul/long/gpu command

pair_style lj/charmm/coul/long/opt command

pair_style lj/charmm/coul/long/omp command

pair_style lj/charmm/coul/msm command

pair_style lj/charmm/coul/msm/omp command

Syntax:

pair_style style args

style = lj/charmm/coul/charmm or lj/charmm/coul/charmm/implicit or lj/charmm/coul/long or
lj/charmm/coul/msm

•

args = list of arguments for a particular style•

lj/charmm/coul/charmm args = inner outer (inner2) (outer2)
 inner, outer = global switching cutoffs for Lennard Jones (and Coulombic if only 2 args)
 inner2, outer2 = global switching cutoffs for Coulombic (optional)

lj/charmm/coul/charmm/implicit args = inner outer (inner2) (outer2)
 inner, outer = global switching cutoffs for LJ (and Coulombic if only 2 args)
 inner2, outer2 = global switching cutoffs for Coulombic (optional)

lj/charmm/coul/long args = inner outer (cutoff)
 inner, outer = global switching cutoffs for LJ (and Coulombic if only 2 args)
 cutoff = global cutoff for Coulombic (optional, outer is Coulombic cutoff if only 2 args)

lj/charmm/coul/msm args = inner outer (cutoff)
 inner, outer = global switching cutoffs for LJ (and Coulombic if only 2 args)
 cutoff = global cutoff for Coulombic (optional, outer is Coulombic cutoff if only 2 args)

Examples:

pair_style lj/charmm/coul/charmm 8.0 10.0
pair_style lj/charmm/coul/charmm 8.0 10.0 7.0 9.0
pair_coeff * * 100.0 2.0

LIGGGHTS Users Manual

pair_style lj/charmm/coul/charmm command 748

http://lammps.sandia.gov

pair_coeff 1 1 100.0 2.0 150.0 3.5

pair_style lj/charmm/coul/charmm/implicit 8.0 10.0
pair_style lj/charmm/coul/charmm/implicit 8.0 10.0 7.0 9.0
pair_coeff * * 100.0 2.0
pair_coeff 1 1 100.0 2.0 150.0 3.5

pair_style lj/charmm/coul/long 8.0 10.0
pair_style lj/charmm/coul/long 8.0 10.0 9.0
pair_coeff * * 100.0 2.0
pair_coeff 1 1 100.0 2.0 150.0 3.5

pair_style lj/charmm/coul/msm 8.0 10.0
pair_style lj/charmm/coul/msm 8.0 10.0 9.0
pair_coeff * * 100.0 2.0
pair_coeff 1 1 100.0 2.0 150.0 3.5

Description:

The lj/charmm styles compute LJ and Coulombic interactions with an additional switching function S(r) that
ramps the energy and force smoothly to zero between an inner and outer cutoff. It is a widely used potential in
the CHARMM MD code. See (MacKerell) for a description of the CHARMM force field.

Both the LJ and Coulombic terms require an inner and outer cutoff. They can be the same for both formulas or
different depending on whether 2 or 4 arguments are used in the pair_style command. In each case, the inner
cutoff distance must be less than the outer cutoff. It it typical to make the difference between the 2 cutoffs
about 1.0 Angstrom.

Style lj/charmm/coul/charmm/implicit computes the same formulas as style lj/charmm/coul/charmm except
that an additional 1/r term is included in the Coulombic formula. The Coulombic energy thus varies as 1/r^2.
This is effectively a distance-dependent dielectric term which is a simple model for an implicit solvent with
additional screening. It is designed for use in a simulation of an unsolvated biomolecule (no explicit water

LIGGGHTS Users Manual

pair_style lj/charmm/coul/msm/omp command 749

http://www.scripps.edu/brooks

molecules).

Styles lj/charmm/coul/long and lj/charmm/coul/msm compute the same formulas as style
lj/charmm/coul/charmm except that an additional damping factor is applied to the Coulombic term, as
described for the lj/cut pair styles. Only one Coulombic cutoff is specified for lj/charmm/coul/long and
lj/charmm/coul/msm; if only 2 arguments are used in the pair_style command, then the outer LJ cutoff is used
as the single Coulombic cutoff.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

epsilon (energy units)•
sigma (distance units)•
epsilon_14 (energy units)•
sigma_14 (distance units)•

Note that sigma is defined in the LJ formula as the zero-crossing distance for the potential, not as the energy
minimum at 2^(1/6) sigma.

The latter 2 coefficients are optional. If they are specified, they are used in the LJ formula between 2 atoms of
these types which are also first and fourth atoms in any dihedral. No cutoffs are specified because this
CHARMM force field does not allow varying cutoffs for individual atom pairs; all pairs use the global
cutoff(s) specified in the pair_style command.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon, sigma, epsilon_14, and sigma_14 coefficients for all of the
lj/charmm pair styles can be mixed. The default mix value is arithmetic to coincide with the usual settings for
the CHARMM force field. See the "pair_modify" command for details.

None of the lj/charmm pair styles support the pair_modify shift option, since the Lennard-Jones portion of the
pair interaction is smoothed to 0.0 at the cutoff.

The lj/charmm/coul/long style supports the pair_modify table option since it can tabulate the short-range
portion of the long-range Coulombic interaction.

None of the lj/charmm pair styles support the pair_modify tail option for adding long-range tail corrections to
energy and pressure, since the Lennard-Jones portion of the pair interaction is smoothed to 0.0 at the cutoff.

LIGGGHTS Users Manual

pair_style lj/charmm/coul/msm/omp command 750

All of the lj/charmm pair styles write their information to binary restart files, so pair_style and pair_coeff
commands do not need to be specified in an input script that reads a restart file.

The lj/charmm/coul/long pair style supports the use of the inner, middle, and outer keywords of the run_style
respa command, meaning the pairwise forces can be partitioned by distance at different levels of the rRESPA
hierarchy. The other styles only support the pair keyword of run_style respa. See the run_style command for
details.

Restrictions:

The lj/charmm/coul/charmm and lj/charmm/coul/charmm/implicit styles are part of the MOLECULE package.
The lj/charmm/coul/long style is part of the KSPACE package. They are only enabled if LAMMPS was built
with those packages. See the Making LAMMPS section for more info. Note that the MOLECULE and
KSPACE packages are installed by default.

Related commands:

pair_coeff

Default: none

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

LIGGGHTS Users Manual

pair_style lj/charmm/coul/msm/omp command 751

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style lj/class2 command

pair_style lj/class2/cuda command

pair_style lj/class2/gpu command

pair_style lj/class2/omp command

pair_style lj/class2/coul/cut command

pair_style lj/class2/coul/cut/cuda command

pair_style lj/class2/coul/cut/omp command

pair_style lj/class2/coul/long command

pair_style lj/class2/coul/long/cuda command

pair_style lj/class2/coul/long/gpu command

pair_style lj/class2/coul/long/omp command

Syntax:

pair_style style args

style = lj/class2 or lj/class2/coul/cut or lj/class2/coul/long•
args = list of arguments for a particular style•

lj/class2 args = cutoff
 cutoff = global cutoff for class 2 interactions (distance units)

lj/class2/coul/cut args = cutoff (cutoff2)
 cutoff = global cutoff for class 2 (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

lj/class2/coul/long args = cutoff (cutoff2)
 cutoff = global cutoff for class 2 (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

Examples:

pair_style lj/class2 10.0
pair_coeff * * 100.0 2.5
pair_coeff 1 2* 100.0 2.5 9.0

pair_style lj/class2/coul/cut 10.0
pair_style lj/class2/coul/cut 10.0 8.0
pair_coeff * * 100.0 3.0
pair_coeff 1 1 100.0 3.5 9.0
pair_coeff 1 1 100.0 3.5 9.0 9.0

pair_style lj/class2/coul/long 10.0
pair_style lj/class2/coul/long 10.0 8.0
pair_coeff * * 100.0 3.0

LIGGGHTS Users Manual

pair_style lj/class2 command 752

http://lammps.sandia.gov

pair_coeff 1 1 100.0 3.5 9.0

Description:

The lj/class2 styles compute a 6/9 Lennard-Jones potential given by

Rc is the cutoff.

The lj/class2/coul/cut and lj/class2/coul/long styles add a Coulombic term as described for the lj/cut pair
styles.

See (Sun) for a description of the COMPASS class2 force field.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

epsilon (energy units)•
sigma (distance units)•
cutoff1 (distance units)•
cutoff2 (distance units)•

The latter 2 coefficients are optional. If not specified, the global class 2 and Coulombic cutoffs are used. If
only one cutoff is specified, it is used as the cutoff for both class 2 and Coulombic interactions for this type
pair. If both coefficients are specified, they are used as the class 2 and Coulombic cutoffs for this type pair.
You cannot specify 2 cutoffs for style lj/class2, since it has no Coulombic terms.

For lj/class2/coul/long only the class 2 cutoff can be specified since a Coulombic cutoff cannot be specified
for an individual I,J type pair. All type pairs use the same global Coulombic cutoff specified in the pair_style
command.

If the pair_coeff command is not used to define coefficients for a particular I != J type pair, the mixing rule
for epsilon and sigma for all class2 potentials is to use the sixthpower formulas documented by the
pair_modify command. The pair_modify mix setting is thus ignored for class2 potentials for epsilon and
sigma. However it is still followed for mixing the cutoff distance.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

LIGGGHTS Users Manual

pair_style lj/class2/coul/long/omp command 753

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of the lj/class2
pair styles can be mixed. Epsilon and sigma are always mixed with the value sixthpower. The cutoff distance
is mixed by whatever option is set by the pair_modify command (default = geometric). See the "pair_modify"
command for details.

All of the lj/class2 pair styles support the pair_modify shift option for the energy of the Lennard-Jones portion
of the pair interaction.

The lj/class2/coul/long pair style does not support the pair_modify table option since a tabulation capability
has not yet been added to this potential.

All of the lj/class2 pair styles support the pair_modify tail option for adding a long-range tail correction to the
energy and pressure of the Lennard-Jones portion of the pair interaction.

All of the lj/class2 pair styles write their information to binary restart files, so pair_style and pair_coeff
commands do not need to be specified in an input script that reads a restart file.

All of the lj/class2 pair styles can only be used via the pair keyword of the run_style respa command. They do
not support the inner, middle, outer keywords.

Restrictions:

These styles are part of the CLASS2 package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info.

Related commands:

pair_coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

LIGGGHTS Users Manual

pair_style lj/class2/coul/long/omp command 754

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_coeff command

Syntax:

pair_coeff I J args

I,J = atom types (see asterisk form below)•
args = coefficients for one or more pairs of atom types•

Examples:

pair_coeff 1 2 1.0 1.0 2.5
pair_coeff 2 * 1.0 1.0
pair_coeff 3* 1*2 1.0 1.0 2.5
pair_coeff * * 1.0 1.0
pair_coeff * * nialhjea 1 1 2
pair_coeff * 3 morse.table ENTRY1
pair_coeff 1 2 lj/cut 1.0 1.0 2.5 (for pair_style hybrid)

Description:

Specify the pairwise force field coefficients for one or more pairs of atom types. The number and meaning of
the coefficients depends on the pair style. Pair coefficients can also be set in the data file read by the read_data
command or in a restart file.

I and J can be specified in one of two ways. Explicit numeric values can be used for each, as in the 1st
example above. I <= J is required. LAMMPS sets the coefficients for the symmetric J,I interaction to the same
values.

A wildcard asterisk can be used in place of or in conjunction with the I,J arguments to set the coefficients for
multiple pairs of atom types. This takes the form "*" or "*n" or "n*" or "m*n". If N = the number of atom
types, then an asterisk with no numeric values means all types from 1 to N. A leading asterisk means all types
from 1 to n (inclusive). A trailing asterisk means all types from n to N (inclusive). A middle asterisk means all
types from m to n (inclusive). Note that only type pairs with I <= J are considered; if asterisks imply type
pairs where J < I, they are ignored.

Note that a pair_coeff command can override a previous setting for the same I,J pair. For example, these
commands set the coeffs for all I,J pairs, then overwrite the coeffs for just the I,J = 2,3 pair:

pair_coeff * * 1.0 1.0 2.5
pair_coeff 2 3 2.0 1.0 1.12

A line in a data file that specifies pair coefficients uses the exact same format as the arguments of the
pair_coeff command in an input script, with the exception of the I,J type arguments. In each line of the "Pair
Coeffs" section of a data file, only a single type I is specified, which sets the coefficients for type I interacting
with type I. This is because the section has exactly N lines, where N = the number of atom types. For this
reason, the wild-card asterisk should also not be used as part of the I argument. Thus in a data file, the line
corresponding to the 1st example above would be listed as

2 1.0 1.0 2.5

For many potentials, if coefficients for type pairs with I != J are not set explicitly by a pair_coeff command,
the values are inferred from the I,I and J,J settings by mixing rules; see the pair_modify command for a
discussion. Details on this option as it pertains to individual potentials are described on the doc page for the

LIGGGHTS Users Manual

pair_coeff command 755

http://lammps.sandia.gov

potential.

Many pair styles, typically for many-body potentials, use tabulated potential files as input, when specifying
the pair_coeff command. Potential files provided with LAMMPS are in the potentials directory of the
distribution. For some potentials, such as EAM, other archives of suitable files can be found on the Web. They
can be used with LAMMPS so long as they are in the format LAMMPS expects, as discussed on the
individual doc pages.

When a pair_coeff command using a potential file is specified, LAMMPS looks for the potential file in 2
places. First it looks in the location specified. E.g. if the file is specified as "niu3.eam", it is looked for in the
current working directory. If it is specified as "../potentials/niu3.eam", then it is looked for in the potentials
directory, assuming it is a sister directory of the current working directory. If the file is not found, it is then
looked for in the directory specified by the LAMMPS_POTENTIALS environment variable. Thus if this is set
to the potentials directory in the LAMMPS distro, then you can use those files from anywhere on your system,
without copying them into your working directory. Environment variables are set in different ways for
different shells. Here are example settings for

csh, tcsh:
% setenv LAMMPS_POTENTIALS /path/to/lammps/potentials

bash:
% export LAMMPS_POTENTIALS=/path/to/lammps/potentials

Windows:
% set LAMMPS_POTENTIALS="C:\Path to LAMMPS\Potentials

Here is an alphabetic list of pair styles defined in LAMMPS. Click on the style to display the formula it
computes, arguments specified in the pair_style command, and coefficients specified by the associated
pair_coeff command.

Note that there are also additional pair styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the pair section of this page.

There are also additional accelerated pair styles included in the LAMMPS distribution for faster performance
on CPUs and GPUs. The list of these with links to the individual styles are given in the pair section of this
page.

pair_style hybrid - multiple styles of pairwise interactions•
pair_style hybrid/overlay - multiple styles of superposed pairwise interactions•

pair_style adp - angular dependent potential (ADP) of Mishin•
pair_style airebo - AIREBO potential of Stuart•
pair_style beck - Beck potential•
pair_style body - interactions between body particles•
pair_style bop - BOP potential of Pettifor•
pair_style born - Born-Mayer-Huggins potential•
pair_style born/coul/long - Born-Mayer-Huggins with long-range Coulombics•
pair_style born/coul/msm - Born-Mayer-Huggins with long-range MSM Coulombics•
pair_style born/coul/wolf - Born-Mayer-Huggins with Coulombics via Wolf potential•
pair_style brownian - Brownian potential for Fast Lubrication Dynamics•
pair_style brownian/poly - Brownian potential for Fast Lubrication Dynamics with polydispersity•
pair_style buck - Buckingham potential•
pair_style buck/coul/cut - Buckingham with cutoff Coulomb•
pair_style buck/coul/long - Buckingham with long-range Coulombics•
pair_style buck/coul/msm - Buckingham long-range MSM Coulombics•

LIGGGHTS Users Manual

pair_coeff command 756

pair_style buck/long/coul/long - long-range Buckingham with long-range Coulombics•
pair_style colloid - integrated colloidal potential•
pair_style comb - charge-optimized many-body (COMB) potential•
pair_style coul/cut - cutoff Coulombic potential•
pair_style coul/debye - cutoff Coulombic potential with Debye screening•
pair_style coul/dsf - Coulombics via damped shifted forces•
pair_style coul/long - long-range Coulombic potential•
pair_style coul/msm - long-range MSM Coulombics•
pair_style coul/wolf - Coulombics via Wolf potential•
pair_style dipole/cut - point dipoles with cutoff•
pair_style dpd - dissipative particle dynamics (DPD)•
pair_style dpd/tstat - DPD thermostatting•
pair_style dsmc - Direct Simulation Monte Carlo (DSMC)•
pair_style eam - embedded atom method (EAM)•
pair_style eam/alloy - alloy EAM•
pair_style eam/fs - Finnis-Sinclair EAM•
pair_style eim - embedded ion method (EIM)•
pair_style gauss - Gaussian potential•
pair_style gayberne - Gay-Berne ellipsoidal potential•
pair_style gran/hertz/history - granular potential with Hertzian interactions•
pair_style gran/hooke - granular potential with history effects•
pair_style gran/hooke/history - granular potential without history effects•
pair_style hbond/dreiding/lj - DREIDING hydrogen bonding LJ potential•
pair_style hbond/dreiding/morse - DREIDING hydrogen bonding Morse potential•
pair_style kim - interface to potentials provided by KIM project•
pair_style lcbop - long-range bond-order potential (LCBOP)•
pair_style line/lj - LJ potential between line segments•
pair_style lj/charmm/coul/charmm - CHARMM potential with cutoff Coulomb•
pair_style lj/charmm/coul/charmm/implicit - CHARMM for implicit solvent•
pair_style lj/charmm/coul/long - CHARMM with long-range Coulomb•
pair_style lj/charmm/coul/msm - CHARMM with long-range MSM Coulombics•
pair_style lj/class2 - COMPASS (class 2) force field with no Coulomb•
pair_style lj/class2/coul/cut - COMPASS with cutoff Coulomb•
pair_style lj/class2/coul/long - COMPASS with long-range Coulomb•
pair_style lj/cut - cutoff Lennard-Jones potential with no Coulomb•
pair_style lj/cut/coul/cut - LJ with cutoff Coulomb•
pair_style lj/cut/coul/debye - LJ with Debye screening added to Coulomb•
pair_style lj/cut/coul/dsf - LJ with Coulombics via damped shifted forces•
pair_style lj/cut/coul/long - LJ with long-range Coulombics•
pair_style lj/cut/coul/msm - LJ with long-range MSM Coulombics•
pair_style lj/cut/tip4p/cut - LJ with cutoff Coulomb for TIP4P water•
pair_style lj/cut/tip4p/long - LJ with long-range Coulomb for TIP4P water•
pair_style lj/expand - Lennard-Jones for variable size particles•
pair_style lj/gromacs - GROMACS-style Lennard-Jones potential•
pair_style lj/gromacs/coul/gromacs - GROMACS-style LJ and Coulombic potential•
pair_style lj/long/coul/long - long-range LJ and long-range Coulombics•
pair_style lj/long/tip4p/long - long-range LJ and long-range Coulomb for TIP4P water•
pair_style lj/smooth - smoothed Lennard-Jones potential•
pair_style lj/smooth/linear - linear smoothed Lennard-Jones potential•
pair_style lj96/cut - Lennard-Jones 9/6 potential•
pair_style lubricate - hydrodynamic lubrication forces•
pair_style lubricate/poly - hydrodynamic lubrication forces with polydispersity•
pair_style lubricateU - hydrodynamic lubrication forces for Fast Lubrication Dynamics•
pair_style lubricateU/poly - hydrodynamic lubrication forces for Fast Lubrication with polydispersity•

LIGGGHTS Users Manual

pair_coeff command 757

pair_style meam - modified embedded atom method (MEAM)•
pair_style mie/cut - Mie potential•
pair_style morse - Morse potential•
pair_style peri/lps - peridynamic LPS potential•
pair_style peri/pmb - peridynamic PMB potential•
pair_style reax - ReaxFF potential•
pair_style rebo - 2nd generation REBO potential of Brenner•
pair_style resquared - Everaers RE-Squared ellipsoidal potential•
pair_style soft - Soft (cosine) potential•
pair_style sw - Stillinger-Weber 3-body potential•
pair_style table - tabulated pair potential•
pair_style tersoff - Tersoff 3-body potential•
pair_style tersoff/zbl - Tersoff/ZBL 3-body potential•
pair_style tri/lj - LJ potential between triangles•
pair_style yukawa - Yukawa potential•
pair_style yukawa/colloid - screened Yukawa potential for finite-size particles•
pair_style zbl - Ziegler-Biersack-Littmark potential•

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

Related commands:

pair_style, pair_modify, read_data, read_restart, pair_write

Default: none

LIGGGHTS Users Manual

pair_coeff command 758

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style colloid command

pair_style colloid/gpu command

pair_style colloid/omp command

Syntax:

pair_style colloid cutoff

cutoff = global cutoff for colloidal interactions (distance units)•

Examples:

pair_style colloid 10.0
pair_coeff * * 25 1.0 10.0 10.0
pair_coeff 1 1 144 1.0 0.0 0.0 3.0
pair_coeff 1 2 75.398 1.0 0.0 10.0 9.0
pair_coeff 2 2 39.478 1.0 10.0 10.0 25.0

Description:

Style colloid computes pairwise interactions between large colloidal particles and small solvent particles using
3 formulas. A colloidal particle has a size > sigma; a solvent particle is the usual Lennard-Jones particle of
size sigma.

The colloid-colloid interaction energy is given by

LIGGGHTS Users Manual

pair_style colloid command 759

http://lammps.sandia.gov

where A_cc is the Hamaker constant, a1 and a2 are the radii of the two colloidal particles, and Rc is the
cutoff. This equation results from describing each colloidal particle as an integrated collection of
Lennard-Jones particles of size sigma and is derived in (Everaers).

The colloid-solvent interaction energy is given by

where A_cs is the Hamaker constant, a is the radius of the colloidal particle, and Rc is the cutoff. This formula
is derived from the colloid-colloid interaction, letting one of the particle sizes go to zero.

The solvent-solvent interaction energy is given by the usual Lennard-Jones formula

with A_ss set appropriately, which results from letting both particle sizes go to zero.

LIGGGHTS Users Manual

pair_style colloid/omp command 760

When used in combination with pair_style yukawa/colloid, the two terms become the so-called DLVO
potential, which combines electrostatic repulsion and van der Waals attraction.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

A (energy units)•
sigma (distance units)•
d1 (distance units)•
d2 (distance units)•
cutoff (distance units)•

A is the Hamaker energy prefactor and should typically be set as follows:

A_cc = colloid/colloid = 4 pi^2 = 39.5•
A_cs = colloid/solvent = sqrt(A_cc*A_ss)•
A_ss = solvent/solvent = 144 (assuming epsilon = 1, so that 144/36 = 4)•

Sigma is the size of the solvent particle or the constituent particles integrated over in the colloidal particle and
should typically be set as follows:

Sigma_cc = colloid/colloid = 1.0•
Sigma_cs = colloid/solvent = arithmetic mixing between colloid sigma and solvent sigma•
Sigma_ss = solvent/solvent = 1.0 or whatever size the solvent particle is•

Thus typically Sigma_cs = 1.0, unless the solvent particle's size != 1.0.

D1 and d2 are particle diameters, so that d1 = 2*a1 and d2 = 2*a2 in the formulas above. Both d1 and d2 must
be values >= 0. If d1 > 0 and d2 > 0, then the pair interacts via the colloid-colloid formula above. If d1 = 0
and d2 = 0, then the pair interacts via the solvent-solvent formula. I.e. a d value of 0 is a Lennard-Jones
particle of size sigma. If either d1 = 0 or d2 = 0 and the other is larger, then the pair interacts via the
colloid-solvent formula.

Note that the diameter of a particular particle type may appear in multiple pair_coeff commands, as it interacts
with other particle types. You should insure the particle diameter is specified consistently each time it appears.

The last coefficient is optional. If not specified, the global cutoff specified in the pair_style command is used.
However, you typically want different cutoffs for interactions between different particle sizes. E.g. if colloidal
particles of diameter 10 are used with solvent particles of diameter 1, then a solvent-solvent cutoff of 2.5
would correspond to a colloid-colloid cutoff of 25. A good rule-of-thumb is to use a colloid-solvent cutoff that
is half the big diameter + 4 times the small diameter. I.e. 9 = 5 + 4 for the colloid-solvent cutoff in this case.

IMPORTANT NOTE: When using pair_style colloid for a mixture with 2 (or more) widely different particles
sizes (e.g. sigma=10 colloids in a background sigam=1 LJ fluid), you will likely want to use these commands
for efficiency: neighbor multi and communicate multi.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for

LIGGGHTS Users Manual

pair_style colloid/omp command 761

more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the A, sigma, d1, and d2 coefficients and cutoff distance for this pair style
can be mixed. A is an energy value mixed like a LJ epsilon. D1 and d2 are distance values and are mixed like
sigma. The default mix value is geometric. See the "pair_modify" command for details.

This pair style supports the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This style is part of the COLLOID package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Normally, this pair style should be used with finite-size particles which have a diameter, e.g. see the
atom_style sphere command. However, this is not a requirement, since the only definition of particle size is
via the pair_coeff parameters for each type. In other words, the physical radius of the particle is ignored. Thus
you should insure that the d1,d2 parameters you specify are consistent with the physical size of the particles of
that type.

Per-particle polydispersity is not yet supported by this pair style; only per-type polydispersity is enabled via
the pair_coeff parameters.

Related commands:

pair_coeff

Default: none

(Everaers) Everaers, Ejtehadi, Phys Rev E, 67, 041710 (2003).

LIGGGHTS Users Manual

pair_style colloid/omp command 762

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style comb command

pair_style comb/omp command

pair_style comb3 command

Syntax:

pair_style comb
pair_style comb3 keyword

keyword = polar
polar value = polar_on or polar_off = whether or not to include atomic polarization

Examples:

pair_style comb
pair_coeff * * ../potentials/ffield.comb Si
pair_coeff * * ../potentials/ffield.comb Hf Si O

pair_style comb3 polar_off
pair_coeff * * ../potentials/ffield.comb3 O Cu N C O

Description:

Style comb computes the second-generation variable charge COMB (Charge-Optimized Many-Body)
potential. Style comb3 computes the third-generation COMB potential. These COMB potentials are described
in (COMB) and (COMB3). Briefly, the total energy ET of a system of atoms is given by

where Eiself is the self-energy of atom i (including atomic ionization energies and electron affinities), Eijshort is
the bond-order potential between atoms i and j, EijCoul is the Coulomb interactions, Epolar is the polarization
term for organic systems (style comb3 only), EvdW is the van der Waals energy (style comb3 only), Ebarr is a
charge barrier function, and Ecorr are angular correction terms.

The COMB potentials (styles comb and comb3) are variable charge potentials. The equilibrium charge on
each atom is calculated by the electronegativity equalization (QEq) method. See Rick for further details. This
is implemented by the fix qeq/comb command, which should normally be specified in the input script when
running a model with the COMB potential. The fix qeq/comb command has options that determine how often
charge equilibration is performed, its convergence criterion, and which atoms are included in the calculation.

Only a single pair_coeff command is used with the comb and comb3 styles which specifies the COMB
potential file with parameters for all needed elements. These are mapped to LAMMPS atom types by
specifying N additional arguments after the potential file in the pair_coeff command, where N is the number
of LAMMPS atom types.

LIGGGHTS Users Manual

pair_style comb command 763

http://lammps.sandia.gov

For example, if your LAMMPS simulation of a Si/SiO2/ HfO2 interface has 4 atom types, and you want the
1st and last to be Si, the 2nd to be Hf, and the 3rd to be O, and you would use the following pair_coeff
command:

pair_coeff * * ../potentials/ffield.comb Si Hf O Si

The first two arguments must be * * so as to span all LAMMPS atom types. The first and last Si arguments
map LAMMPS atom types 1 and 4 to the Si element in the ffield.comb file. The second Hf argument maps
LAMMPS atom type 2 to the Hf element, and the third O argument maps LAMMPS atom type 3 to the O
element in the potential file. If a mapping value is specified as NULL, the mapping is not performed. This can
be used when a comb potential is used as part of the hybrid pair style. The NULL values are placeholders for
atom types that will be used with other potentials.

For style comb, the provided potential file ffield.comb contains all currently-available 2nd generation COMB
parameterizations: for Si, Cu, Hf, Ti, O, their oxides and Zr, Zn and U metals. For style comb3, the potential
file ffield.comb3 contains all currently-available 3rd generation COMB paramterizations: O, Cu, N, C, H, Ti
and Zn. The status of the optimization of the compounds, for example Cu2O, TiN and hydrocarbons, are given
in the following table:

For style comb3, in addition to ffield.comb3, a special parameter file, lib.comb3, that is exclusively used for
C/O/H systems, will be automatically loaded if carbon atom is detected in LAMMPS input structure.
Keyword polar indicates whether the force field includes the atomic polarization. Since the equilibration of
the polarization has not yet been implemented, it can only set polar_off at present.

IMPORTANT NOTE: You can not use potential file ffield.comb with style comb3, nor file ffield.comb3 with
style comb.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for

LIGGGHTS Users Manual

pair_style comb3 command 764

more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, where types I and J correspond to two different element types, mixing is
performed by LAMMPS as described above from values in the potential file.

These pair styles does not support the pair_modify shift, table, and tail options.

These pair styles do not write its information to binary restart files, since it is stored in potential files. Thus,
you need to re-specify the pair_style, pair_coeff, and fix qeq/comb commands in an input script that reads a
restart file.

These pair styles can only be used via the pair keyword of the run_style respa command. It does not support
the inner, middle, outer keywords.

Restrictions:

These pair styles are part of the MANYBODY package. It is only enabled if LAMMPS was built with that
package (which it is by default). See the Making LAMMPS section for more info.

These pair styles requires the newton setting to be "on" for pair interactions.

The COMB potentials in the ffield.comb and ffield.comb3 files provided with LAMMPS (see the potentials
directory) are parameterized for metal units. You can use the COMB potential with any LAMMPS units, but
you would need to create your own COMB potential file with coefficients listed in the appropriate units if
your simulation doesn't use "metal" units.

Related commands:

pair_style, pair_coeff, fix_qeq/comb

Default: none

(COMB) S. R. Phillpot and S. B. Sinnott, Science 325, 1634-1635 (2009)

(COMB3) T. Liang, T.-R. Shan, Y.-T. Cheng, B. D. Devine, M. Noordhoek, Y. Li, Z. Lu, S. R. Phillpot, and
S. B. Sinnott, Mat. Sci. & Eng: R, in press (DOI: 10.1016/j.mser.2013.07.001)

(Rick) S. W. Rick, S. J. Stuart, B. J. Berne, J Chem Phys 101, 6141 (1994).

LIGGGHTS Users Manual

pair_style comb3 command 765

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style coul/diel command

Syntax:

pair_style coul/diel cutoff

cutoff = global cutoff (distance units)

Examples:

pair_style coul/diel 3.5
pair_coeff 1 4 78. 1.375 0.112

Description:

Style coul/diel computes a Coulomb correction for implict solvent ion interactions in which the dielectric
perimittivity is distance dependent. The dielectric permittivity epsilon_D(r) connects to limiting regimes: One
limit is defined by a small dielectric permittivity (close to vacuum) at or close to contact seperation between
the ions. At larger separations the dielectric permittivity reaches a bulk value used in the regular Coulomb
interaction coul/long or coul/cut. The transition is modeled by a hyperbolic function which is incorporated in
the Coulomb correction term for small ion separations as follows

where r_me is the inflection point of epsilon_D(r) and sigma_e is a slope defining length scale. C is the same
Coulomb conversion factor as in the pair_styles coul/cut, coul/long, and coul/debye. In this way the Coulomb
interaction between ions is corrected at small distances r. The lower limit of epsilon_D(r->0)=5.2 due to
dielectric saturation (Stiles) while the Coulomb interaction reaches its bulk limit by setting
epsilon_D(r->\infty)=epsilon, the bulk value of the solvent which is 78 for water at 298K.

Examples of the use of this type of Coulomb interaction include implicit solvent simulations of salt ions
(Lenart) and of ionic surfactants (Jusufi). Note that this potential is only reasonable for implicit solvent
simulations and in combiantion with coul/cut or coul/long. It is also usually combined with gauss/cut, see
(Lenart) or (Jusufi).

The following coefficients must be defined for each pair of atom types via the pair_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

epsilon (no units)•
r_me (distance units)•
sigma_e (distance units)•

The global cutoff (r_c) specified in the pair_style command is used.

Mixing, shift, table, tail correction, restart, rRESPA info:

LIGGGHTS Users Manual

pair_style coul/diel command 766

http://lammps.sandia.gov

This pair style does not support parameter mixing. Coefficients must be given explicitly for each type of
particle pairs.

This pair style supports the pair_modify shift option for the energy of the Gauss-potential portion of the pair
interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This style is part of the "user-misc" package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:

pair_coeff pair_style gauss/cut

Default: none

(Stiles) Stiles , Hubbard, and Kayser, J Chem Phys, 77, 6189 (1982).

(Lenart) Lenart , Jusufi, and Panagiotopoulos, J Chem Phys, 126, 044509 (2007).

(Jusufi) Jusufi, Hynninen, and Panagiotopoulos, J Phys Chem B, 112, 13783 (2008).

LIGGGHTS Users Manual

pair_style coul/diel command 767

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style coul/cut command

pair_style coul/cut/omp command

pair_style coul/debye command

pair_style coul/debye/omp command

pair_style coul/dsf command

pair_style coul/dsf/gpu command

pair_style coul/dsf/omp command

pair_style coul/long command

pair_style coul/long/omp command

pair_style coul/long/gpu command

pair_style coul/msm command

pair_style coul/msm/omp command

pair_style coul/wolf command

pair_style coul/wolf/omp command

pair_style tip4p/cut command

pair_style tip4p/long command

pair_style tip4p/cut/omp command

pair_style tip4p/long/omp command

Syntax:

pair_style coul/cut cutoff
pair_style coul/debye kappa cutoff
pair_style coul/dsf alpha cutoff
pair_style coul/long cutoff
pair_style coul/long/gpu cutoff
pair_style coul/wolf alpha cutoff
pair_style tip4p/cut otype htype btype atype qdist cutoff
pair_style tip4p/long otype htype btype atype qdist cutoff

cutoff = global cutoff for Coulombic interactions•
kappa = Debye length (inverse distance units)•

LIGGGHTS Users Manual

pair_style coul/cut command 768

http://lammps.sandia.gov

alpha = damping parameter (inverse distance units)•

Examples:

pair_style coul/cut 2.5
pair_coeff * *
pair_coeff 2 2 3.5

pair_style coul/debye 1.4 3.0
pair_coeff * *
pair_coeff 2 2 3.5

pair_style coul/dsf 0.05 10.0
pair_coeff * *

pair_style coul/long 10.0
pair_coeff * *

pair_style coul/msm 10.0
pair_coeff * *

pair_style coul/wolf 0.2 9.0
pair_coeff * *

pair_style tip4p/cut 1 2 7 8 0.15 12.0
pair_coeff * *

pair_style tip4p/long 1 2 7 8 0.15 10.0
pair_coeff * *

Description:

The coul/cut style computes the standard Coulombic interaction potential given by

where C is an energy-conversion constant, Qi and Qj are the charges on the 2 atoms, and epsilon is the
dielectric constant which can be set by the dielectric command. The cutoff Rc truncates the interaction
distance.

Style coul/debye adds an additional exp() damping factor to the Coulombic term, given by

where kappa is the Debye length. This potential is another way to mimic the screening effect of a polar
solvent.

Style coul/dsf computes Coulombic interactions via the damped shifted force model described in Fennell,
given by:

LIGGGHTS Users Manual

pair_style tip4p/long/omp command 769

where alpha is the damping parameter and erfc() is the complementary error-function. The potential corrects
issues in the Wolf model (described below) to provide consistent forces and energies (the Wolf potential is not
differentiable at the cutoff) and smooth decay to zero.

Style coul/wolf computes Coulombic interactions via the Wolf summation method, described in Wolf, given
by:

where alpha is the damping parameter, and erc() and erfc() are error-fuction and complementary
error-function terms. This potential is essentially a short-range, spherically-truncated, charge-neutralized,
shifted, pairwise 1/r summation. With a manipulation of adding and substracting a self term (for i = j) to the
first and second term on the right-hand-side, respectively, and a small enough alpha damping parameter, the
second term shrinks and the potential becomes a rapidly-converging real-space summation. With a long
enough cutoff and small enough alpha parameter, the energy and forces calcluated by the Wolf summation
method approach those of the Ewald sum. So it is a means of getting effective long-range interactions with a
short-range potential.

Styles coul/long and coul/msm compute the same Coulombic interactions as style coul/cut except that an
additional damping factor is applied so it can be used in conjunction with the kspace_style command and its
ewald or pppm option. The Coulombic cutoff specified for this style means that pairwise interactions within
this distance are computed directly; interactions outside that distance are computed in reciprocal space.

Styles tip4p/cut and tip4p/long implement the coulomb part of the TIP4P water model of (Jorgensen), which
introduces a massless site located a short distance away from the oxygen atom along the bisector of the HOH
angle. The atomic types of the oxygen and hydrogen atoms, the bond and angle types for OH and HOH
interactions, and the distance to the massless charge site are specified as pair_style arguments. Style tip4p/cut
uses a global cutoff for Coulomb interactions; style tip4p/long is for use with a long-range Coulombic solver
(Ewald or PPPM).

IMPORTANT NOTE: For each TIP4P water molecule in your system, the atom IDs for the O and 2 H atoms
must be consecutive, with the O atom first. This is to enable LAMMPS to "find" the 2 H atoms associated
with each O atom. For example, if the atom ID of an O atom in a TIP4P water molecule is 500, then its 2 H
atoms must have IDs 501 and 502.

See the howto section for more information on how to use the TIP4P pair styles and lists of parameters to set.
Note that the neighobr list cutoff for Coulomb interactions is effectively extended by a distance 2*qdist when
using the TIP4P pair style, to account for the offset distance of the fictitious charges on O atoms in water
molecules. Thus it is typically best in an efficiency sense to use a LJ cutoff >= Coulomb cutoff + 2*qdist, to
shrink the size of the neighbor list. This leads to slightly larger cost for the long-range calculation, so you can
test the trade-off for your model.

These potentials are designed to be combined with other pair potentials via the pair_style hybrid/overlay
command. This is because they have no repulsive core. Hence if they are used by themselves, there will be no

LIGGGHTS Users Manual

pair_style tip4p/long/omp command 770

repulsion to keep two oppositely charged particles from overlapping each other.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

cutoff (distance units)•

For coul/cut and coul/debye, the cutoff coefficient is optional. If it is not used (as in some of the examples
above), the default global value specified in the pair_style command is used.

For coul/long and coul/msm no cutoff can be specified for an individual I,J type pair via the pair_coeff
command. All type pairs use the same global Coulombic cutoff specified in the pair_style command.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the cutoff distance for the coul/cut style can be mixed. The default mix
value is geometric. See the "pair_modify" command for details.

The pair_modify shift option is not relevant for these pair styles.

The coul/long style supports the pair_modify table option for tabulation of the short-range portion of the
long-range Coulombic interaction.

These pair styles do not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure.

These pair styles write their information to binary restart files, so pair_style and pair_coeff commands do not
need to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

The coul/long, coul/msm and tip4p/long styles are part of the KSPACE package. They are only enabled if
LAMMPS was built with that package (which it is by default). See the Making LAMMPS section for more
info.

LIGGGHTS Users Manual

pair_style tip4p/long/omp command 771

Related commands:

pair_coeff, pair_style hybrid/overlay kspace_style

Default: none

(Wolf) D. Wolf, P. Keblinski, S. R. Phillpot, J. Eggebrecht, J Chem Phys, 110, 8254 (1999).

(Fennell) C. J. Fennell, J. D. Gezelter, J Chem Phys, 124, 234104 (2006).

LIGGGHTS Users Manual

pair_style tip4p/long/omp command 772

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style lj/cut/dipole/cut command

pair_style lj/cut/dipole/cut/gpu command

pair_style lj/cut/dipole/cut/omp command

pair_style lj/sf/dipole/sf command

pair_style lj/sf/dipole/sf/gpu command

pair_style lj/sf/dipole/sf/omp command

pair_style lj/cut/dipole/long command

pair_style lj/long/dipole/long command

Syntax:

pair_style lj/cut/dipole/cut cutoff (cutoff2)
pair_style lj/sf/dipole/sf cutoff (cutoff2)
pair_style lj/cut/dipole/long cutoff (cutoff2)
pair_style lj/long/dipole/long flag_lj flag_coul cutoff (cutoff2)

cutoff = global cutoff LJ (and Coulombic if only 1 arg) (distance units)•
cutoff2 = global cutoff for Coulombic and dipole (optional) (distance units)•
flag_lj = long or cut or off

long = use long-range damping on dispersion 1/r^6 term
cut = use a cutoff on dispersion 1/r^6 term
off = omit disperion 1/r^6 term entirely

•

flag_coul = long or off

long = use long-range damping on Coulombic 1/r and point-dipole terms
off = omit Coulombic and point-dipole terms entirely

•

Examples:

pair_style lj/cut/dipole/cut 10.0
pair_coeff * * 1.0 1.0
pair_coeff 2 3 1.0 1.0 2.5 4.0

pair_style lj/sf/dipole/sf 9.0
pair_coeff * * 1.0 1.0
pair_coeff 2 3 1.0 1.0 2.5 4.0

pair_style lj/cut/dipole/long 10.0
pair_coeff * * 1.0 1.0
pair_coeff 2 3 1.0 1.0 2.5 4.0

pair_style lj/long/dipole/long long long 3.5 10.0
pair_coeff * * 1.0 1.0
pair_coeff 2 3 1.0 1.0 2.5 4.0

Description:

LIGGGHTS Users Manual

pair_style lj/cut/dipole/cut command 773

http://lammps.sandia.gov

Style lj/cut/dipole/cut computes interactions between pairs of particles that each have a charge and/or a point
dipole moment. In addition to the usual Lennard-Jones interaction between the particles (Elj) the
charge-charge (Eqq), charge-dipole (Eqp), and dipole-dipole (Epp) interactions are computed by these
formulas for the energy (E), force (F), and torque (T) between particles I and J.

where qi and qj are the charges on the two particles, pi and pj are the dipole moment vectors of the two
particles, r is their separation distance, and the vector r = Ri - Rj is the separation vector between the two
particles. Note that Eqq and Fqq are simply Coulombic energy and force, Fij = -Fji as symmetric forces, and
Tij != -Tji since the torques do not act symmetrically. These formulas are discussed in (Allen) and in
(Toukmaji).

LIGGGHTS Users Manual

pair_style lj/long/dipole/long command 774

Style lj/sf/dipole/sf computes "shifted-force" interactions between pairs of particles that each have a charge
and/or a point dipole moment. In general, a shifted-force potential is a (sligthly) modified potential containing
extra terms that make both the energy and its derivative go to zero at the cutoff distance; this removes
(cutoff-related) problems in energy conservation and any numerical instability in the equations of motion
(Allen). Shifted-force interactions for the Lennard-Jones (E_LJ), charge-charge (Eqq), charge-dipole (Eqp),
dipole-charge (Epq) and dipole-dipole (Epp) potentials are computed by these formulas for the energy (E),
force (F), and torque (T) between particles I and J:

LIGGGHTS Users Manual

pair_style lj/long/dipole/long command 775

LIGGGHTS Users Manual

pair_style lj/long/dipole/long command 776

where epsilon and sigma are the standard LJ parameters, r_c is the cutoff, qi and qj are the charges on the two
particles, pi and pj are the dipole moment vectors of the two particles, r is their separation distance, and the
vector r = Ri - Rj is the separation vector between the two particles. Note that Eqq and Fqq are simply
Coulombic energy and force, Fij = -Fji as symmetric forces, and Tij != -Tji since the torques do not act
symmetrically. The shifted-force formula for the Lennard-Jones potential is reported in (Stoddard). The
original (unshifted) formulas for the electrostatic potentials, forces and torques can be found in (Price). The
shifted-force electrostatic potentials have been obtained by applying equation 5.13 of (Allen). The formulas
for the corresponding forces and torques have been obtained by applying the 'chain rule' as in appendix C.3 of
(Allen).

If one cutoff is specified in the pair_style command, it is used for both the LJ and Coulombic (q,p) terms. If
two cutoffs are specified, they are used as cutoffs for the LJ and Coulombic (q,p) terms respectively.

Style lj/cut/dipole/long computes long-range point-dipole interactions as discussed in (Toukmaji).
Dipole-dipole, dipole-charge, and charge-charge interactions are all supported, along with the standard 12/6
Lennard-Jones interactions, which are computed with a cutoff. A kspace_style must be defined to use this pair
style. Currently, only kspace_style ewald/disp support long-range point-dipole interactions.

Style lj/long/dipole/long also computes point-dipole interactions as discussed in (Toukmaji). Long-range
dipole-dipole, dipole-charge, and charge-charge interactions are all supported, along with the standard 12/6
Lennard-Jones interactions. LJ interactions can be cutoff or long-ranged.

For style lj/long/dipole/long, if flag_lj is set to long, no cutoff is used on the LJ 1/r^6 dispersion term. The
long-range portion is calculated by using the kspace_style ewald_disp command. The specified LJ cutoff then
determines which portion of the LJ interactions are computed directly by the pair potential versus which part
is computed in reciprocal space via the Kspace style. If flag_lj is set to cut, the LJ interactions are simply
cutoff, as with pair_style lj/cut. If flag_lj is set to off, LJ interactions are not computed at all.

LIGGGHTS Users Manual

pair_style lj/long/dipole/long command 777

If flag_coul is set to long, no cutoff is used on the Coulombic or dipole interactions. The long-range portion is
calculated by using ewald_disp of the kspace_style command. If flag_coul is set to off, Coulombic and dipole
interactions are not computed at all.

Atoms with dipole moments should be integrated using the fix nve/sphere update dipole command to rotate
the dipole moments. The omega option on the fix langevin command can be used to thermostat the rotational
motion. The compute temp/sphere command can be used to monitor the temperature, since it includes
rotational degrees of freedom. The atom_style dipole command should be used since it defines the point
dipoles and their rotational state. The magnitude of the dipole moment for each type of particle can be defined
by the dipole command or in the "Dipoles" section of the data file read in by the read_data command. Their
initial orientation can be defined by the set dipole command or in the "Atoms" section of the data file.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

epsilon (energy units)•
sigma (distance units)•
cutoff1 (distance units)•
cutoff2 (distance units)•

The latter 2 coefficients are optional. If not specified, the global LJ and Coulombic cutoffs specified in the
pair_style command are used. If only one cutoff is specified, it is used as the cutoff for both LJ and
Coulombic interactions for this type pair. If both coefficients are specified, they are used as the LJ and
Coulombic cutoffs for this type pair.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distances for this pair style can
be mixed. The default mix value is geometric. See the "pair_modify" command for details.

For atom type pairs I,J and I != J, the A, sigma, d1, and d2 coefficients and cutoff distance for this pair style
can be mixed. A is an energy value mixed like a LJ epsilon. D1 and d2 are distance values and are mixed like
sigma. The default mix value is geometric. See the "pair_modify" command for details.

This pair style does not support the pair_modify shift option for the energy of the Lennard-Jones portion of
the pair interaction; such energy goes to zero at the cutoff by construction.

The pair_modify table option is not relevant for this pair style.

LIGGGHTS Users Manual

pair_style lj/long/dipole/long command 778

This pair style does not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

The lj/cut/dipole/cut, lj/cut/dipole/long, and lj/long/dipole/long styles are part of the DIPOLE package. They
are only enabled if LAMMPS was built with that package. See the Making LAMMPS section for more info.

The lj/sf/dipole/sf style is part of the USER-MISC package. It is only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info.

Using dipole pair styles with electron units is not currently supported.

Related commands:

pair_coeff

Default: none

(Allen) Allen and Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.

(Toukmaji) Toukmaji, Sagui, Board, and Darden, J Chem Phys, 113, 10913 (2000).

(Stoddard) Stoddard and Ford, Phys Rev A, 8, 1504 (1973).

(Price) Price, Stone and Alderton, Mol Phys, 52, 987 (1984).

LIGGGHTS Users Manual

pair_style lj/long/dipole/long command 779

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style dpd command

pair_style dpd/omp command

pair_style dpd/tstat command

pair_style dpd/tstat/omp command

Syntax:

pair_style dpd T cutoff seed
pair_style dpd/tstat Tstart Tstop cutoff seed

T = temperature (temperature units)•
Tstart,Tstop = desired temperature at start/end of run (temperature units)•
cutoff = global cutoff for DPD interactions (distance units)•
seed = random # seed (positive integer)•

Examples:

pair_style dpd 1.0 2.5 34387
pair_coeff * * 3.0 1.0
pair_coeff 1 1 3.0 1.0 1.0

pair_style dpd/tstat 1.0 1.0 2.5 34387
pair_coeff * * 1.0
pair_coeff 1 1 1.0 1.0

Description:

Style dpd computes a force field for dissipative particle dynamics (DPD) following the exposition in (Groot).

Style dpd/tstat invokes a DPD thermostat on pairwise interactions, which is equivalent to the
non-conservative portion of the DPD force field. This pair-wise thermostat can be used in conjunction with
any pair style, and in leiu of per-particle thermostats like fix langevin or ensemble thermostats like Nose
Hoover as implemented by fix nvt. To use dpd/stat as a thermostat for another pair style, use the pair_style
hybrid/overlay command to compute both the desired pair interaction and the thermostat for each pair of
particles.

For style dpd, the force on atom I due to atom J is given as a sum of 3 terms

LIGGGHTS Users Manual

pair_style dpd command 780

http://lammps.sandia.gov

where Fc is a conservative force, Fd is a dissipative force, and Fr is a random force. Rij is a unit vector in the
direction Ri - Rj, Vij is the vector difference in velocities of the two atoms = Vi - Vj, alpha is a Gaussian
random number with zero mean and unit variance, dt is the timestep size, and w(r) is a weighting factor that
varies between 0 and 1. Rc is the cutoff. Sigma is set equal to sqrt(2 Kb T gamma), where Kb is the
Boltzmann constant and T is the temperature parameter in the pair_style command.

For style dpd/tstat, the force on atom I due to atom J is the same as the above equation, except that the
conservative Fc term is dropped. Also, during the run, T is set each timestep to a ramped value from Tstart to
Tstop.

For style dpd, the pairwise energy associated with style dpd is only due to the conservative force term Fc, and
is shifted to be zero at the cutoff distance Rc. The pairwise virial is calculated using all 3 terms. For style
dpd/tstat there is no pairwise energy, but the last two terms of the formula make a contribution to the virial.

For style dpd, the following coefficients must be defined for each pair of atoms types via the pair_coeff
command as in the examples above, or in the data file or restart files read by the read_data or read_restart
commands:

A (force units)•
gamma (force/velocity units)•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global DPD cutoff is used. Note that sigma is set equal to
sqrt(2 T gamma), where T is the temperature set by the pair_style command so it does not need to be
specified.

For style dpd/tstat, the coefficiencts defined for each pair of atoms types via the pair_coeff command is the
same, except that A is not included.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

These pair styles do not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

These pair styles do not support the pair_modify shift option for the energy of the pair interaction. Note that as
discussed above, the energy due to the conservative Fc term is already shifted to be 0.0 at the cutoff distance
Rc.

The pair_modify table option is not relevant for these pair styles.

LIGGGHTS Users Manual

pair_style dpd/tstat/omp command 781

These pair style do not support the pair_modify tail option for adding long-range tail corrections to energy and
pressure.

These pair styles writes their information to binary restart files, so pair_style and pair_coeff commands do not
need to be specified in an input script that reads a restart file. Note that the user-specified random number seed
is stored in the restart file, so when a simulation is restarted, each processor will re-initialize its random
number generator the same way it did initially. This means the random forces will be random, but will not be
the same as they would have been if the original simulation had continued past the restart time.

These pair styles can only be used via the pair keyword of the run_style respa command. They do not support
the inner, middle, outer keywords.

The dpd/tstat style can ramp its target temperature over multiple runs, using the start and stop keywords of the
run command. See the run command for details of how to do this.

Restrictions:

The default frequency for rebuilding neighbor lists is every 10 steps (see the neigh_modify command). This
may be too infrequent for style dpd simulations since particles move rapidly and can overlap by large
amounts. If this setting yields a non-zero number of "dangerous" reneighborings (printed at the end of a
simulation), you should experiment with forcing reneighboring more often and see if system
energies/trajectories change.

These pair styles requires you to use the communicate vel yes option so that velocites are stored by ghost
atoms.

These pair styles will not restart exactly when using the read_restart command, though they should provide
statistically similar results. This is because the forces they compute depend on atom velocities. See the
read_restart command for more details.

Related commands:

pair_coeff, fix nvt, fix langevin

Default: none

(Groot) Groot and Warren, J Chem Phys, 107, 4423-35 (1997).

LIGGGHTS Users Manual

pair_style dpd/tstat/omp command 782

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style dsmc command

Syntax:

pair_style dsmc max_cell_size seed weighting Tref Nrecompute Nsample

max_cell_size = global maximum cell size for DSMC interactions (distance units)•
seed = random # seed (positive integer)•
weighting = macroparticle weighting•
Tref = reference temperature (temperature units)•
Nrecompute = recompute v*sigma_max every this many timesteps (timesteps)•
Nsample = sample this many times in recomputing v*sigma_max•

Examples:

pair_style dsmc 2.5 34387 10 1.0 100 20
pair_coeff * * 1.0
pair_coeff 1 1 1.0

Description:

Style dsmc computes collisions between pairs of particles for a direct simulation Monte Carlo (DSMC) model
following the exposition in (Bird). Each collision resets the velocities of the two particles involved. The
number of pairwise collisions for each pair or particle types and the length scale within which they occur are
determined by the parameters of the pair_style and pair_coeff commands.

Stochastic collisions are performed using the variable hard sphere (VHS) approach, with the user-defined
max_cell_size value used as the maximum DSMC cell size, and reference cross-sections for collisions given
using the pair_coeff command.

There is no pairwise energy or virial contributions associated with this pair style.

The following coefficient must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands:

sigma (area units, i.e. distance-squared)•

The global DSMC max_cell_size determines the maximum cell length used in the DSMC calculation. A
structured mesh is overlayed on the simulation box such that an integer number of cells are created in each
direction for each processor's sub-domain. Cell lengths are adjusted up to the user-specified maximum cell
size.

To perform a DSMC simulation with LAMMPS, several additional options should be set in your input script,
though LAMMPS does not check for these settings.

Since this pair style does not compute particle forces, you should use the "fix nve/noforce" time integration fix
for the DSMC particles, e.g.

fix 1 all nve/noforce

This pair style assumes that all particles will communicated to neighboring processors every timestep as they
move. This makes it possible to perform all collisions between pairs of particles that are on the same
processor. To ensure this occurs, you should use these commands:

LIGGGHTS Users Manual

pair_style dsmc command 783

http://lammps.sandia.gov

neighbor 0.0 bin
neigh_modify every 1 delay 0 check no
atom_modify sort 0 0.0
communicate single cutoff 0.0

These commands ensure that LAMMPS communicates particles to neighboring processors every timestep and
that no ghost atoms are created. The output statistics for a simulation run should indicate there are no ghost
particles or neighbors.

In order to get correct DSMC collision statistics, users should specify a Gaussian velocity distribution when
populating the simulation domain. Note that the default velocity distribution is uniform, which will not give
good DSMC collision rates. Specify "dist gaussian" when using the velocity command as in the following:

velocity all create 594.6 87287 loop geom dist gaussian

Mixing, shift, table, tail correction, restart, rRESPA info:

This pair style does not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

This pair style does not support the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file. Note that the user-specified random number seed is
stored in the restart file, so when a simulation is restarted, each processor will re-initialize its random number
generator the same way it did initially. This means the random forces will be random, but will not be the same
as they would have been if the original simulation had continued past the restart time.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This style is part of the MC package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:

pair_coeff, fix nve/noforce, neigh_modify, neighbor, communicate

Default: none

(Bird) G. A. Bird, "Molecular Gas Dynamics and the Direct Simulation of Gas Flows" (1994).

LIGGGHTS Users Manual

pair_style dsmc command 784

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style eam command

pair_style eam/cuda command

pair_style eam/gpu command

pair_style eam/omp command

pair_style eam/opt command

pair_style eam/alloy command

pair_style eam/alloy/cuda command

pair_style eam/alloy/gpu command

pair_style eam/alloy/omp command

pair_style eam/alloy/opt command

pair_style eam/cd command

pair_style eam/cd/omp command

pair_style eam/fs command

pair_style eam/fs/cuda command

pair_style eam/fs/gpu command

pair_style eam/fs/omp command

pair_style eam/fs/opt command

Syntax:

pair_style style

style = eam or eam/alloy or eam/cd or eam/fs•

Examples:

pair_style eam
pair_coeff * * cuu3
pair_coeff 1*3 1*3 niu3.eam

pair_style eam/alloy
pair_coeff * * ../potentials/NiAlH_jea.eam.alloy Ni Al Ni Ni

LIGGGHTS Users Manual

pair_style eam command 785

http://lammps.sandia.gov

pair_style eam/cd
pair_coeff * * ../potentials/FeCr.cdeam Fe Cr

pair_style eam/fs
pair_coeff * * NiAlH_jea.eam.fs Ni Al Ni Ni

Description:

Style eam computes pairwise interactions for metals and metal alloys using embedded-atom method (EAM)
potentials (Daw). The total energy Ei of an atom I is given by

where F is the embedding energy which is a function of the atomic electron density rho, phi is a pair potential
interaction, and alpha and beta are the element types of atoms I and J. The multi-body nature of the EAM
potential is a result of the embedding energy term. Both summations in the formula are over all neighbors J of
atom I within the cutoff distance.

The cutoff distance and the tabulated values of the functionals F, rho, and phi are listed in one or more files
which are specified by the pair_coeff command. These are ASCII text files in a DYNAMO-style format
which is described below. DYNAMO was the original serial EAM MD code, written by the EAM originators.
Several DYNAMO potential files for different metals are included in the "potentials" directory of the
LAMMPS distribution. All of these files are parameterized in terms of LAMMPS metal units.

IMPORTANT NOTE: The eam style reads single-element EAM potentials in the DYNAMO funcfl format.
Either single element or alloy systems can be modeled using multiple funcfl files and style eam. For the alloy
case LAMMPS mixes the single-element potentials to produce alloy potentials, the same way that DYNAMO
does. Alternatively, a single DYNAMO setfl file or Finnis/Sinclair EAM file can be used by LAMMPS to
model alloy systems by invoking the eam/alloy or eam/cd or eam/fs styles as described below. These files
require no mixing since they specify alloy interactions explicitly.

Note that unlike for other potentials, cutoffs for EAM potentials are not set in the pair_style or pair_coeff
command; they are specified in the EAM potential files themselves. Likewise, the EAM potential files list
atomic masses; thus you do not need to use the mass command to specify them.

There are several WWW sites that distribute and document EAM potentials stored in DYNAMO or other
formats:

http://www.ctcms.nist.gov/potentials
http://cst-www.nrl.navy.mil/ccm6/ap
http://enpub.fulton.asu.edu/cms/potentials/main/main.htm

These potentials should be usable with LAMMPS, though the alternate formats would need to be converted to
the DYNAMO format used by LAMMPS and described on this page. The NIST site is maintained by
Chandler Becker (cbecker at nist.gov) who is good resource for info on interatomic potentials and file formats.

For style eam, potential values are read from a file that is in the DYNAMO single-element funcfl format. If
the DYNAMO file was created by a Fortran program, it cannot have "D" values in it for exponents. C only
recognizes "e" or "E" for scientific notation.

LIGGGHTS Users Manual

pair_style eam/fs/opt command 786

Note that unlike for other potentials, cutoffs for EAM potentials are not set in the pair_style or pair_coeff
command; they are specified in the EAM potential files themselves.

For style eam a potential file must be assigned to each I,I pair of atom types by using one or more pair_coeff
commands, each with a single argument:

filename•

Thus the following command

pair_coeff *2 1*2 cuu3.eam

will read the cuu3 potential file and use the tabulated Cu values for F, phi, rho that it contains for type pairs
1,1 and 2,2 (type pairs 1,2 and 2,1 are ignored). See the pair_coeff doc page for alternate ways to specify the
path for the potential file. In effect, this makes atom types 1 and 2 in LAMMPS be Cu atoms. Different
single-element files can be assigned to different atom types to model an alloy system. The mixing to create
alloy potentials for type pairs with I != J is done automatically the same way that the serial DYNAMO code
originally did it; you do not need to specify coefficients for these type pairs.

Funcfl files in the potentials directory of the LAMMPS distribution have an ".eam" suffix. A DYNAMO
single-element funcfl file is formatted as follows:

line 1: comment (ignored)•
line 2: atomic number, mass, lattice constant, lattice type (e.g. FCC)•
line 3: Nrho, drho, Nr, dr, cutoff•

On line 2, all values but the mass are ignored by LAMMPS. The mass is in mass units, e.g. mass number or
grams/mole for metal units. The cubic lattice constant is in Angstroms. On line 3, Nrho and Nr are the number
of tabulated values in the subsequent arrays, drho and dr are the spacing in density and distance space for the
values in those arrays, and the specified cutoff becomes the pairwise cutoff used by LAMMPS for the
potential. The units of dr are Angstroms; I'm not sure of the units for drho - some measure of electron density.

Following the three header lines are three arrays of tabulated values:

embedding function F(rho) (Nrho values)•
effective charge function Z(r) (Nr values)•
density function rho(r) (Nr values)•

The values for each array can be listed as multiple values per line, so long as each array starts on a new line.
For example, the individual Z(r) values are for r = 0,dr,2*dr, ... (Nr-1)*dr.

The units for the embedding function F are eV. The units for the density function rho are the same as for drho
(see above, electron density). The units for the effective charge Z are "atomic charge" or sqrt(Hartree *
Bohr-radii). For two interacting atoms i,j this is used by LAMMPS to compute the pair potential term in the
EAM energy expression as r*phi, in units of eV-Angstroms, via the formula

r*phi = 27.2 * 0.529 * Zi * Zj

where 1 Hartree = 27.2 eV and 1 Bohr = 0.529 Angstroms.

Style eam/alloy computes pairwise interactions using the same formula as style eam. However the associated
pair_coeff command reads a DYNAMO setfl file instead of a funcfl file. Setfl files can be used to model a
single-element or alloy system. In the alloy case, as explained above, setfl files contain explicit tabulated
values for alloy interactions. Thus they allow more generality than funcfl files for modeling alloys.

LIGGGHTS Users Manual

pair_style eam/fs/opt command 787

For style eam/alloy, potential values are read from a file that is in the DYNAMO multi-element setfl format,
except that element names (Ni, Cu, etc) are added to one of the lines in the file. If the DYNAMO file was
created by a Fortran program, it cannot have "D" values in it for exponents. C only recognizes "e" or "E" for
scientific notation.

Only a single pair_coeff command is used with the eam/alloy style which specifies a DYNAMO setfl file,
which contains information for M elements. These are mapped to LAMMPS atom types by specifying N
additional arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom
types:

filename•
N element names = mapping of setfl elements to atom types•

As an example, the potentials/NiAlH_jea.eam.alloy file is a setfl file which has tabulated EAM values for 3
elements and their alloy interactions: Ni, Al, and H. See the pair_coeff doc page for alternate ways to specify
the path for the potential file. If your LAMMPS simulation has 4 atoms types and you want the 1st 3 to be Ni,
and the 4th to be Al, you would use the following pair_coeff command:

pair_coeff * * NiAlH_jea.eam.alloy Ni Ni Ni Al

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first three Ni arguments map
LAMMPS atom types 1,2,3 to the Ni element in the setfl file. The final Al argument maps LAMMPS atom
type 4 to the Al element in the setfl file. Note that there is no requirement that your simulation use all the
elements specified by the setfl file.

If a mapping value is specified as NULL, the mapping is not performed. This can be used when an eam/alloy
potential is used as part of the hybrid pair style. The NULL values are placeholders for atom types that will be
used with other potentials.

Setfl files in the potentials directory of the LAMMPS distribution have an ".eam.alloy" suffix. A DYNAMO
multi-element setfl file is formatted as follows:

lines 1,2,3 = comments (ignored)•
line 4: Nelements Element1 Element2 ... ElementN•
line 5: Nrho, drho, Nr, dr, cutoff•

In a DYNAMO setfl file, line 4 only lists Nelements = the # of elements in the setfl file. For LAMMPS, the
element name (Ni, Cu, etc) of each element must be added to the line, in the order the elements appear in the
file.

The meaning and units of the values in line 5 is the same as for the funcfl file described above. Note that the
cutoff (in Angstroms) is a global value, valid for all pairwise interactions for all element pairings.

Following the 5 header lines are Nelements sections, one for each element, each with the following format:

line 1 = atomic number, mass, lattice constant, lattice type (e.g. FCC)•
embedding function F(rho) (Nrho values)•
density function rho(r) (Nr values)•

As with the funcfl files, only the mass (in mass units, e.g. mass number or grams/mole for metal units) is used
by LAMMPS from the 1st line. The cubic lattice constant is in Angstroms. The F and rho arrays are unique to
a single element and have the same format and units as in a funcfl file.

Following the Nelements sections, Nr values for each pair potential phi(r) array are listed for all i,j element
pairs in the same format as other arrays. Since these interactions are symmetric (i,j = j,i) only phi arrays with i

LIGGGHTS Users Manual

pair_style eam/fs/opt command 788

>= j are listed, in the following order: i,j = (1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1), ..., (Nelements,
Nelements). Unlike the effective charge array Z(r) in funcfl files, the tabulated values for each phi function are
listed in setfl files directly as r*phi (in units of eV-Angstroms), since they are for atom pairs.

Style eam/cd is similar to the eam/alloy style, except that it computes alloy pairwise interactions using the
concentration-dependent embedded-atom method (CD-EAM). This model can reproduce the enthalpy of
mixing of alloys over the full composition range, as described in (Stukowski).

The pair_coeff command is specified the same as for the eam/alloy style. However the DYNAMO setfl file
must has two lines added to it, at the end of the file:

line 1: Comment line (ignored)•
line 2: N Coefficient0 Coefficient1 ... CoeffincientN•

The last line begins with the degree N of the polynomial function h(x) that modifies the cross interaction
between A and B elements. Then N+1 coefficients for the terms of the polynomial are then listed.

Modified EAM setfl files used with the eam/cd style must contain exactly two elements, i.e. in the current
implementation the eam/cd style only supports binary alloys. The first and second elements in the input EAM
file are always taken as the A and B species.

CD-EAM files in the potentials directory of the LAMMPS distribution have a ".cdeam" suffix.

Style eam/fs computes pairwise interactions for metals and metal alloys using a generalized form of EAM
potentials due to Finnis and Sinclair (Finnis). The total energy Ei of an atom I is given by

This has the same form as the EAM formula above, except that rho is now a functional specific to the atomic
types of both atoms I and J, so that different elements can contribute differently to the total electron density at
an atomic site depending on the identity of the element at that atomic site.

The associated pair_coeff command for style eam/fs reads a DYNAMO setfl file that has been extended to
include additional rho_alpha_beta arrays of tabulated values. A discussion of how FS EAM differs from
conventional EAM alloy potentials is given in (Ackland1). An example of such a potential is the same
author's Fe-P FS potential (Ackland2). Note that while FS potentials always specify the embedding energy
with a square root dependence on the total density, the implementation in LAMMPS does not require that; the
user can tabulate any functional form desired in the FS potential files.

For style eam/fs, the form of the pair_coeff command is exactly the same as for style eam/alloy, e.g.

pair_coeff * * NiAlH_jea.eam.fs Ni Ni Ni Al

where there are N additional arguments after the filename, where N is the number of LAMMPS atom types.
See the pair_coeff doc page for alternate ways to specify the path for the potential file. The N values
determine the mapping of LAMMPS atom types to EAM elements in the file, as described above for style
eam/alloy. As with eam/alloy, if a mapping value is NULL, the mapping is not performed. This can be used
when an eam/fs potential is used as part of the hybrid pair style. The NULL values are used as placeholders
for atom types that will be used with other potentials.

LIGGGHTS Users Manual

pair_style eam/fs/opt command 789

FS EAM files include more information than the DYNAMO setfl format files read by eam/alloy, in that i,j
density functionals for all pairs of elements are included as needed by the Finnis/Sinclair formulation of the
EAM.

FS EAM files in the potentials directory of the LAMMPS distribution have an ".eam.fs" suffix. They are
formatted as follows:

lines 1,2,3 = comments (ignored)•
line 4: Nelements Element1 Element2 ... ElementN•
line 5: Nrho, drho, Nr, dr, cutoff•

The 5-line header section is identical to an EAM setfl file.

Following the header are Nelements sections, one for each element I, each with the following format:

line 1 = atomic number, mass, lattice constant, lattice type (e.g. FCC)•
embedding function F(rho) (Nrho values)•
density function rho(r) for element I at element 1 (Nr values)•
density function rho(r) for element I at element 2•
...•
density function rho(r) for element I at element Nelement•

The units of these quantities in line 1 are the same as for setfl files. Note that the rho(r) arrays in
Finnis/Sinclair can be asymmetric (i,j != j,i) so there are Nelements^2 of them listed in the file.

Following the Nelements sections, Nr values for each pair potential phi(r) array are listed in the same manner
(r*phi, units of eV-Angstroms) as in EAM setfl files. Note that in Finnis/Sinclair, the phi(r) arrays are still
symmetric, so only phi arrays for i >= j are listed.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accerlate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, where types I and J correspond to two different element types, mixing is
performed by LAMMPS as described above with the individual styles. You never need to specify a pair_coeff
command with I != J arguments for the eam styles.

This pair style does not support the pair_modify shift, table, and tail options.

The eam pair styles do not write their information to binary restart files, since it is stored in tabulated potential
files. Thus, you need to re-specify the pair_style and pair_coeff commands in an input script that reads a

LIGGGHTS Users Manual

pair_style eam/fs/opt command 790

restart file.

The eam pair styles can only be used via the pair keyword of the run_style respa command. They do not
support the inner, middle, outer keywords.

Restrictions:

All of these styles except the eam/cd style are part of the MANYBODY package. They are only enabled if
LAMMPS was built with that package (which it is by default). See the Making LAMMPS section for more
info.

The eam/cd style is part of the USER-MISC package and also requires the MANYBODY package. It is only
enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

Related commands:

pair_coeff

Default: none

(Ackland1) Ackland, Condensed Matter (2005).

(Ackland2) Ackland, Mendelev, Srolovitz, Han and Barashev, Journal of Physics: Condensed Matter, 16,
S2629 (2004).

(Daw) Daw, Baskes, Phys Rev Lett, 50, 1285 (1983). Daw, Baskes, Phys Rev B, 29, 6443 (1984).

(Finnis) Finnis, Sinclair, Philosophical Magazine A, 50, 45 (1984).

(Stukowski) Stukowski, Sadigh, Erhart, Caro; Modeling Simulation Materials Science & Engineering, 7,
075005 (2009).

LIGGGHTS Users Manual

pair_style eam/fs/opt command 791

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style edip command

Syntax:

pair_style edip

pair_style edip/omp

Examples:

pair_style edip pair_coeff * * Si.edip Si

Description:

The edip style computes a 3-body EDIP potential which is popular for modeling silicon materials where it can
have advantages over other models such as the Stillinger-Weber or Tersoff potentials. In EDIP, the energy E
of a system of atoms is

where phi2 is a two-body term and phi3 is a three-body term. The summations in the formula are over all
neighbors J and K of atom I within a cutoff distance = a. Both terms depend on the local environment of atom
I through its effective coordination number defined by Z, which is unity for a cutoff distance < c and gently
goes to 0 at distance = a.

Only a single pair_coeff command is used with the edip style which specifies a EDIP potential file with
parameters for all needed elements. These are mapped to LAMMPS atom types by specifying N additional
arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom types:

filename•

LIGGGHTS Users Manual

pair_style edip command 792

http://lammps.sandia.gov

N element names = mapping of EDIP elements to atom types•

See the pair_coeff doc page for alternate ways to specify the path for the potential file.

As an example, imagine a file Si.edip has EDIP values for Si.

EDIP files in the potentials directory of the LAMMPS distribution have a ".edip" suffix. Lines that are not
blank or comments (starting with #) define parameters for a triplet of elements. The parameters in a single
entry correspond to the two-body and three-body coefficients in the formula above:

element 1 (the center atom in a 3-body interaction)•
element 2•
element 3•
A (energy units)•
B (distance units)•
cutoffA (distance units)•
cutoffC (distance units)•
alpha•
beta•
eta•
gamma (distance units)•
lambda (energy units)•
mu•
tho•
sigma (distance units)•
Q0•
u1•
u2•
u3•
u4•

The A, B, beta, sigma parameters are used only for two-body interactions. The eta, gamma, lambda, mu, Q0
and all u1 to u4 parameters are used only for three-body interactions. The alpha and cutoffC parameters are
used for the coordination environment function only.

The EDIP potential file must contain entries for all the elements listed in the pair_coeff command. It can also
contain entries for additional elements not being used in a particular simulation; LAMMPS ignores those
entries.

For a single-element simulation, only a single entry is required (e.g. SiSiSi). For a two-element simulation, the
file must contain 8 entries (for SiSiSi, SiSiC, SiCSi, SiCC, CSiSi, CSiC, CCSi, CCC), that specify EDIP
parameters for all permutations of the two elements interacting in three-body configurations. Thus for 3
elements, 27 entries would be required, etc.

At the moment, only a single element parametrization is implemented. However, the author is not aware of
other multi-element EDIP parametrizations. If you know any and you are interest in that, please contact the
author of the EDIP package.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.

LIGGGHTS Users Manual

pair_style edip command 793

They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

This pair style does not support the pair_modify shift, table, and tail options.

This pair style does not write its information to binary restart files, since it is stored in potential files. Thus,
you need to re-specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

This pair style requires the newton setting to be "on" for pair interactions.

The EDIP potential files provided with LAMMPS (see the potentials directory) are parameterized for metal
units. You can use the SW potential with any LAMMPS units, but you would need to create your own EDIP
potential file with coefficients listed in the appropriate units if your simulation doesn't use "metal" units.

Related commands:

pair_coeff

Default: none

(EDIP) J. F. Justo et al., Phys. Rev. B 58, 2539 (1998).

LIGGGHTS Users Manual

pair_style edip command 794

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style eff/cut command

Syntax:

pair_style eff/cut cutoff keyword args ...

cutoff = global cutoff for Coulombic interactions•
zero or more keyword/value pairs may be appended

keyword = limit/eradius or pressure/evirials or ecp
limit/eradius args = none
pressure/evirials args = none
ecp args = type element type element ...

 type = LAMMPS atom type (1 to Ntypes)
 element = element symbol (e.g. H, Si)

•

Examples:

pair_style eff/cut 39.7
pair_style eff/cut 40.0 limit/eradius
pair_style eff/cut 40.0 limit/eradius pressure/evirials
pair_style eff/cut 40.0 ecp 1 Si 3 C
pair_coeff * *
pair_coeff 2 2 20.0
pair_coeff 1 s 0.320852 2.283269 0.814857
pair_coeff 3 p 22.721015 0.728733 1.103199 17.695345 6.693621

Description:

This pair style contains a LAMMPS implementation of the electron Force Field (eFF) potential currently
under development at Caltech, as described in (Jaramillo-Botero). The eFF for Z(Su) in 2007. It has been
extended to higher Zs by using effective core potentials (ECPs) that now cover up to 2nd and 3rd row p-block
elements of the periodic table.

eFF can be viewed as an approximation to QM wave packet dynamics and Fermionic molecular dynamics,
combining the ability of electronic structure methods to describe atomic structure, bonding, and chemistry in
materials, and of plasma methods to describe nonequilibrium dynamics of large systems with a large number
of highly excited electrons. Yet, eFF relies on a simplification of the electronic wavefunction in which
electrons are described as floating Gaussian wave packets whose position and size respond to the various
dynamic forces between interacting classical nuclear particles and spherical Gaussian electron wavepackets.
The wavefunction is taken to be a Hartree product of the wave packets. To compensate for the lack of explicit
antisymmetry in the resulting wavefunction, a spin-dependent Pauli potential is included in the Hamiltonian.
Substituting this wavefunction into the time-dependent Schrodinger equation produces equations of motion
that correspond - to second order - to classical Hamiltonian relations between electron position and size, and
their conjugate momenta. The N-electron wavefunction is described as a product of one-electron Gaussian
functions, whose size is a dynamical variable and whose position is not constrained to a nuclear center. This
form allows for straightforward propagation of the wavefunction, with time, using a simple formulation from
which the equations of motion are then integrated with conventional MD algorithms. In addition to this
spin-dependent Pauli repulsion potential term between Gaussians, eFF includes the electron kinetic energy
from the Gaussians. These two terms are based on first-principles quantum mechanics. On the other hand,
nuclei are described as point charges, which interact with other nuclei and electrons through standard
electrostatic potential forms.

The full Hamiltonian (shown below), contains then a standard description for electrostatic interactions
between a set of delocalized point and Gaussian charges which include, nuclei-nuclei (NN), electron-electron

LIGGGHTS Users Manual

pair_style eff/cut command 795

http://lammps.sandia.gov

(ee), and nuclei-electron (Ne). Thus, eFF is a mixed QM-classical mechanics method rather than a
conventional force field method (in which electron motions are averaged out into ground state nuclear
motions, i.e a single electronic state, and particle interactions are described via empirically parameterized
interatomic potential functions). This makes eFF uniquely suited to simulate materials over a wide range of
temperatures and pressures where electronically excited and ionized states of matter can occur and coexist.
Furthermore, the interactions between particles -nuclei and electrons- reduce to the sum of a set of effective
pairwise potentials in the eFF formulation. The eff/cut style computes the pairwise Coulomb interactions
between nuclei and electrons (E_NN,E_Ne,E_ee), and the quantum-derived Pauli (E_PR) and Kinetic energy
interactions potentials between electrons (E_KE) for a total energy expression given as,

The individual terms are defined as follows:

where, s_i correspond to the electron sizes, the sigmas i's to the fixed spins of the electrons, Z_i to the charges
on the nuclei, R_ij to the distances between the nuclei or the nuclei and electrons, and r_ij to the distances
between electrons. For additional details see (Jaramillo-Botero).

The overall electrostatics energy is given in Hartree units of energy by default and can be modified by an

LIGGGHTS Users Manual

pair_style eff/cut command 796

energy-conversion constant, according to the units chosen (see electron_units). The cutoff Rc, given in Bohrs
(by default), truncates the interaction distance. The recommended cutoff for this pair style should follow the
minimum image criterion, i.e. half of the minimum unit cell length.

Style eff/long (not yet available) computes the same interactions as style eff/cut except that an additional
damping factor is applied so it can be used in conjunction with the kspace_style command and its ewald or
pppm option. The Coulombic cutoff specified for this style means that pairwise interactions within this
distance are computed directly; interactions outside that distance are computed in reciprocal space.

This potential is designed to be used with atom_style electron definitions, in order to handle the description of
systems with interacting nuclei and explicit electrons.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

cutoff (distance units)•

For eff/cut, the cutoff coefficient is optional. If it is not used (as in some of the examples above), the default
global value specified in the pair_style command is used.

For eff/long (not yet available) no cutoff will be specified for an individual I,J type pair via the pair_coeff
command. All type pairs use the same global cutoff specified in the pair_style command.

The limit/eradius and pressure/evirials keywrods are optional. Neither or both must be specified. If not
specified they are unset.

The limit/eradius keyword is used to restrain electron size from becoming excessively diffuse at very high
temperatures were the Gaussian wave packet representation breaks down, and from expanding as free
particles to infinite size. If unset, electron radius is free to increase without bounds. If set, a restraining
harmonic potential of the form E = 1/2k_ss^2 for s > L_box/2, where k_s = 1 Hartrees/Bohr^2, is applied on
the electron radius.

The pressure/evirials keyword is used to control between two types of pressure computation: if unset, the
computed pressure does not include the electronic radial virials contributions to the total pressure (scalar or
tensor). If set, the computed pressure will include the electronic radial virial contributions to the total pressure
(scalar and tensor).

The ecp keyword is used to associate an ECP representation for a particular atom type. The ECP captures the
orbital overlap between a core pseudo particle and valence electrons within the Pauli repulsion. A list of
type:element-symbol pairs may be provided for all ECP representations, after the "ecp" keyword.

IMPORTANT NOTE: Default ECP parameters are provided for C, N, O, Al, and Si. Users can modify these
using the pair_coeff command as exemplified above. For this, the User must distinguish between two different
functional forms supported, one that captures the orbital overlap assuming the s-type core interacts with an
s-like valence electron (s-s) and another that assumes the interaction is s-p. For systems that exhibit significant
p-character (e.g. C, N, O) the s-p form is recommended. The "s" ECP form requires 3 parameters and the "p"
5 parameters.

IMPORTANT NOTE: there are two different pressures that can be reported for eFF when defining this
pair_style, one (default) that considers electrons do not contribute radial virial components (i.e. electrons
treated as incompressible 'rigid' spheres) and one that does. The radial electronic contributions to the virials
are only tallied if the flexible pressure option is set, and this will affect both global and per-atom quantities. In
principle, the true pressure of a system is somewhere in between the rigid and the flexible eFF pressures, but,

LIGGGHTS Users Manual

pair_style eff/cut command 797

for most cases, the difference between these two pressures will not be significant over long-term averaged
runs (i.e. even though the energy partitioning changes, the total energy remains similar).

IMPORTANT NOTE: This implemention of eFF gives a reasonably accurate description for systems
containing nuclei from Z = 1-6 in "all electron" representations. For systems with increasingly non-spherical
electrons, Users should use the ECP representations. ECPs are now supported and validated for most of the
2nd and 3rd row elements of the p-block. Predefined parameters are provided for C, N, O, Al, and Si. The
ECP captures the orbital overlap between the core and valence electrons (i.e. Pauli repulsion) with one of the
functional forms:

Where the 1st form correspond to core interactions with s-type valence electrons and the 2nd to core
interactions with p-type valence electrons.

The current version adds full support for models with fixed-core and ECP definitions. to enable larger
timesteps (i.e. by avoiding the high frequency vibrational modes -translational and radial- of the 2 s electrons),
and in the ECP case to reduce the increased orbital complexity in higher Z elements (up to Z

In general, eFF excels at computing the properties of materials in extreme conditions and tracing the system
dynamics over multi-picosend timescales; this is particularly relevant where electron excitations can change
significantly the nature of bonding in the system. It can capture with surprising accuracy the behavior of such
systems because it describes consistently and in an unbiased manner many different kinds of bonds, including
covalent, ionic, multicenter, ionic, and plasma, and how they interconvert and/or change when they become
excited. eFF also excels in computing the relative thermochemistry of isodemic reactions and conformational
changes, where the bonds of the reactants are of the same type as the bonds of the products. eFF assumes that
kinetic energy differences dominate the overall exchange energy, which is true when the electrons present are
nearly spherical and nodeless and valid for covalent compounds such as dense hydrogen, hydrocarbons, and
diamond; alkali metals (e.g. lithium), alkali earth metals (e.g. beryllium) and semimetals such as boron; and
various compounds containing ionic and/or multicenter bonds, such as boron dihydride.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the cutoff distance for the eff/cut style can be mixed. The default mix value
is geometric. See the "pair_modify" command for details.

The pair_modify shift option is not relevant for these pair styles.

The eff/long (not yet available) style supports the pair_modify table option for tabulation of the short-range
portion of the long-range Coulombic interaction.

These pair styles do not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure.

LIGGGHTS Users Manual

pair_style eff/cut command 798

These pair styles write their information to binary restart files, so pair_style and pair_coeff commands do not
need to be specified in an input script that reads a restart file.

These pair styles can only be used via the pair keyword of the run_style respa command. They do not support
the inner, middle, outer keywords.

Restrictions:

These pair styles will only be enabled if LAMMPS is built with the USER-EFF package. It will only be
enabled if LAMMPS was built with that package. See the Making LAMMPS section for more info.

These pair styles require that particles store electron attributes such as radius, radial velocity, and radital force,
as defined by the atom_style. The electron atom style does all of this.

Thes pair styles require you to use the communicate vel yes option so that velocites are stored by ghost atoms.

Related commands:

pair_coeff

Default:

If not specified, limit_eradius = 0 and pressure_with_evirials = 0.

(Su) Su and Goddard, Excited Electron Dynamics Modeling of Warm Dense Matter, Phys Rev Lett,
99:185003 (2007).

(Jaramillo-Botero) Jaramillo-Botero, Su, Qi, Goddard, Large-scale, Long-term Non-adiabatic Electron
Molecular Dynamics for Describing Material Properties and Phenomena in Extreme Environments, J Comp
Chem, 32, 497-512 (2011).

LIGGGHTS Users Manual

pair_style eff/cut command 799

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style eim command

pair_style eim/omp command

Syntax:

pair_style style

style = eim•

Examples:

pair_style eim
pair_coeff * * Na Cl ../potentials/ffield.eim Na Cl
pair_coeff * * Na Cl ffield.eim Na Na Na Cl
pair_coeff * * Na Cl ../potentials/ffield.eim Cl NULL Na

Description:

Style eim computes pairwise interactions for ionic compounds using embedded-ion method (EIM) potentials
(Zhou). The energy of the system E is given by

The first term is a double pairwise sum over the J neighbors of all I atoms, where phi_ij is a pair potential. The
second term sums over the embedding energy E_i of atom I, which is a function of its charge q_i and the
electrical potential sigma_i at its location. E_i, q_i, and sigma_i are calculated as

where eta_ji is a pairwise function describing electron flow from atom I to atom J, and psi_ij is another
pairwise function. The multi-body nature of the EIM potential is a result of the embedding energy term. A
complete list of all the pair functions used in EIM is summarized below

LIGGGHTS Users Manual

pair_style eim command 800

http://lammps.sandia.gov

Here E_b, r_e, r_(c,phi), alpha, beta, A_(psi), zeta, r_(s,psi), r_(c,psi), A_(eta), r_(s,eta), r_(c,eta), chi, and
pair function type p are parameters, with subscripts ij indicating the two species of atoms in the atomic pair.

IMPORTANT NOTE: Even though the EIM potential is treating atoms as charged ions, you should not use a
LAMMPS atom_style that stores a charge on each atom and thus requires you to assign a charge to each atom,
e.g. the charge or full atom styles. This is because the EIM potential infers the charge on an atom from the
equation above for q_i; you do not assign charges explicitly.

All the EIM parameters are listed in a potential file which is specified by the pair_coeff command. This is an
ASCII text file in a format described below. The "ffield.eim" file included in the "potentials" directory of the
LAMMPS distribution currently includes nine elements Li, Na, K, Rb, Cs, F, Cl, Br, and I. A system with any
combination of these elements can be modeled. This file is parameterized in terms of LAMMPS metal units.

Note that unlike other potentials, cutoffs for EIM potentials are not set in the pair_style or pair_coeff
command; they are specified in the EIM potential file itself. Likewise, the EIM potential file lists atomic
masses; thus you do not need to use the mass command to specify them.

Only a single pair_coeff command is used with the eim style which specifies an EIM potential file and the
element(s) to extract information for. The EIM elements are mapped to LAMMPS atom types by specifying N
additional arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom
types:

Elem1, Elem2, ...•
EIM potential file•
N element names = mapping of EIM elements to atom types•

See the pair_coeff doc page for alternate ways to specify the path for the potential file.

As an example like one of those above, suppose you want to model a system with Na and Cl atoms. If your
LAMMPS simulation has 4 atoms types and you want the 1st 3 to be Na, and the 4th to be Cl, you would use
the following pair_coeff command:

LIGGGHTS Users Manual

pair_style eim/omp command 801

pair_coeff * * Na Cl ffield.eim Na Na Na Cl

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The filename is the EIM potential
file. The Na and Cl arguments (before the file name) are the two elements for which info will be extracted
from the potentail file. The first three trailing Na arguments map LAMMPS atom types 1,2,3 to the EIM Na
element. The final Cl argument maps LAMMPS atom type 4 to the EIM Cl element.

If a mapping value is specified as NULL, the mapping is not performed. This can be used when an eim
potential is used as part of the hybrid pair style. The NULL values are placeholders for atom types that will be
used with other potentials.

The ffield.eim file in the potentials directory of the LAMMPS distribution is formated as follows:

Lines starting with # are comments and are ignored by LAMMPS. Lines starting with "global:" include three
global values. The first value divides the cations from anions, i.e., any elements with electronegativity above
this value are viewed as anions, and any elements with electronegativity below this value are viewed as
cations. The second and third values are related to the cutoff function - i.e. the 0.510204, 1.64498, and
0.010204 shown in the above equation can be derived from these values.

Lines starting with "element:" are formatted as follows: name of element, atomic number, atomic mass,
electronic negativity, atomic radius (LAMMPS ignores it), ionic radius (LAMMPS ignores it), cohesive
energy (LAMMPS ignores it), and q0 (must be 0).

Lines starting with "pair:" are entered as: element 1, element 2, r_(c,phi), r_(c,phi) (redundant for historical
reasons), E_b, r_e, alpha, beta, r_(c,eta), A_(eta), r_(s,eta), r_(c,psi), A_(psi), zeta, r_(s,psi), and p.

The lines in the file can be in any order; LAMMPS extracts the info it needs.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This style is part of the MANYBODY package. It is only enabled if LAMMPS was built with that package
(which it is by default).

Related commands:

pair_coeff

Default: none

LIGGGHTS Users Manual

pair_style eim/omp command 802

(Zhou) Zhou, submitted for publication (2010). Please contact Xiaowang Zhou (Sandia) for details via email
at xzhou at sandia.gov.

LIGGGHTS Users Manual

pair_style eim/omp command 803

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style gauss command

pair_style gauss/gpu command

pair_style gauss/omp command

pair_style gauss/cut command

pair_style gauss/cut/omp command

Syntax:

pair_style gauss cutoff
pair_style gauss/cut cutoff

cutoff = global cutoff for Gauss interactions (distance units)•

Examples:

pair_style gauss 12.0
pair_coeff * * 1.0 0.9
pair_coeff 1 4 1.0 0.9 10.0

pair_style gauss/cut 3.5
pair_coeff 1 4 0.2805 1.45 0.112

Description:

Style gauss computes a tethering potential of the form

between an atom and its corresponding tether site which will typically be a frozen atom in the simulation. Rc
is the cutoff.

The following coefficients must be defined for each pair of atom types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands:

A (energy units)•
B (1/distance^2 units)•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global cutoff is used.

Style gauss/cut computes a generalized Gaussian interaction potential between pairs of particles:

LIGGGHTS Users Manual

pair_style gauss command 804

http://lammps.sandia.gov

where H determines together with the standard deviation sigma_h the peak height of the Gaussian function,
and r_mh the peak position. Examples of the use of the Gaussian potentials include implicit solvent
simulations of salt ions (Lenart) and of surfactants (Jusufi). In these instances the Gaussian potential mimics
the hydration barrier between a pair of particles. The hydration barrier is located at r_mh and has a width of
sigma_h. The prefactor determines the hight of the potential barrier.

The following coefficients must be defined for each pair of atom types via the pair_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

H (energy * distance units)•
r_mh (distance units)•
sigma_h (distance units)•

The global cutoff (r_c) specified in the pair_style command is used.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the "-suffix command-line switch7_Section_start.html#start_6 when you invoke LAMMPS, or you can use
the suffix command in your input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

These pair styles do not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

The gauss style does not support the pair_modify shift option. There is no effect due to the Gaussian well
beyond the cutoff; hence reasonable cutoffs need to be specified.

The gauss/cut style supports the pair_modify shift option for the energy of the Gauss-potential portion of the
pair interaction.

The pair_modify table and tail options are not relevant for these pair styles.

These pair styles write their information to binary restart files, so pair_style and pair_coeff commands do not
need to be specified in an input script that reads a restart file.

These pair styles can only be used via the pair keyword of the run_style respa command. They do not support
the inner, middle, outer keywords.

LIGGGHTS Users Manual

pair_style gauss/cut/omp command 805

The gauss pair style tallies an "occupancy" count of how many Gaussian-well sites have an atom within the
distance at which the force is a maximum = sqrt(0.5/b). This quantity can be accessed via the compute pair
command as a vector of values of length 1.

To print this quantity to the log file (with a descriptive column heading) the following commands could be
included in an input script:

compute gauss all pair gauss
variable occ equal c_gauss[1]
thermo_style custom step temp epair v_occ

Restrictions:

The gauss/cut style is part of the "user-misc" package. It is only enabled if LAMMPS is build with that
package. See the Making of LAMMPS section for more info.

Related commands:

pair_coeff, pair_style coul/diel

Default: none

(Lenart) Lenart , Jusufi, and Panagiotopoulos, J Chem Phys, 126, 044509 (2007).

(Jusufi) Jusufi, Hynninen, and Panagiotopoulos, J Phys Chem B, 112, 13783 (2008).

LIGGGHTS Users Manual

pair_style gauss/cut/omp command 806

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style gayberne command

pair_style gayberne/gpu command

pair_style gayberne/omp command

Syntax:

pair_style gayberne gamma upsilon mu cutoff

gamma = shift for potential minimum (typically 1)•
upsilon = exponent for eta orientation-dependent energy function•
mu = exponent for chi orientation-dependent energy function•
cutoff = global cutoff for interactions (distance units)•

Examples:

pair_style gayberne 1.0 1.0 1.0 10.0
pair_coeff * * 1.0 1.7 1.7 3.4 3.4 1.0 1.0 1.0

Description:

The gayberne styles compute a Gay-Berne anisotropic LJ interaction (Berardi) between pairs of ellipsoidal
particles or an ellipsoidal and spherical particle via the formulas

where A1 and A2 are the transformation matrices from the simulation box frame to the body frame and r12 is
the center to center vector between the particles. Ur controls the shifted distance dependent interaction based
on the distance of closest approach of the two particles (h12) and the user-specified shift parameter gamma.
When both particles are spherical, the formula reduces to the usual Lennard-Jones interaction (see details
below for when Gay-Berne treats a particle as "spherical").

For large uniform molecules it has been shown that the energy parameters are approximately representable in
terms of local contact curvatures (Everaers):

LIGGGHTS Users Manual

pair_style gayberne command 807

http://lammps.sandia.gov

The variable names utilized as potential parameters are for the most part taken from (Everaers) in order to be
consistent with the RE-squared pair potential. Details on the upsilon and mu parameters are given here.

More details of the Gay-Berne formulation are given in the references listed below and in this supplementary
document.

Use of this pair style requires the NVE, NVT, or NPT fixes with the asphere extension (e.g. fix nve/asphere)
in order to integrate particle rotation. Additionally, atom_style ellipsoid should be used since it defines the
rotational state and the size and shape of each ellipsoidal particle.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

epsilon = well depth (energy units)•
sigma = minimum effective particle radii (distance units)•
epsilon_i_a = relative well depth of type I for side-to-side interactions•
epsilon_i_b = relative well depth of type I for face-to-face interactions•
epsilon_i_c = relative well depth of type I for end-to-end interactions•
epsilon_j_a = relative well depth of type J for side-to-side interactions•
epsilon_j_b = relative well depth of type J for face-to-face interactions•
epsilon_j_c = relative well depth of type J for end-to-end interactions•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global cutoff specified in the pair_style command is used.

It is typical with the Gay-Berne potential to define sigma as the minimum of the 3 shape diameters of the
particles involved in an I,I interaction, though this is not required. Note that this is a different meaning for
sigma than the pair_style resquared potential uses.

The epsilon_i and epsilon_j coefficients are actually defined for atom types, not for pairs of atom types. Thus,
in a series of pair_coeff commands, they only need to be specified once for each atom type.

Specifically, if any of epsilon_i_a, epsilon_i_b, epsilon_i_c are non-zero, the three values are assigned to
atom type I. If all the epsilon_i values are zero, they are ignored. If any of epsilon_j_a, epsilon_j_b,
epsilon_j_c are non-zero, the three values are assigned to atom type J. If all three epsilon_j values are zero,
they are ignored. Thus the typical way to define the epsilon_i and epsilon_j coefficients is to list their values
in "pair_coeff I J" commands when I = J, but set them to 0.0 when I != J. If you do list them when I != J, you
should insure they are consistent with their values in other pair_coeff commands, since only the last setting
will be in effect.

Note that if this potential is being used as a sub-style of pair_style hybrid, and there is no "pair_coeff I I"
setting made for Gay-Berne for a particular type I (because I-I interactions are computed by another hybrid
pair potential), then you still need to insure the epsilon a,b,c coefficients are assigned to that type. e.g. in a
"pair_coeff I J" command.

IMPORTANT NOTE: If the epsilon a = b = c for an atom type, and if the shape of the particle itself is
spherical, meaning its 3 shape parameters are all the same, then the particle is treated as an LJ sphere by the

LIGGGHTS Users Manual

pair_style gayberne/omp command 808

Gay-Berne potential. This is significant because if two LJ spheres interact, then the simple Lennard-Jones
formula is used to compute their interaction energy/force using the specified epsilon and sigma as the standard
LJ parameters. This is much cheaper to compute than the full Gay-Berne formula. To treat the particle as a LJ
sphere with sigma = D, you should normally set epsilon a = b = c = 1.0, set the pair_coeff sigma = D, and also
set the 3 shape parameters for the particle to D. The one exception is that if the 3 shape parameters are set to
0.0, which is a valid way in LAMMPS to specify a point particle, then the Gay-Berne potential will treat that
as shape parameters of 1.0 (i.e. a LJ particle with sigma = 1), since it requires finite-size particles. In this case
you should still set the pair_coeff sigma to 1.0 as well.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for this pair style can
be mixed. The default mix value is geometric. See the "pair_modify" command for details.

This pair styles supports the pair_modify shift option for the energy of the Lennard-Jones portion of the pair
interaction, but only for sphere-sphere interactions. There is no shifting performed for ellipsoidal interactions
due to the anisotropic dependence of the interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

The gayberne style is part of the ASPHERE package. It is only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info.

These pair style require that atoms store torque and a quaternion to represent their orientation, as defined by
the atom_style. It also require they store a per-type shape. The particles cannot store a per-particle diameter.

This pair style requires that atoms be ellipsoids as defined by the atom_style ellipsoid command.

LIGGGHTS Users Manual

pair_style gayberne/omp command 809

Particles acted on by the potential can be finite-size aspherical or spherical particles, or point particles.
Spherical particles have all 3 of their shape parameters equal to each other. Point particles have all 3 of their
shape parameters equal to 0.0.

The Gay-Berne potential does not become isotropic as r increases (Everaers). The
distance-of-closest-approach approximation used by LAMMPS becomes less accurate when high-aspect ratio
ellipsoids are used.

Related commands:

pair_coeff, fix nve/asphere, compute temp/asphere, pair_style resquared

Default: none

(Everaers) Everaers and Ejtehadi, Phys Rev E, 67, 041710 (2003).

(Berardi) Berardi, Fava, Zannoni, Chem Phys Lett, 297, 8-14 (1998). Berardi, Muccioli, Zannoni, J Chem
Phys, 128, 024905 (2008).

(Perram) Perram and Rasmussen, Phys Rev E, 54, 6565-6572 (1996).

(Allen) Allen and Germano, Mol Phys 104, 3225-3235 (2006).

LIGGGHTS Users Manual

pair_style gayberne/omp command 810

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

pair_style gran command

Syntax:

pair_style model keyword value

zero or more model_keyword/value pairs may be appended

model values = described here
tangential values = described here
rolling_friction values = described here
cohesion values = described here
surface values = described here

Examples:

pair_style gran model hooke tangential history
pair_style gran model hertz tangential history rolling_friction cdt
pair_style gran model hertz tangential no_history cohesion sjkr

LIGGGHTS vs. LAMMPS Info:

This LIGGGHTS command offers the following improvements vs. LAMMPS: The stiffness and damping
coefficients k_n, k_t, gamma_n, gamma_t can now be derived from the material properties. Also, a new
model for macroscopic cohesion is introduced.

General description:

The gran styles use the following formula for the frictional force between two granular particles, when the
distance r between two particles of radii Ri and Rj is less than their contact distance d = Ri + Rj. Typically,
there is no force between the particles when r > d.

The quantities in the equations are as follows:

delta_n = d - r = overlap distance of 2 particles•
k_n = elastic constant for normal contact•

•

LIGGGHTS Users Manual

pair_style gran command 811

http://www.cfdem.com
http://lammps.sandia.gov

k_t = elastic constant for tangential contact•
gamma_n = viscoelastic damping constant for normal contact•
gamma_t = viscoelastic damping constant for tangential contact•
delta_t = tangential displacement vector between 2 spherical particles•

In the first term is the normal force between the two particles and the second term is the tangential force.
The normal force has 2 terms, a contact force and a damping force. The tangential force also has 2 terms: a
shear force and a damping force. The shear force is a "history" effect that accounts for the tangential
displacement ("tangential overlap") between the particles for the duration of the time they are in contact.

The concrete implementation for k_n, k_t, gamma_n, gamma_t and the shear history depend on the
concrete models as chosen by the user. They are described on separate doc pages here

Also, other models may add additional forces or torques on the particles, such as cohesive or rolling friction
forces. These are also described on separate doc pages here

General comments:

For granular styles there are no additional coefficients to set for each pair of atom types via the pair_coeff
command. All settings are global and are made via the pair_style command. However you must still use the
pair_coeff for all pairs of granular atom types. For example the command

pair_coeff * *

should be used if all atoms in the simulation interact via a granular potential (i.e. one of the pair styles
above is used). If a granular potential is used as a sub-style of pair_style hybrid, then specific atom types
can be used in the pair_coeff command to determine which atoms interact via a granular potential.

Mixing, shift, table, tail correction, restart, rRESPA info:

The pair_modify mix, shift, table, and tail options are not relevant for granular pair styles.

These pair styles write their information to binary restart files, so a pair_style command does not need to be
specified in an input script that reads a restart file.

IMPORTANT NOTE: The material properties are not written to restart files! Thus, if you restart a
simulation, you have to re-define them (by using the fixes mentioned above).

These pair styles can only be used via the pair keyword of the run_style respa command. They do not
support the inner, middle, outer keywords.

Restrictions:

These pair styles require that atoms store torque and angular velocity (omega) as defined by the atom_style.
They also require a per-particle radius is stored. The sphere or granular atom style does all of this.

This pair style requires you to use the communicate vel yes option so that velocites are stored by ghost
atoms.

Only unit system that are self-consistent (si, cgs, lj) can be used with this pair style.

Related commands:

pair_coeff Models for use with this command are described here

LIGGGHTS Users Manual

pair_style gran command 812

Default:

model = 'hertz' tangential = 'history' rolling_friction = 'off' cohesion = 'off' surface = 'default'

LIGGGHTS Users Manual

pair_style gran command 813

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style lj/gromacs command

pair_style lj/gromacs/cuda command

pair_style lj/gromacs/omp command

pair_style lj/gromacs/coul/gromacs command

pair_style lj/gromacs/coul/gromacs/cuda command

pair_style lj/gromacs/coul/gromacs/omp command

Syntax:

pair_style style args

style = lj/gromacs or lj/gromacs/coul/gromacs•
args = list of arguments for a particular style•

lj/gromacs args = inner outer
 inner, outer = global switching cutoffs for Lennard Jones

lj/gromacs/coul/gromacs args = inner outer (inner2) (outer2)
 inner, outer = global switching cutoffs for Lennard Jones (and Coulombic if only 2 args)
 inner2, outer2 = global switching cutoffs for Coulombic (optional)

Examples:

pair_style lj/gromacs 9.0 12.0
pair_coeff * * 100.0 2.0
pair_coeff 2 2 100.0 2.0 8.0 10.0

pair_style lj/gromacs/coul/gromacs 9.0 12.0
pair_style lj/gromacs/coul/gromacs 8.0 10.0 7.0 9.0
pair_coeff * * 100.0 2.0

Description:

The lj/gromacs styles compute shifted LJ and Coulombic interactions with an additional switching function
S(r) that ramps the energy and force smoothly to zero between an inner and outer cutoff. It is a commonly
used potential in the GROMACS MD code and for the coarse-grained models of (Marrink).

LIGGGHTS Users Manual

pair_style lj/gromacs command 814

http://lammps.sandia.gov
http://www.gromacs.org

r1 is the inner cutoff; rc is the outer cutoff. The coefficients A, B, and C are computed by LAMMPS to
perform the shifting and smoothing. The function S(r) is actually applied once to each term of the LJ formula
and once to the Coulombic formula, so there are 2 or 3 sets of A,B,C coefficients depending on which
pair_style is used. The boundary conditions applied to the smoothing function are as follows: S'(r1) = S''(r1) =
0, S(rc) = -E(rc), S'(rc) = -E'(rc), and S''(rc) = -E''(rc), where E(r) is the corresponding term in the LJ or
Coulombic potential energy function. Single and double primes denote first and second derivatives with
respect to r, respectively.

The inner and outer cutoff for the LJ and Coulombic terms can be the same or different depending on whether
2 or 4 arguments are used in the pair_style command. The inner LJ cutoff must be > 0, but the inner
Coulombic cutoff can be >= 0.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

epsilon (energy units)•
sigma (distance units)•
inner (distance units)•
outer (distance units)•

Note that sigma is defined in the LJ formula as the zero-crossing distance for the potential, not as the energy
minimum at 2^(1/6) sigma.

The last 2 coefficients are optional inner and outer cutoffs for style lj/gromacs. If not specified, the global
inner and outer values are used.

The last 2 coefficients cannot be used with style lj/gromacs/coul/gromacs because this force field does not
allow varying cutoffs for individual atom pairs; all pairs use the global cutoff(s) specified in the pair_style
command.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in

LIGGGHTS Users Manual

pair_style lj/gromacs/coul/gromacs/omp command 815

Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of the lj/cut
pair styles can be mixed. The default mix value is geometric. See the "pair_modify" command for details.

None of the GROMACS pair styles support the pair_modify shift option, since the Lennard-Jones portion of
the pair interaction is already smoothed to 0.0 at the cutoff.

The pair_modify table option is not relevant for this pair style.

None of the GROMACS pair styles support the pair_modify tail option for adding long-range tail corrections
to energy and pressure, since there are no corrections for a potential that goes to 0.0 at the cutoff.

All of the GROMACS pair styles write their information to binary restart files, so pair_style and pair_coeff
commands do not need to be specified in an input script that reads a restart file.

All of the GROMACS pair styles can only be used via the pair keyword of the run_style respa command.
They do not support the inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff

Default: none

(Marrink) Marrink, de Vries, Mark, J Phys Chem B, 108, 750-760 (2004).

LIGGGHTS Users Manual

pair_style lj/gromacs/coul/gromacs/omp command 816

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style hbond/dreiding/lj command

pair_style hbond/dreiding/lj/omp command

pair_style hbond/dreiding/morse command

pair_style hbond/dreiding/morse/omp command

Syntax:

pair_style style N inner_distance_cutoff outer_distance_cutoff angle_cutof

style = hbond/dreiding/lj or hbond/dreiding/morse•
n = cosine angle periodicity•
inner_distance_cutoff = global inner cutoff for Donor-Acceptor interactions (distance units)•
outer_distance_cutoff = global cutoff for Donor-Acceptor interactions (distance units)•
angle_cutoff = global angle cutoff for Acceptor-Hydrogen-Donor•
interactions (degrees)•

Examples:

pair_style hybrid/overlay lj/cut 10.0 hbond/dreiding/lj 4 9.0 11.0 90
pair_coeff 1 2 hbond/dreiding/lj 3 i 9.5 2.75 4 9.0 11.0 90.0

pair_style hybrid/overlay lj/cut 10.0 hbond/dreiding/morse 2 9.0 11.0 90
pair_coeff 1 2 hbond/dreiding/morse 3 i 3.88 1.7241379 2.9 2 9 11 90

Description:

The hbond/dreiding styles compute the Acceptor-Hydrogen-Donor (AHD) 3-body hydrogen bond interaction
for the DREIDING force field, given by:

LIGGGHTS Users Manual

pair_style hbond/dreiding/lj command 817

http://lammps.sandia.gov

where Rin is the inner spline distance cutoff, Rout is the outer distance cutoff, theta_c is the angle cutoff, and
n is the cosine periodicity.

Here, r is the radial distance between the donor (D) and acceptor (A) atoms and theta is the bond angle
between the acceptor, the hydrogen (H) and the donor atoms:

These 3-body interactions can be defined for pairs of acceptor and donor atoms, based on atom types. For
each donor/acceptor atom pair, the 3rd atom in the interaction is a hydrogen permanently bonded to the donor
atom, e.g. in a bond list read in from a data file via the read_data command. The atom types of possible
hydrogen atoms for each donor/acceptor type pair are specified by the pair_coeff command (see below).

Style hbond/dreiding/lj is the original DREIDING potential of (Mayo). It uses a LJ 12/10 functional for the
Donor-Acceptor interactions. To match the results in the original paper, use n = 4.

Style hbond/dreiding/morse is an improved version using a Morse potential for the Donor-Acceptor
interactions. (Liu) showed that the Morse form gives improved results for Dendrimer simulations, when n = 2.

See this howto section of the manual for more information on the DREIDING forcefield.

IMPORTANT NOTE: Because the Dreiding hydrogen bond potential is only one portion of an overall force
field which typically includes other pairwise interactions, it is common to use it as a sub-style in a pair_style
hybrid/overlay command, where another pair style provides the repulsive core interaction between pairs of
atoms, e.g. a 1/r^12 Lennard-Jones repulsion.

IMPORTANT NOTE: When using the hbond/dreiding pair styles with pair_style hybrid/overlay, you should
explicitly define pair interactions between the donor atom and acceptor atoms, (as well as between these
atoms and ALL other atoms in your system). Whenever pair_style hybrid/overlay is used, ordinary mixing
rules are not applied to atoms like the donor and acceptor atoms because they are typically referenced in
multiple pair styles. Neglecting to do this can cause difficult-to-detect physics problems.

IMPORTANT NOTE: In the original Dreiding force field paper 1-4 non-bonded interactions ARE allowed. If
this is desired for your model, use the special_bonds command (e.g. "special_bonds lj 0.0 0.0 1.0") to turn
these interactions on.

The following coefficients must be defined for pairs of eligible donor/acceptor types via the pair_coeff
command as in the examples above.

IMPORTANT NOTE: Unlike other pair styles and their associated pair_coeff commands, you do not need to
specify pair_coeff settings for all possible I,J type pairs. Only I,J type pairs for atoms which act as joint
donors/acceptors need to be specified; all other type pairs are assumed to be inactive.

LIGGGHTS Users Manual

pair_style hbond/dreiding/morse/omp command 818

IMPORTANT NOTE: A pair_coeff command can be speficied multiple times for the same donor/acceptor
type pair. This enables multiple hydrogen types to be assigned to the same donor/acceptor type pair. For other
pair_styles, if the pair_coeff command is re-used for the same I.J type pair, the settings for that type pair are
overwritten. For the hydrogen bond potentials this is not the case; the settings are cummulative. This means
the only way to turn off a previous setting, is to re-use the pair_style command and start over.

For the hbond/dreiding/lj style the list of coefficients is as follows:

K = hydrogen atom type = 1 to Ntypes•
donor flag = i or j•
epsilon (energy units)•
sigma (distance units)•
n = exponent in formula above•
distance cutoff Rin (distance units)•
distance cutoff Rout (distance units)•
angle cutoff (degrees)•

For the hbond/dreiding/morse style the list of coefficients is as follows:

K = hydrogen atom type = 1 to Ntypes•
donor flag = i or j•
D0 (energy units)•
alpha (1/distance units)•
r0 (distance units)•
n = exponent in formula above•
distance cutoff Rin (distance units)•
distance cutoff Rout (distance units)•
angle cutoff (degrees)•

A single hydrogen atom type K can be specified, or a wild-card asterisk can be used in place of or in
conjunction with the K arguments to select multiple types as hydrogens. This takes the form "*" or "*n" or
"n*" or "m*n". See the pair_coeff command doc page for details.

If the donor flag is i, then the atom of type I in the pair_coeff command is treated as the donor, and J is the
acceptor. If the donor flag is j, then the atom of type J in the pair_coeff command is treated as the donor and I
is the donor. This option is required because the pair_coeff command requires that I <= J.

Epsilon and sigma are settings for the hydrogen bond potential based on a Lennard-Jones functional form.
Note that sigma is defined as the zero-crossing distance for the potential, not as the energy minimum at
2^(1/6) sigma.

D0 and alpha and r0 are settings for the hydrogen bond potential based on a Morse functional form.

The last 3 coefficients for both styles are optional. If not specified, the global n, distance cutoff, and angle
cutoff specified in the pair_style command are used. If you wish to only override the 2nd or 3rd optional
parameter, you must also specify the preceding optional parameters.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for

LIGGGHTS Users Manual

pair_style hbond/dreiding/morse/omp command 819

more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

These pair styles do not support mixing. You must explicitly identify each donor/acceptor type pair.

These styles do not support the pair_modify shift option for the energy of the interactions.

The pair_modify table option is not relevant for these pair styles.

These pair styles do not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure.

These pair styles do not write their information to binary restart files, so pair_style and pair_coeff commands
need to be re-specified in an input script that reads a restart file.

These pair styles can only be used via the pair keyword of the run_style respa command. They do not support
the inner, middle, outer keywords.

These pair styles tally a count of how many hydrogen bonding interactions they calculate each timestep and
the hbond energy. These quantities can be accessed via the compute pair command as a vector of values of
length 2.

To print these quantities to the log file (with a descriptive column heading) the following commands could be
included in an input script:

compute hb all pair hbond/dreiding/lj
variable n_hbond equal c_hb[1] #number hbonds
variable E_hbond equal c_hb[2] #hbond energy
thermo_style custom step temp epair v_E_hbond

Restrictions: none

Related commands:

pair_coeff

Default: none

(Mayo) Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909 (1990).

(Liu) Liu, Bryantsev, Diallo, Goddard III, J. Am. Chem. Soc 131 (8) 2798 (2009)

LIGGGHTS Users Manual

pair_style hbond/dreiding/morse/omp command 820

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style hybrid command

pair_style hybrid/omp command

pair_style hybrid/overlay command

pair_style hybrid/overlay/omp command

Syntax:

pair_style hybrid style1 args style2 args ...
pair_style hybrid/overlay style1 args style2 args ...

style1,style2 = list of one or more pair styles and their arguments•

Examples:

pair_style hybrid lj/cut/coul/cut 10.0 eam lj/cut 5.0
pair_coeff 1*2 1*2 eam niu3
pair_coeff 3 3 lj/cut/coul/cut 1.0 1.0
pair_coeff 1*2 3 lj/cut 0.5 1.2

pair_style hybrid/overlay lj/cut 2.5 coul/long 2.0
pair_coeff * * lj/cut 1.0 1.0
pair_coeff * * coul/long

Description:

The hybrid and hybrid/overlay styles enable the use of multiple pair styles in one simulation. With the hybrid
style, exactly one pair style is assigned to each pair of atom types. With the hybrid/overlay style, one or more
pair styles can be assigned to each pair of atom types. The assignment of pair styles to type pairs is made via
the pair_coeff command.

Here are two examples of hybrid simulations. The hybrid style could be used for a simulation of a metal
droplet on a LJ surface. The metal atoms interact with each other via an eam potential, the surface atoms
interact with each other via a lj/cut potential, and the metal/surface interaction is also computed via a lj/cut
potential. The hybrid/overlay style could be used as in the 2nd example above, where multiple potentials are
superposed in an additive fashion to compute the interaction between atoms. In this example, using lj/cut and
coul/long together gives the same result as if the lj/cut/coul/long potential were used by itself. In this case, it
would be more efficient to use the single combined potential, but in general any combination of pair potentials
can be used together in to produce an interaction that is not encoded in any single pair_style file, e.g. adding
Coulombic forces between granular particles.

All pair styles that will be used are listed as "sub-styles" following the hybrid or hybrid/overlay keyword, in
any order. Each sub-style's name is followed by its usual arguments, as illustrated in the example above. See
the doc pages of individual pair styles for a listing and explanation of the appropriate arguments.

Note that an individual pair style can be used multiple times as a sub-style. For efficiency this should only be
done if your model requires it. E.g. if you have different regions of Si and C atoms and wish to use a Tersoff
potential for pure Si for one set of atoms, and a Tersoff potetnial for pure C for the other set (presumably with
some 3rd potential for Si-C interactions), then the sub-style tersoff could be listed twice. But if you just want
to use a Lennard-Jones or other pairwise potential for several different atom type pairs in your model, then
you should just list the sub-style once and use the pair_coeff command to assign parameters for the different

LIGGGHTS Users Manual

pair_style hybrid command 821

http://lammps.sandia.gov

type pairs.

IMPORTANT NOTE: An exception to this option to list an individual pair style multiple times are the pair
styles implemented as Fortran libraries: pair_style meam and pair_style reax (pair_style reax/c is OK). This is
because unlike a C++ class, they can not be instantiated multiple times, due to the manner in which they were
coded in Fortran.

In the pair_coeff commands, the name of a pair style must be added after the I,J type specification, with the
remaining coefficients being those appropriate to that style. If the pair style is used multiple times in the
pair_style command with, then an additional numeric argument must also be included which is the number
from 1 to M where M is the number of times the sub-style was listed in the pair style command. The extra
number indicates which instance of the sub-style these coefficients apply to.

For example, consider a simulation with 3 atom types: types 1 and 2 are Ni atoms, type 3 are LJ atoms with
charges. The following commands would set up a hybrid simulation:

pair_style hybrid eam/alloy lj/cut/coul/cut 10.0 lj/cut 8.0
pair_coeff * * eam/alloy nialhjea Ni Ni NULL
pair_coeff 3 3 lj/cut/coul/cut 1.0 1.0
pair_coeff 1*2 3 lj/cut 0.8 1.3

As an example of using the same pair style multiple times, consider a simulation with 2 atom types. Type 1 is
Si, type 2 is C. The following commands would model the Si atoms with Tersoff, the C atoms with Tersoff,
and the cross-interactions with Lennard-Jones:

pair_style hybrid lj/cut tersoff tersoff
pair_coeff * * tersoff 1 Si.tersoff Si NULL
pair_coeff * * tersoff 2 C.tersoff NULL C
pair_coeff 1 2 lj/cut 1.0 1.5

If pair coefficients are specified in the data file read via the read_data command, then the same rule applies.
E.g. "eam/alloy" or "lj/cut" must be added after the atom type, for each line in the "Pair Coeffs" section, e.g.

Pair Coeffs

1 lj/cut/coul/cut 1.0 1.0
...

Note that the pair_coeff command for some potentials such as pair_style eam/alloy includes a mapping
specification of elements to all atom types, which in the hybrid case, can include atom types not assigned to
the eam/alloy potential. The NULL keyword is used by many such potentials (eam/alloy, Tersoff, AIREBO,
etc), to denote an atom type that will be assigned to a different sub-style.

For the hybrid style, each atom type pair I,J is assigned to exactly one sub-style. Just as with a simulation
using a single pair style, if you specify the same atom type pair in a second pair_coeff command, the previous
assignment will be overwritten.

For the hybrid/overlay style, each atom type pair I,J can be assigned to one or more sub-styles. If you specify
the same atom type pair in a second pair_coeff command with a new sub-style, then the second sub-style is
added to the list of potentials that will be calculated for two interacting atoms of those types. If you specify
the same atom type pair in a second pair_coeff command with a sub-style that has already been defined for
that pair of atoms, then the new pair coefficients simply override the previous ones, as in the normal usage of
the pair_coeff command. E.g. these two sets of commands are the same:

pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0
pair_coeff 2 2 1.5 0.8

LIGGGHTS Users Manual

pair_style hybrid/overlay/omp command 822

pair_style hybrid/overlay lj/cut 2.5
pair_coeff * * lj/cut 1.0 1.0
pair_coeff 2 2 lj/cut 1.5 0.8

Coefficients must be defined for each pair of atoms types via the pair_coeff command as described above, or
in the data file or restart files read by the read_data or read_restart commands, or by mixing as described
below.

For both the hybrid and hybrid/overlay styles, every atom type pair I,J (where I <= J) must be assigned to at
least one sub-style via the pair_coeff command as in the examples above, or in the data file read by the
read_data, or by mixing as described below.

If you want there to be no interactions between a particular pair of atom types, you have 3 choices. You can
assign the type pair to some sub-style and use the neigh_modify exclude type command. You can assign it to
some sub-style and set the coefficients so that there is effectively no interaction (e.g. epsilon = 0.0 in a LJ
potential). Or, for hybrid and hybrid/overlay simulations, you can use this form of the pair_coeff command in
your input script:

pair_coeff 2 3 none

or this form in the "Pair Coeffs" section of the data file:

3 none

If an assignment to none is made in a simulation with the hybrid/overlay pair style, it wipes out all previous
assignments of that atom type pair to sub-styles.

Note that you may need to use an atom_style hybrid command in your input script, if atoms in the simulation
will need attributes from several atom styles, due to using multiple pair potentials.

The potential energy contribution to the overall system due to an individual sub-style can be accessed and
output via the compute pair command.

IMPORTANT: Several of the potentials defined via the pair_style command in LAMMPS are really
many-body potentials, such as Tersoff, AIREBO, MEAM, ReaxFF, etc. The way to think about using these
potentials in a hybrid setting is as follows.

A subset of atom types is assigned to the many-body potential with a single pair_coeff command, using "* *"
to include all types and the NULL keywords described above to exclude specific types not assigned to that
potential. If types 1,3,4 were assigned in that way (but not type 2), this means that all many-body interactions
between all atoms of types 1,3,4 will be computed by that potential. Pair_style hybrid allows interactions
between type pairs 2-2, 1-2, 2-3, 2-4 to be specified for computation by other pair styles. You could even add
a second interaction for 1-1 to be computed by another pair style, assuming pair_style hybrid/overlay is used.

But you should not, as a general rule, attempt to exclude the many-body interactions for some subset of the
type pairs within the set of 1,3,4 interactions, e.g. exclude 1-1 or 1-3 interactions. That is not conceptually
well-defined for many-body interactions, since the potential will typically calculate energies and foces for
small groups of atoms, e.g. 3 or 4 atoms, using the neighbor lists of the atoms to find the additional atoms in
the group. It is typically non-physical to think of excluding an interaction between a particular pair of atoms
when the potential computes 3-body or 4-body interactions.

However, you can still use the pair_coeff none setting or the neigh_modify exclude command to exclude
certain type pairs from the neighbor list that will be passed to a manybody sub-style. This will alter the
calculations made by a many-body potential, since it builds its list of 3-body, 4-body, etc interactions from the
pair list. You will need to think carefully as to whether it produces a physically meaningful result for your

LIGGGHTS Users Manual

pair_style hybrid/overlay/omp command 823

model.

For example, imagine you have two atom types in your model, type 1 for atoms in one surface, and type 2 for
atoms in the other, and you wish to use a Tersoff potential to compute interactions within each surface, but not
between surfaces. Then either of these two command sequences would implement that model:

pair_style hybrid tersoff
pair_coeff * * tersoff SiC.tersoff C C
pair_coeff 1 2 none

pair_style tersoff
pair_coeff * * SiC.tersoff C C
neigh_modify exclude type 1 2

Either way, only neighbor lists with 1-1 or 2-2 interactions would be passed to the Tersoff potential, which
means it would compute no 3-body interactions containing both type 1 and 2 atoms.

Here is another example, using hybrid/overlay, to use 2 many-body potentials together, in an overlapping
manner. Imagine you have CNT (C atoms) on a Si surface. You want to use Tersoff for Si/Si and Si/C
interactions, and AIREBO for C/C interactions. Si atoms are type 1; C atoms are type 2. Something like this
will work:

pair_style hybrid/overlay tersoff airebo 3.0
pair_coeff * * tersoff SiC.tersoff.custom Si C
pair_coeff * * airebo CH.airebo NULL C

Note that to prevent the Tersoff potential from computing C/C interactions, you would need to modify the
SiC.tersoff file to turn off C/C interaction, i.e. by setting the appropriate coefficients to 0.0.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual.

Since the hybrid and hybrid/overlay styles delegate computation to the individual sub-styles, the suffix
versions of the hybrid and hybrid/overlay styles are used to propagate the corresponding suffix to all
sub-styles, if those versions exist. Otherwise the non-accelerated version will be used.

The individual accelerated sub-styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages,
respectively. They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS
section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

Any pair potential settings made via the pair_modify command are passed along to all sub-styles of the hybrid
potential.

For atom type pairs I,J and I != J, if the sub-style assigned to I,I and J,J is the same, and if the sub-style allows
for mixing, then the coefficients for I,J can be mixed. This means you do not have to specify a pair_coeff
command for I,J since the I,J type pair will be assigned automatically to the I,I sub-style and its coefficients
generated by the mixing rule used by that sub-style. For the hybrid/overlay style, there is an additional

LIGGGHTS Users Manual

pair_style hybrid/overlay/omp command 824

requirement that both the I,I and J,J pairs are assigned to a single sub-style. See the "pair_modify" command
for details of mixing rules. See the See the doc page for the sub-style to see if allows for mixing.

The hybrid pair styles supports the pair_modify shift, table, and tail options for an I,J pair interaction, if the
associated sub-style supports it.

For the hybrid pair styles, the list of sub-styles and their respective settings are written to binary restart files,
so a pair_style command does not need to specified in an input script that reads a restart file. However, the
coefficient information is not stored in the restart file. Thus, pair_coeff commands need to be re-specified in
the restart input script.

These pair styles support the use of the inner, middle, and outer keywords of the run_style respa command, if
their sub-styles do.

Restrictions:

When using a long-range Coulombic solver (via the kspace_style command) with a hybrid pair_style, one or
more sub-styles will be of the "long" variety, e.g. lj/cut/coul/long or buck/coul/long. You must insure that the
short-range Coulombic cutoff used by each of these long pair styles is the same or else LAMMPS will
generate an error.

Related commands:

pair_coeff

Default: none

LIGGGHTS Users Manual

pair_style hybrid/overlay/omp command 825

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style kim command

Syntax:

pair_style kim virialmode model

virialmode = KIMvirial or LAMMPSvirial•
model = name of KIM model (potential)•

Examples:

pair_style kim KIMvirial model_Ar_P_Morse
pair_coeff * * Ar Ar

Description:

This pair style is a wrapper on the Knowledge Base for Interatomic Models (KIM) repository of interatomic
potentials, so that they can be used by LAMMPS scripts.

In KIM lingo, a potential is a "model" and a model contains both the analytic formulas that define the
potential as well as the parameters needed to run it for one or more materials, including coefficients and
cutoffs.

The argument virialmode determines how the global virial is calculated. If KIMvirial is specified, the KIM
model performs the global virial calculation. If LAMMPSvirial is specified, LAMMPS computes the global
virial using its fdotr mechanism.

The argument model is the name of the KIM model for a specific potential as KIM defines it. In principle,
LAMMPS can invoke any KIM model. You should get an error or warning message from either LAMMPS or
KIM if there is an incompatibility.

Only a single pair_coeff command is used with the kim style which specifies the mapping of LAMMPS atom
types to KIM elements. This is done by specifying N additional arguments after the * * in the pair_coeff
command, where N is the number of LAMMPS atom types:

N element names = mapping of KIM elements to atom types•

As an example, imagine the KIM model supports Si and C atoms. If your LAMMPS simulation has 4 atom
types and you want the 1st 3 to be Si, and the 4th to be C, you would use the following pair_coeff command:

pair_coeff * * Si Si Si C

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first three Si arguments map
LAMMPS atom types 1,2,3 to Si as defined within KIM. The final C argument maps LAMMPS atom type 4
to C as defined within KIM. If a mapping value is specified as NULL, the mapping is not performed. This can
only be used when a kim potential is used as part of the hybrid pair style. The NULL values are placeholders
for atom types that will be used with other potentials.

In addition to the usual LAMMPS error messages, the KIM library itself may generate errors, which should be
printed to the screen. In this case it is also useful to check the kim.log file for additional error information.
This file kim.log should be generated in the same directory where LAMMPS is running.

LIGGGHTS Users Manual

pair_style kim command 826

http://lammps.sandia.gov
http://openkim.org

Here is information on how to build KIM for use with LAMMPS. There is a directory src/KIM/ with an
important file in it: Makefile.lammps. When you do 'make yes-kim' LAMMPS will use the settings in
src/KIM/Makefile.lammps to find KIM header files and the KIM library itself for linking purposes. Thus, you
should ensure Makefile.lammps has the correct settings for your system and your build of KIM.

Consult the KIM documentation for further details on KIM specifics.

OpenKIM is available for download from this site, namely http://openkim.org. The tarball you download is
"openkim-api-vX.X.X.tgz", which can be unpacked via

tar xvfz openkim*tgz

The openkim-api-vX.X.X/DOCS directory has further documentation. For more information on installing
KIM and troubleshooting refer to openkim/INSTALL.

Here is a brief summary of how to build KIM:

If you have previously used the openkim-api package (versions 1.1.1 or below), it is recommended
that you remove all associated environment variables from your environment. (These include,
KIM_DIR, KIM_INTEL, KIM_SYSTEM32, KIM_DYNAMIC, KIM_API_DIR, KIM_TESTS_DIR,
KIM_MODEL_DRIVERS_DIR, and KIM_MODELS_DIR.) All setting are now specified in the
Makefile.KIM_Config file.

1.

Set up the Makefile.KIM_Config file

 (a) Copy the file Makefile.KIM_Config.example to Makefile.KIM_Config
 For example, if you untarred the `openkim-api-vX.X.X.tgz' tarball in
 your home directory, you would do:

 % cd $HOME/openkim-api-vX.X.X
 % cp Makefile.KIM_Config.example Makefile.KIM_Config

 The `%' symbol represents the bash sell prompt and should not be typed.

 (Above `vX.X.X' represents the current release number.)

 (b) Edit the file Makefile.KIM_Config and set the appropriate value for the
 KIM_DIR variable. This must expand to an absolute path. Using the same
 assumptions as above, this would be

 KIM_DIR = $(HOME)/openkim-api-vX.X.X

 (c) If appropriate, set explicit values for the remaining three
 directories

 KIM_MODEL_DRIVERS_DIR =
 KIM_MODELS_DIR =
 KIM_TESTS_DIR =

 If these lines are commented out, defaults will be provided by the
 openkim-api make system.

 (d) Set the value of KIM_COMPILERSUITE. Possible values are `GCC' and
 `INTEL'.

 KIM_COMPILERSUITE = GCC

 (e) Set the value of KIM_SYSTEMLINKER. Possible values are `linux',
 `freebsd', and `darwin'.

2.

LIGGGHTS Users Manual

pair_style kim command 827

http://openkim.org

 KIM_SYSTEMLINKER = linux

 (f) Set the value of KIM_SYSTEMARCH. Possible values are `32bit' and
 `64bit'.

 KIM_SYSTEMARCH = 64bit

 (g) Set the value of KIM_LINK. Possible values are `dynamic-load',
 `dynamic-link', and `static-link'.

 KIM_LINK = dynamic-load

 `dynamic-load' is the preferred option. (Unless performance or
 other issues require it, you should use dynamic-load.)
 `dynamic-link' is like `dynamic-load' but does not use the dl.h
 library. This option requires a more complicated Makefile
 process, but may improve computation time in some instances.
 `static-link' only works with ONE Model and AT MOST ONE Model
 Driver (in order to avoid the possibility of symbol
 clashes).

 (h) Set override values for other variables, if necessary, by
 adding the desired variable name (after the "# overwrite
 default variable values here" line) and filling in appropriate
 values.

 # overwrite default variable values here

 # overwrite default compiler options

 CC =
 CXX =
 FC =

 # overwrite default compiler option flag lists
 FFLAGS =
 CCFLAGS =
 CXXFLAGS =
 LDFLAGS =

 # overwrite default linker options
 LDSHAREDFLAG =
 LINKSONAME =
 LDWHOLEARCHIVESTARTFLAG =
 LDWHOLEARCHIVEENDFLAG =

 # overwrite default install directories
 package_name =
 prefix =
 libdir =

In the remainder of the documentation we will use the string $KD to represent the location of the
openkim-api source package (the value of the KIM_DIR variable discussed above). If you wish to,
type the below commands exactly as written to set the shell variable KD to the appropriate value:

 bash:
 % export KD=$HOME/openkim-api-vX.X.X

3.

To compile the package, including the provided examples, change to the $KD directory and execute
`make examples' and then `make':

 % cd $KD
 % make examples
 % make

4.

LIGGGHTS Users Manual

pair_style kim command 828

 This builds all Model Drivers, Models, Tests, and the openkim-api service
 routine library. The targets defined by the Makefile in this directory
 include:

 `make' -- compiles the API and all Models and Tests
 `make all' -- same as `make'
 `make clean' -- will remove appropriate .o, .mod, .a, .so and
 executable files
 `make install' -- install files to `/usr/local/lib' by default
 `make uninstall' -- delete files installed by `make install'
 `make openkim-api' -- compiles only the API
 `make examples' -- copies examples into the appropriate
 directories (no overwrite)
 `make examples-force' -- copies examples into the appropriate
 directories (overwrite)
 `make examples-clean' -- remove all examples from the MODEL_DRIVERS,
 MODELS, and TESTS directories.

Verify that the compilation was successful by running a Test.

 The provided example Tests read in the name of a Model (or Models)
 which they use to perform their calculations. For most Tests the
 name of the Model can be piped in using an `echo' command. For
 example, the following Fortran 90 Test reads in one Model:

 % cd $KD/TESTs/test_Ar_free_cluster_CLUSTER_F90
 % echo "model_Ar_P_MLJ_CLUSTER_C" | ./test_Ar_free_cluster_CLUSTER_F90

 (See the README files in the Test directories for an explanation of what
 the Tests do.)

5.

Each Test (and Model) has its own make file for compiling and linking. If changes are made to the
code, re-compile (from the $KD directory).

6.

Mixing, shift, table, tail correction, restart, rRESPA info:

This pair style does not support the pair_modify mix, shift, table, and tail options.

This pair style does not write its information to binary restart files, since KIM stores the potential parameters.
Thus, you need to re-specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the KIM package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

This current version of pair_style kim is compatible with the openkim-api package version 1.2.0 and higher.

Related commands:

pair_coeff

Default: none

LIGGGHTS Users Manual

pair_style kim command 829

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style lcbop command

Syntax:

pair_style lcbop

Examples:

pair_style lcbop
pair_coeff * * ../potentials/C.lcbop C

Description:

The lcbop pair style computes the long-range bond-order potential for carbon (LCBOP) of (Los and Fasolino).
See section II in that paper for the analytic equations associated with the potential.

Only a single pair_coeff command is used with the lcbop style which specifies an LCBOP potential file with
parameters for specific elements. These are mapped to LAMMPS atom types by specifying N additional
arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom types:

filename•
N element names = mapping of LCBOP elements to atom types•

See the pair_coeff doc page for alternate ways to specify the path for the potential file.

As an example, if your LAMMPS simulation has 4 atom types and you want the 1st 3 to be C you would use
the following pair_coeff command:

pair_coeff * * C.lcbop C C C NULL

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first C argument maps
LAMMPS atom type 1 to the C element in the LCBOP file. If a mapping value is specified as NULL, the
mapping is not performed. This can be used when a lcbop potential is used as part of the hybrid pair style. The
NULL values are placeholders for atom types that will be used with other potentials.

The parameters/coefficients for the LCBOP potential as applied to C are listed in the C.lcbop file to agree
with the original (Los and Fasolino) paper. Thus the parameters are specific to this potential and the way it
was fit, so modifying the file should be done carefully.

Mixing, shift, table, tail correction, restart, rRESPA info:

This pair style does not support the pair_modify mix, shift, table, and tail options.

This pair style does not write its information to binary restart files, since it is stored in potential files. Thus,
you need to re-specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair styles is part of the MANYBODY package. It is only enabled if LAMMPS was built with that
package (which it is by default). See the Making LAMMPS section for more info.

LIGGGHTS Users Manual

pair_style lcbop command 830

http://lammps.sandia.gov

This pair potential requires the newton setting to be "on" for pair interactions.

The C.lcbop potential file provided with LAMMPS (see the potentials directory) is parameterized for metal
units. You can use the LCBOP potential with any LAMMPS units, but you would need to create your own
LCBOP potential file with coefficients listed in the appropriate units if your simulation doesn't use "metal"
units.

Related commands:

pair_airebo, pair_coeff

Default: none

(Los and Fasolino) J. H. Los and A. Fasolino, Phys. Rev. B 68, 024107 (2003).

LIGGGHTS Users Manual

pair_style lcbop command 831

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style line/lj command

pair_style line/lj/omp command

Syntax:

pair_style line/lj cutoff

cutoff = global cutoff for interactions (distance units)

Examples:

pair_style line/lj 3.0
pair_coeff * * 1.0 1.0
pair_coeff 1 1 1.0 1.5 2.5

Description:

Style line/lj treats particles which are line segments as a set of small spherical particles that tile the line
segment length as explained below. Interactions between two line segments, each with N1 and N2 spherical
particles, are calculated as the pairwise sum of N1*N2 Lennard-Jones interactions. Interactions between a line
segment with N spherical particles and a point particle are treated as the pairwise sum of N Lennard-Jones
interactions. See the pair_style lj/cut doc page for the definition of Lennard-Jones interactions.

The cutoff distance for an interaction between 2 line segments, or between a line segment and a point particle,
is calculated from the position of the line segment (its center), not between pairs of individual spheres
comprising the line segment. Thus an interaction is either calculated in its entirety or not at all.

The set of non-overlapping spherical particles that represent a line segment, for purposes of this pair style, are
generated in the following manner. Their size is a function of the line segment length and the specified sigma
for that particle type. If a line segment has a length L and is of type I, then the number of spheres N that
represent the segment is calculated as N = L/sigma_II, rounded up to an integer value. Thus if L is not evenly
divisibly by sigam_II, N is incremented to include one extra sphere. In this case, the spheres must be slightly
smaller than sigma_II so as not to overlap, so a new sigma-prime is chosen as the sphere diameter, such that
L/N = sigma-prime. Thus the line segment interacts with other segments or point particles as a collection of N
spheres of diameter sigma-prime, evenly spaced along the line segment, so as to exactly cover its length.

The LJ interaction between 2 spheres on different line segments of types I,J is computed with an arithmetic
mixing of the sigma values of the 2 spheres and using the specified epsilon value for I,J atom types. Note that
because the sigma values for line segment spheres is computed using only sigma_II values, specific to the line
segment's type, this means that any specified sigma_IJ values (for I != J) are effectively ignored.

For style line/lj, the following coefficients must be defined for each pair of atoms types via the pair_coeff
command as in the examples above, or in the data file or restart files read by the read_data or read_restart
commands:

epsilon (energy units)•
sigma (distance units)•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global cutoff is used.

LIGGGHTS Users Manual

pair_style line/lj command 832

http://lammps.sandia.gov

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of this pair
style can be mixed. The default mix value is geometric. See the "pair_modify" command for details.

This pair style does not support the pair_modify shift, table, and tail options.

This pair style does not write its information to binary restart files.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This style is part of the ASPHERE package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Defining particles to be line segments so they participate in line/line or line/particle interactions requires the
use the atom_style line command.

Related commands:

pair_coeff, pair_style tri/lj

Default: none

LIGGGHTS Users Manual

pair_style line/lj/omp command 833

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style list command

Syntax:

pair_style list listfile cutoff keyword

listfile = name of file with list of pairwise interactions•
cutoff = global cutoff (distance units)•
keyword = optional flag nocheck or check (default is check)•

Examples:

pair_style list restraints.txt 200.0
pair_coeff * *

pair_style hybrid/overlay lj/cut 1.1225 list pair_list.txt 300.0
pair_coeff * * lj/cut 1.0 1.0
pair_coeff 3* 3* list

Description:

Style list computes interactions between explicitly listed pairs of atoms with the option to select functional
form and parameters for each individual pair. Because the parameters are set in the list file, the pair_coeff
command has no parameters (but still needs to be provided). The check and nocheck keywords enable/disable
a test that checks whether all listed bonds were present and computed.

This pair style can be thought of as a hybrid between bonded, non-bonded, and restraint interactions. It will
typically be used as an additional interaction within the hybrid/overlay pair style. It currently supports three
interaction styles: a 12-6 Lennard-Jones, a Morse and a harmonic potential.

The format of the list file is as follows:

one line per pair of atoms•
empty lines will be ignored•
comment text starts with a '#' character•
line syntax: ID1 ID2 style coeffs cutoff

 ID1 = atom ID of first atom
 ID2 = atom ID of second atom
 style = style of interaction
 coeffs = list of coeffs
 cutoff = cutoff for interaction (optional)

•

The cutoff parameter is optional. If not specified, the global cutoff is used.

Here is an example file:

this is a comment

15 259 lj126 1.0 1.0 50.0
15 603 morse 10.0 1.2 2.0 10.0 # and another comment
18 470 harmonic 50.0 1.2 5.0

The style lj126 computes pairwise interactions with the formula

LIGGGHTS Users Manual

pair_style list command 834

http://lammps.sandia.gov

and the coefficients:

epsilon (energy units)•
sigma (distance units)•

The style morse computes pairwise interactions with the formula

and the coefficients:

D0 (energy units)•
alpha (1/distance units)•
r0 (distance units)•

The style harmonic computes pairwise interactions with the formula

and the coefficients:

K (energy units)•
r0 (distance units)•

Note that the usual 1/2 factor is included in K.

Mixing, shift, table, tail correction, restart, rRESPA info:

This pair style does not support mixing since all parameters are explicit for each pair.

The pair_modify shift option is supported by this pair style.

The pair_modify table and tail options are not relevant for this pair style.

This pair style does not write its information to binary restart files, so pair_style and pair_coeff commands
need to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

LIGGGHTS Users Manual

pair_style list command 835

This pair style does not use a neighbor list and instead identifies atoms by their IDs. This has two
consequences: 1) The cutoff has to be chosen sufficiently large, so that the second atom of a pair has to be a
ghost atom on the same node on which the first atom is local; otherwise the interaction will be skipped. You
can use the check option to detect, if interactions are missing. 2) Unlike other pair styles in LAMMPS, an
atom I will not interact with multiple images of atom J (assuming the images are within the cutoff distance),
but only with the nearest image.

This style is part of the USER-MISC package. It is only enabled if LAMMPS is build with that package. See
the Making of LAMMPS section for more info.

Related commands:

pair_coeff, pair_style hybrid/overlay, pair_style lj/cut, pair_style morse, bond_style harmonic

Default: none

LIGGGHTS Users Manual

pair_style list command 836

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style lj96/cut command

pair_style lj96/cut/cuda command

pair_style lj96/cut/gpu command

pair_style lj96/cut/omp command

Syntax:

pair_style lj96/cut cutoff

cutoff = global cutoff for lj96/cut interactions (distance units)•

Examples:

pair_style lj96/cut 2.5
pair_coeff * * 1.0 1.0 4.0
pair_coeff 1 1 1.0 1.0

Description:

The lj96/cut style compute a 9/6 Lennard-Jones potential, instead of the standard 12/6 potential, given by

Rc is the cutoff.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

epsilon (energy units)•
sigma (distance units)•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global LJ cutoff specified in the pair_style command is
used.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

LIGGGHTS Users Manual

pair_style lj96/cut command 837

http://lammps.sandia.gov

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of the lj/cut
pair styles can be mixed. The default mix value is geometric. See the "pair_modify" command for details.

This pair style supports the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style supports the pair_modify tail option for adding a long-range tail correction to the energy and
pressure of the pair interaction.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style supports the use of the inner, middle, and outer keywords of the run_style respa command,
meaning the pairwise forces can be partitioned by distance at different levels of the rRESPA hierarchy. See
the run_style command for details.

Restrictions: none

Related commands:

pair_coeff

Default: none

LIGGGHTS Users Manual

pair_style lj96/cut/omp command 838

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style lj/cubic command

pair_style lj/cubic/omp command

Syntax:

pair_style lj/cubic

Examples:

pair_style lj/cubic
pair_coeff * * 1.0 0.8908987

Description:

The lj/cubic style computes a truncated LJ interaction potential whose energy and force are continuous
everywhere. Inside the inflection point the interaction is identical to the standard 12/6 Lennard-Jones
potential. The LJ function outside the inflection point is replaced with a cubic function of distance. The
energy, force, and second derivative are continuous at the inflection point. The cubic coefficient A3 is chosen
so that both energy and force go to zero at the cutoff distance. Outside the cutoff distance the energy and force
are zero.

The location of the inflection point rs is defined by the LJ diameter, rs/sigma = (26/7)^1/6. The cutoff distance
is defined by rc/rs = 67/48 or rc/sigma = 1.737.... The analytic expression for the the cubic coefficient
A3*rmin^3/epsilon = 27.93... is given in the paper by Holian and Ravelo (Holian).

This potential is commonly used to study the shock mechanics of FCC solids, as in Ravelo et al. (Ravelo).

The following coefficients must be defined for each pair of atom types via the pair_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

epsilon (energy units)•
sigma (distance units)•

Note that sigma is defined in the LJ formula as the zero-crossing distance for the potential, not as the energy
minimum, which is located at rmin = 2^(1/6)*sigma. In the above example, sigma = 0.8908987, so rmin = 1.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

LIGGGHTS Users Manual

pair_style lj/cubic command 839

http://lammps.sandia.gov

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of the lj/cut
pair styles can be mixed. The default mix value is geometric. See the "pair_modify" command for details.

The lj/cubic pair style does not support the pair_modify shift option, since pair interaction is already smoothed
to 0.0 at the cutoff.

The pair_modify table option is not relevant for this pair style.

The lj/cubic pair style does not support the pair_modify tail option for adding long-range tail corrections to
energy and pressure, since there are no corrections for a potential that goes to 0.0 at the cutoff.

The lj/cubic pair style writes its information to binary restart files, so pair_style and pair_coeff commands do
not need to be specified in an input script that reads a restart file.

The lj/cubic pair style can only be used via the pair keyword of the run_style respa command. It does not
support the inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff

Default: none

(Holian) Holian and Ravelo, Phys Rev B, 51, 11275 (1995).

(Ravelo) Ravelo, Holian, Germann and Lomdahl, Phys Rev B, 70, 014103 (2004).

LIGGGHTS Users Manual

pair_style lj/cubic/omp command 840

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style lj/expand command

pair_style lj/expand/cuda command

pair_style lj/expand/gpu command

pair_style lj/expand/omp command

Syntax:

pair_style lj/expand cutoff

cutoff = global cutoff for lj/expand interactions (distance units)•

Examples:

pair_style lj/expand 2.5
pair_coeff * * 1.0 1.0 0.5
pair_coeff 1 1 1.0 1.0 -0.2 2.0

Description:

Style lj/expand computes a LJ interaction with a distance shifted by delta which can be useful when particles
are of different sizes, since it is different that using different sigma values in a standard LJ formula:

Rc is the cutoff which does not include the delta distance. I.e. the actual force cutoff is the sum of cutoff +
delta.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

epsilon (energy units)•
sigma (distance units)•
delta (distance units)•
cutoff (distance units)•

The delta values can be positive or negative. The last coefficient is optional. If not specified, the global LJ
cutoff is used.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

LIGGGHTS Users Manual

pair_style lj/expand command 841

http://lammps.sandia.gov

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon, sigma, and shift coefficients and cutoff distance for this pair
style can be mixed. Shift is always mixed via an arithmetic rule. The other coefficients are mixed according to
the pair_modify mix value. The default mix value is geometric. See the "pair_modify" command for details.

This pair style supports the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style supports the pair_modify tail option for adding a long-range tail correction to the energy and
pressure of the pair interaction.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff

Default: none

LIGGGHTS Users Manual

pair_style lj/expand/omp command 842

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style lj/cut command

pair_style lj/cut/cuda command

pair_style lj/cut/experimental/cuda command

pair_style lj/cut/gpu command

pair_style lj/cut/opt command

pair_style lj/cut/omp command

pair_style lj/cut/coul/cut command

pair_style lj/cut/coul/cut/cuda command

pair_style lj/cut/coul/cut/gpu command

pair_style lj/cut/coul/cut/omp command

pair_style lj/cut/coul/debye command

pair_style lj/cut/coul/debye/cuda command

pair_style lj/cut/coul/debye/gpu command

pair_style lj/cut/coul/debye/omp command

pair_style lj/cut/coul/dsf command

pair_style lj/cut/coul/dsf/gpu command

pair_style lj/cut/coul/dsf/omp command

pair_style lj/cut/coul/long command

pair_style lj/cut/coul/long/cuda command

pair_style lj/cut/coul/long/gpu command

pair_style lj/cut/coul/long/opt command

pair_style lj/cut/coul/long/omp command

LIGGGHTS Users Manual

pair_style lj/cut command 843

http://lammps.sandia.gov

pair_style lj/cut/coul/msm command

pair_style lj/cut/coul/msm/gpu command

pair_style lj/cut/coul/msm/omp command

pair_style lj/cut/tip4p/cut command

pair_style lj/cut/tip4p/cut/omp command

pair_style lj/cut/tip4p/long command

pair_style lj/cut/tip4p/long/omp command

pair_style lj/cut/tip4p/long/opt command

Syntax:

pair_style style args

style = lj/cut or lj/cut/coul/cut or lj/cut/coul/debye or lj/cut/coul/dsf or lj/cut/coul/long or
lj/cut/coul/msm or lj/cut/tip4p/long

•

args = list of arguments for a particular style•

lj/cut args = cutoff
 cutoff = global cutoff for Lennard Jones interactions (distance units)

lj/cut/coul/cut args = cutoff (cutoff2)
 cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

lj/cut/coul/debye args = kappa cutoff (cutoff2)
 kappa = inverse of the Debye length (inverse distance units)
 cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

lj/cut/coul/dsf args = alpha cutoff (cutoff2)
 alpha = damping parameter (inverse distance units)
 cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (distance units)

lj/cut/coul/long args = cutoff (cutoff2)
 cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

lj/cut/coul/msm args = cutoff (cutoff2)
 cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

lj/cut/tip4p/cut args = otype htype btype atype qdist cutoff (cutoff2)
 otype,htype = atom types for TIP4P O and H
 btype,atype = bond and angle types for TIP4P waters
 qdist = distance from O atom to massless charge (distance units)
 cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

lj/cut/tip4p/long args = otype htype btype atype qdist cutoff (cutoff2)
 otype,htype = atom types for TIP4P O and H
 btype,atype = bond and angle types for TIP4P waters
 qdist = distance from O atom to massless charge (distance units)
 cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

Examples:

LIGGGHTS Users Manual

pair_style lj/cut/coul/msm command 844

pair_style lj/cut 2.5
pair_coeff * * 1 1
pair_coeff 1 1 1 1.1 2.8

pair_style lj/cut/coul/cut 10.0
pair_style lj/cut/coul/cut 10.0 8.0
pair_coeff * * 100.0 3.0
pair_coeff 1 1 100.0 3.5 9.0
pair_coeff 1 1 100.0 3.5 9.0 9.0

pair_style lj/cut/coul/debye 1.5 3.0
pair_style lj/cut/coul/debye 1.5 2.5 5.0
pair_coeff * * 1.0 1.0
pair_coeff 1 1 1.0 1.5 2.5
pair_coeff 1 1 1.0 1.5 2.5 5.0

pair_style lj/cut/coul/dsf 0.05 2.5 10.0
pair_coeff * * 1.0 1.0
pair_coeff 1 1 1.0 1.0 2.5

pair_style lj/cut/coul/long 10.0
pair_style lj/cut/coul/long 10.0 8.0
pair_coeff * * 100.0 3.0
pair_coeff 1 1 100.0 3.5 9.0

pair_style lj/cut/coul/msm 10.0
pair_style lj/cut/coul/msm 10.0 8.0
pair_coeff * * 100.0 3.0
pair_coeff 1 1 100.0 3.5 9.0

pair_style lj/cut/tip4p/cut 1 2 7 8 0.15 12.0
pair_style lj/cut/tip4p/cut 1 2 7 8 0.15 12.0 10.0
pair_coeff * * 100.0 3.0
pair_coeff 1 1 100.0 3.5 9.0

pair_style lj/cut/tip4p/long 1 2 7 8 0.15 12.0
pair_style lj/cut/tip4p/long 1 2 7 8 0.15 12.0 10.0
pair_coeff * * 100.0 3.0
pair_coeff 1 1 100.0 3.5 9.0

Description:

The lj/cut styles compute the standard 12/6 Lennard-Jones potential, given by

Rc is the cutoff.

Style lj/cut/coul/cut adds a Coulombic pairwise interaction given by

LIGGGHTS Users Manual

pair_style lj/cut/tip4p/long/opt command 845

where C is an energy-conversion constant, Qi and Qj are the charges on the 2 atoms, and epsilon is the
dielectric constant which can be set by the dielectric command. If one cutoff is specified in the pair_style
command, it is used for both the LJ and Coulombic terms. If two cutoffs are specified, they are used as cutoffs
for the LJ and Coulombic terms respectively.

Style lj/cut/coul/debye adds an additional exp() damping factor to the Coulombic term, given by

where kappa is the inverse of the Debye length. This potential is another way to mimic the screening effect of
a polar solvent.

Style lj/cut/coul/dsf computes the Coulombic term via the damped shifted force model described in Fennell,
given by:

where alpha is the damping parameter and erfc() is the complementary error-function. This potential is
essentially a short-range, spherically-truncated, charge-neutralized, shifted, pairwise 1/r summation. The
potential is based on Wolf summation, proposed as an alternative to Ewald summation for condensed phase
systems where charge screening causes electrostatic interactions to become effectively short-ranged. In order
for the electrostatic sum to be absolutely convergent, charge neutralization within the cutoff radius is enforced
by shifting the potential through placement of image charges on the cutoff sphere. Convergence can often be
improved by setting alpha to a small non-zero value.

Styles lj/cut/coul/long and lj/cut/coul/msm compute the same Coulombic interactions as style lj/cut/coul/cut
except that an additional damping factor is applied to the Coulombic term so it can be used in conjunction
with the kspace_style command and its ewald or pppm option. The Coulombic cutoff specified for this style
means that pairwise interactions within this distance are computed directly; interactions outside that distance
are computed in reciprocal space.

Styles lj/cut/tip4p/cut and lj/cut/tip4p/long implement the TIP4P water model of (Jorgensen), which
introduces a massless site located a short distance away from the oxygen atom along the bisector of the HOH
angle. The atomic types of the oxygen and hydrogen atoms, the bond and angle types for OH and HOH
interactions, and the distance to the massless charge site are specified as pair_style arguments. Style
lj/cut/tip4p/cut uses a cutoff for Coulomb interactions; style lj/cut/tip4p/long is for use with a long-range
Coulombic solver (Ewald or PPPM).

IMPORTANT NOTE: For each TIP4P water molecule in your system, the atom IDs for the O and 2 H atoms
must be consecutive, with the O atom first. This is to enable LAMMPS to "find" the 2 H atoms associated
with each O atom. For example, if the atom ID of an O atom in a TIP4P water molecule is 500, then its 2 H
atoms must have IDs 501 and 502.

See the howto section for more information on how to use the TIP4P pair styles and lists of parameters to set.
Note that the neighobr list cutoff for Coulomb interactions is effectively extended by a distance 2*qdist when
using the TIP4P pair style, to account for the offset distance of the fictitious charges on O atoms in water

LIGGGHTS Users Manual

pair_style lj/cut/tip4p/long/opt command 846

molecules. Thus it is typically best in an efficiency sense to use a LJ cutoff >= Coulomb cutoff + 2*qdist, to
shrink the size of the neighbor list. This leads to slightly larger cost for the long-range calculation, so you can
test the trade-off for your model.

For all of the lj/cut pair styles, the following coefficients must be defined for each pair of atoms types via the
pair_coeff command as in the examples above, or in the data file or restart files read by the read_data or
read_restart commands, or by mixing as described below:

epsilon (energy units)•
sigma (distance units)•
cutoff1 (distance units)•
cutoff2 (distance units)•

Note that sigma is defined in the LJ formula as the zero-crossing distance for the potential, not as the energy
minimum at 2^(1/6) sigma.

The latter 2 coefficients are optional. If not specified, the global LJ and Coulombic cutoffs specified in the
pair_style command are used. If only one cutoff is specified, it is used as the cutoff for both LJ and
Coulombic interactions for this type pair. If both coefficients are specified, they are used as the LJ and
Coulombic cutoffs for this type pair. You cannot specify 2 cutoffs for style lj/cut, since it has no Coulombic
terms.

For lj/cut/coul/long and lj/cut/coul/msm and lj/cut/tip4p/cut and lj/cut/tip4p/long only the LJ cutoff can be
specified since a Coulombic cutoff cannot be specified for an individual I,J type pair. All type pairs use the
same global Coulombic cutoff specified in the pair_style command.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of the lj/cut
pair styles can be mixed. The default mix value is geometric. See the "pair_modify" command for details.

All of the lj/cut pair styles support the pair_modify shift option for the energy of the Lennard-Jones portion of
the pair interaction.

The lj/cut/coul/long and lj/cut/tip4p/long pair styles support the pair_modify table option since they can
tabulate the short-range portion of the long-range Coulombic interaction.

All of the lj/cut pair styles support the pair_modify tail option for adding a long-range tail correction to the
energy and pressure for the Lennard-Jones portion of the pair interaction.

LIGGGHTS Users Manual

pair_style lj/cut/tip4p/long/opt command 847

All of the lj/cut pair styles write their information to binary restart files, so pair_style and pair_coeff
commands do not need to be specified in an input script that reads a restart file.

The lj/cut and lj/cut/coul/long pair styles support the use of the inner, middle, and outer keywords of the
run_style respa command, meaning the pairwise forces can be partitioned by distance at different levels of the
rRESPA hierarchy. The other styles only support the pair keyword of run_style respa. See the run_style
command for details.

Restrictions:

The lj/cut/coul/long and lj/cut/tip4p/long styles are part of the KSPACE package. The lj/cut/tip4p/cut style is
part of the MOLECULE package. These styles are only enabled if LAMMPS was built with those packages.
See the Making LAMMPS section for more info. Note that the KSPACE and MOLECULE packages are
installed by default.

Related commands:

pair_coeff

Default: none

(Jorgensen) Jorgensen, Chandrasekhar, Madura, Impey, Klein, J Chem Phys, 79, 926 (1983).

(Fennell) C. J. Fennell, J. D. Gezelter, J Chem Phys, 124, 234104 (2006).

LIGGGHTS Users Manual

pair_style lj/cut/tip4p/long/opt command 848

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style lj/long/coul/long command

pair_style lj/long/coul/long/omp command

pair_style lj/long/coul/long/opt command

pair_style lj/long/tip4p/long command

Syntax:

pair_style style args

style = lj/long/coul/long or lj/long/tip4p/long•
args = list of arguments for a particular style•

lj/long/coul/long args = flag_lj flag_coul cutoff (cutoff2)
 flag_lj = long or cut or off

long = use Kspace long-range summation for dispersion 1/r^6 term
cut = use a cutoff on dispersion 1/r^6 term
off = omit disperion 1/r^6 term entirely

 flag_coul = long or off
long = use Kspace long-range summation for Coulombic 1/r term
off = omit Coulombic term

 cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

lj/cut/tip4p/long args = flag_lj flag_coul otype htype btype atype qdist cutoff (cutoff2)
 flag_lj = long or cut

long = use Kspace long-range summation for dispersion 1/r^6 term
cut = use a cutoff

 flag_coul = long or off
long = use Kspace long-range summation for Coulombic 1/r term
off = omit Coulombic term

 otype,htype = atom types for TIP4P O and H
 btype,atype = bond and angle types for TIP4P waters
 qdist = distance from O atom to massless charge (distance units)
 cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

Examples:

pair_style lj/long/coul/long cut off 2.5
pair_style lj/long/coul/long cut long 2.5 4.0
pair_style lj/long/coul/long long long 2.5 4.0
pair_coeff * * 1 1
pair_coeff 1 1 1 3 4

pair_style lj/long/tip4p/long long long 1 2 7 8 0.15 12.0
pair_style lj/long/tip4p/long long long 1 2 7 8 0.15 12.0 10.0
pair_coeff * * 100.0 3.0
pair_coeff 1 1 100.0 3.5 9.0

Description:

Style lj/long/coul/long computes the standard 12/6 Lennard-Jones and Coulombic potentials, given by

LIGGGHTS Users Manual

pair_style lj/long/coul/long command 849

http://lammps.sandia.gov

where C is an energy-conversion constant, Qi and Qj are the charges on the 2 atoms, epsilon is the dielectric
constant which can be set by the dielectric command, and Rc is the cutoff. If one cutoff is specified in the
pair_style command, it is used for both the LJ and Coulombic terms. If two cutoffs are specified, they are used
as cutoffs for the LJ and Coulombic terms respectively.

The purpose of this pair style is to capture long-range interactions resulting from both attractive 1/r^6
Lennard-Jones and Coulombic 1/r interactions. This is done by use of the flag_lj and flag_coul settings. The
In 't Veld paper has more details on when it is appropriate to include long-range 1/r^6 interactions, using this
potential.

Style lj/cut/tip4p/long implements the TIP4P water model of (Jorgensen), which introduces a massless site
located a short distance away from the oxygen atom along the bisector of the HOH angle. The atomic types of
the oxygen and hydrogen atoms, the bond and angle types for OH and HOH interactions, and the distance to
the massless charge site are specified as pair_style arguments.

IMPORTANT NOTE: For each TIP4P water molecule in your system, the atom IDs for the O and 2 H atoms
must be consecutive, with the O atom first. This is to enable LAMMPS to "find" the 2 H atoms associated
with each O atom. For example, if the atom ID of an O atom in a TIP4P water molecule is 500, then its 2 H
atoms must have IDs 501 and 502.

See the howto section for more information on how to use the TIP4P pair style. Note that the neighobr list
cutoff for Coulomb interactions is effectively extended by a distance 2*qdist when using the TIP4P pair style,
to account for the offset distance of the fictitious charges on O atoms in water molecules. Thus it is typically
best in an efficiency sense to use a LJ cutoff >= Coulomb cutoff + 2*qdist, to shrink the size of the neighbor
list. This leads to slightly larger cost for the long-range calculation, so you can test the trade-off for your
model.

If flag_lj is set to long, no cutoff is used on the LJ 1/r^6 dispersion term. The long-range portion is calculated
by using the kspace_style ewald/n command. The specified LJ cutoff then determines which portion of the LJ
interactions are computed directly by the pair potential versus which part is computed in reciprocal space via
the Kspace style. If flag_lj is set to cut, the LJ interactions are simply cutoff, as with pair_style lj/cut. If flag_lj
is set to off, LJ interactions are not computed at all.

If flag_coul is set to long, no cutoff is used on the Coulombic interactions. The long-range portion is
calculated by using any style, including ewald/n of the kspace_style command. Note that if flag_lj is also set
to long, then only the ewald/n KSpace style can perform the long-range calculations for both the LJ and
Coulombic interactions. If flag_coul is set to off, Coulombic interactions are not computed at all.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

LIGGGHTS Users Manual

pair_style lj/long/tip4p/long command 850

epsilon (energy units)•
sigma (distance units)•
cutoff1 (distance units)•
cutoff2 (distance units)•

Note that sigma is defined in the LJ formula as the zero-crossing distance for the potential, not as the energy
minimum at 2^(1/6) sigma.

The latter 2 coefficients are optional. If not specified, the global LJ and Coulombic cutoffs specified in the
pair_style command are used. If only one cutoff is specified, it is used as the cutoff for both LJ and
Coulombic interactions for this type pair. If both coefficients are specified, they are used as the LJ and
Coulombic cutoffs for this type pair.

Note that if you are using flag_lj set to long, you cannot specify a LJ cutoff for an atom type pair, since only
one global LJ cutoff is allowed. Similarly, if you are using flag_coul set to long, you cannot specify a
Coulombic cutoff for an atom type pair, since only one global Coulombic cutoff is allowed.

For lj/long/tip4p/long only the LJ cutoff can be specified since a Coulombic cutoff cannot be specified for an
individual I,J type pair. All type pairs use the same global Coulombic cutoff specified in the pair_style
command.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of the lj/long
pair styles can be mixed. The default mix value is geometric. See the "pair_modify" command for details.

These pair styles support the pair_modify shift option for the energy of the Lennard-Jones portion of the pair
interaction, assuming flag_lj is cut.

These pair styles support the pair_modify table and table/disp options since they can tabulate the short-range
portion of the long-range Coulombic and dispersion interactions.

Thes pair styles do not support the pair_modify tail option for adding a long-range tail correction to the
Lennard-Jones portion of the energy and pressure.

These pair styles write their information to binary restart files, so pair_style and pair_coeff commands do not
need to be specified in an input script that reads a restart file.

LIGGGHTS Users Manual

pair_style lj/long/tip4p/long command 851

The pair lj/long/coul/long styles support the use of the inner, middle, and outer keywords of the run_style
respa command, meaning the pairwise forces can be partitioned by distance at different levels of the rRESPA
hierarchy. See the run_style command for details.

Restrictions:

These styles are part of the KSPACE package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info. Note that the KSPACE package is installed by
default.

Related commands:

pair_coeff

Default: none

(In 't Veld) In 't Veld, Ismail, Grest, J Chem Phys (accepted) (2007).

LIGGGHTS Users Manual

pair_style lj/long/tip4p/long command 852

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style lj/sf command

pair_style lj/sf/omp command

Syntax:

pair_style lj/sf cutoff

cutoff = global cutoff for Lennard-Jones interactions (distance units)•

Examples:

pair_style lj/sf 2.5
pair_coeff * * 1.0 1.0
pair_coeff 1 1 1.0 1.0 3.0

Description:

Style lj/sf computes a truncated and force-shifted LJ interaction (Shifted Force Lennard-Jones), so that both
the potential and the force go continuously to zero at the cutoff (Toxvaerd):

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

epsilon (energy units)•
sigma (distance units)•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global LJ cutoff specified in the pair_style command is
used.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your

LIGGGHTS Users Manual

pair_style lj/sf command 853

http://lammps.sandia.gov

input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for this pair style can
be mixed. Rin is a cutoff value and is mixed like the cutoff. The default mix value is geometric. See the
"pair_modify" command for details.

The pair_modify shift option is not relevant for this pair style, since the pair interaction goes to 0.0 at the
cutoff.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure, since the energy of the pair interaction is smoothed to 0.0 at the cutoff.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the USER-MISC package. It is only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info.

Related commands:

pair_coeff

Default: none

(Toxvaerd) Toxvaerd, Dyre, J Chem Phys, 134, 081102 (2011).

LIGGGHTS Users Manual

pair_style lj/sf/omp command 854

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style lj/smooth command

pair_style lj/smooth/cuda command

pair_style lj/smooth/omp command

Syntax:

pair_style lj/smooth Rin Rc

Rin = inner cutoff beyond which force smoothing will be applied (distance units)•
Rc = outer cutoff for lj/smooth interactions (distance units)•

Examples:

pair_style lj/smooth 8.0 10.0
pair_coeff * * 10.0 1.5
pair_coeff 1 1 20.0 1.3 7.0 9.0

Description:

Style lj/smooth computes a LJ interaction with a force smoothing applied between the inner and outer cutoff.

The polynomial coefficients C1, C2, C3, C4 are computed by LAMMPS to cause the force to vary smoothly
from the inner cutoff Rin to the outer cutoff Rc.

At the inner cutoff the force and its 1st derivative will match the unsmoothed LJ formula. At the outer cutoff
the force and its 1st derivative will be 0.0. The inner cutoff cannot be 0.0.

IMPORTANT NOTE: this force smoothing causes the energy to be discontinuous both in its values and 1st
derivative. This can lead to poor energy conservation and may require the use of a thermostat. Plot the energy
and force resulting from this formula via the pair_write command to see the effect.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

epsilon (energy units)•
sigma (distance units)•
innner (distance units)•
outer (distance units)•

The last 2 coefficients are optional inner and outer cutoffs. If not specified, the global values for Rin and Rc
are used.

LIGGGHTS Users Manual

pair_style lj/smooth command 855

http://lammps.sandia.gov

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon, sigma, Rin coefficients and the cutoff distance for this pair style
can be mixed. Rin is a cutoff value and is mixed like the cutoff. The other coefficients are mixed according to
the pair_modify mix option. The default mix value is geometric. See the "pair_modify" command for details.

This pair style supports the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure, since the energy of the pair interaction is smoothed to 0.0 at the cutoff.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff, pair lj/smooth/linear

Default: none

LIGGGHTS Users Manual

pair_style lj/smooth/omp command 856

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style lj/smooth/linear command

pair_style lj/smooth/linear/omp command

Syntax:

pair_style lj/smooth/linear Rc

Rc = cutoff for lj/smooth/linear interactions (distance units)•

Examples:

pair_style lj/smooth/linear 5.456108274435118
pair_coeff * * 0.7242785984051078 2.598146797350056
pair_coeff 1 1 20.0 1.3 9.0

Description:

Style lj/smooth/linear computes a LJ interaction that combines the standard 12/6 Lennard-Jones function and
subtracts a linear term that includes the cutoff distance Rc, as in this formula:

At the cutoff Rc, the energy and force (its 1st derivative) will be 0.0.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

epsilon (energy units)•
sigma (distance units)•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global value for Rc is used.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

LIGGGHTS Users Manual

pair_style lj/smooth/linear command 857

http://lammps.sandia.gov

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance can be mixed. The
default mix value is geometric. See the "pair_modify" command for details.

This pair style does not support the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure, since the energy of the pair interaction is smoothed to 0.0 at the cutoff.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff, pair lj/smooth

Default: none

LIGGGHTS Users Manual

pair_style lj/smooth/linear/omp command 858

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style lubricate command

pair_style lubricate/omp command

pair_style lubricate/poly command

pair_style lubricate/poly/omp command

Syntax:

pair_style style mu flaglog flagfld cutinner cutoff flagHI flagVF

style = lubricate or lubricate/poly•
mu = dynamic viscosity (dynamic viscosity units)•
flaglog = 0/1 to exclude/include log terms in the lubrication approximation•
flagfld = 0/1 to exclude/include Fast Lubrication Dynamics (FLD) effects•
cutinner = inner cutoff distance (distance units)•
cutoff = outer cutoff for interactions (distance units)•
flagHI (optional) = 0/1 to exclude/include 1/r hydrodynamic interactions•
flagVF (optional) = 0/1 to exclude/include volume fraction corrections in the long-range isotropic
terms

•

Examples: (all assume radius = 1)

pair_style lubricate 1.5 1 1 2.01 2.5
pair_coeff 1 1 2.05 2.8
pair_coeff * *

pair_style lubricate 1.5 1 1 2.01 2.5
pair_coeff * *
variable mu equal ramp(1,2)
fix 1 all adapt 1 pair lubricate mu * * v_mu

Description:

Styles lubricate and lubricate/poly compute hydrodynamic interactions between mono-disperse spherical
particles in a pairwise fashion. The interactions have 2 components. The first is Ball-Melrose lubrication
terms via the formulas in (Ball and Melrose)

which represents the dissipation W between two nearby particles due to their relative velocities in the
presence of a background solvent with viscosity mu. Note that this is dynamic viscosity which has units of
mass/distance/time, not kinematic viscosity.

LIGGGHTS Users Manual

pair_style lubricate command 859

http://lammps.sandia.gov

The Asq (squeeze) term is the strongest and is included if flagHI is set to 1 (default). It scales as 1/gap where
gap is the separation between the surfaces of the 2 particles. The Ash (shear) and Apu (pump) terms are only
included if flaglog is set to 1. They are the next strongest interactions, and the only other singular interaction,
and scale as log(gap). Note that flaglog = 1 and flagHI = 0 is invalid, and will result in a warning message,
after which flagHI will be set to 1. The Atw (twist) term is currently not included. It is typically a very small
contribution to the lubrication forces.

The flagHI and flagVF settings are optional. Neither should be used, or both must be defined.

Cutinner sets the minimum center-to-center separation that will be used in calculations irrespective of the
actual separation. Cutoff is the maximum center-to-center separation at which an interaction is computed.
Using a cutoff less than 3 radii is recommended if flaglog is set to 1.

The other component is due to the Fast Lubrication Dynamics (FLD) approximation, described in (Kumar),
which can be represented by the following equation

where U represents the velocities and angular velocities of the particles, U^infty represents the velocity and
the angular velocity of the undisturbed fluid, and E^infty represents the rate of strain tensor of the undisturbed
fluid with viscosity mu. Again, note that this is dynamic viscosity which has units of mass/distance/time, not
kinematic viscosity. Volume fraction corrections to R_FU are included as long as flagVF is set to 1 (default).

IMPORTANT NOTE: When using the FLD terms, these pair styles are designed to be used with explicit time
integration and a correspondingly small timestep. Thus either fix nve/sphere or fix nve/asphere should be used
for time integration. To perform implicit FLD, see the pair_style lubricateU command.

Style lubricate requires monodisperse spherical particles; style lubricate/poly allows for polydisperse
spherical particles.

The viscosity mu can be varied in a time-dependent manner over the course of a simluation, in which case in
which case the pair_style setting for mu will be overridden. See the fix adapt command for details.

If the suspension is sheared via the fix deform command then the pair style uses the shear rate to adjust the
hydrodynamic interactions accordingly. Volume changes due to fix deform are accounted for when computing
the volume fraction corrections to R_FU.

When computing the volume fraction corrections to R_FU, the presence of walls (whether moving or
stationary) will affect the volume fraction available to colloidal particles. This is currently accounted for with
the following types of walls: wall/lj93, wall/lj126, wall/colloid, and wall/harmonic. For these wall styles, the
correct volume fraction will be used when walls do not coincide with the box boundary, as well as when walls
move and thereby cause a change in the volume fraction. Other wall styles will still work, but they will result
in the volume fraction being computed based on the box boundaries.

Since lubrication forces are dissipative, it is usually desirable to thermostat the system at a constant
temperature. If Brownian motion (at a constant temperature) is desired, it can be set using the pair_style
brownian command. These pair styles and the brownian style should use consistent parameters for mu,
flaglog, flagfld, cutinner, cutoff, flagHI and flagVF.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

LIGGGHTS Users Manual

pair_style lubricate/poly/omp command 860

cutinner (distance units)•
cutoff (distance units)•

The two coefficients are optional. If neither is specified, the two cutoffs specified in the pair_style command
are used. Otherwise both must be specified.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in this
section of the manual. The accelerated styles take the same arguments and should produce the same results,
except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See this section of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the two cutoff distances for this pair style can be mixed. The default mix
value is geometric. See the "pair_modify" command for details.

This pair style does not support the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

These styles are part of the FLD package. They are only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Only spherical monodisperse particles are allowed for pair_style lubricate.

Only spherical particles are allowed for pair_style lubricate/poly.

These pair styles will not restart exactly when using the read_restart command, though they should provide
statistically similar results. This is because the forces they compute depend on atom velocities. See the
read_restart command for more details.

Related commands:

LIGGGHTS Users Manual

pair_style lubricate/poly/omp command 861

pair_coeff, pair_style lubricateU

Default:

The default settings for the optional args are flagHI = 1 and flagVF = 1.

(Ball) Ball and Melrose, Physica A, 247, 444-472 (1997).

(Kumar) Kumar and Higdon, Phys Rev E, 82, 051401 (2010). See also his thesis for more details: A. Kumar,
"Microscale Dynamics in Suspensions of Non-spherical Particles", Thesis, University of Illinois
Urbana-Champaign, (2010). (https://www.ideals.illinois.edu/handle/2142/16032)

LIGGGHTS Users Manual

pair_style lubricate/poly/omp command 862

https://www.ideals.illinois.edu/handle/2142/16032

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style lubricateU command

pair_style lubricateU/poly command

Syntax:

pair_style style mu flaglog cutinner cutoff gdot flagHI flagVF

style = lubricateU or lubricateU/poly•
mu = dynamic viscosity (dynamic viscosity units)•
flaglog = 0/1 to exclude/include log terms in the lubrication approximation•
cutinner = inner cut off distance (distance units)•
cutoff = outer cutoff for interactions (distance units)•
gdot = shear rate (1/time units)•
flagHI (optional) = 0/1 to exclude/include 1/r hydrodynamic interactions•
flagVF (optional) = 0/1 to exclude/include volume fraction corrections in the long-range isotropic
terms

•

Examples: (all assume radius = 1)

pair_style lubricateU 1.5 1 2.01 2.5 0.01 1 1
pair_coeff 1 1 2.05 2.8
pair_coeff * *

Description:

Styles lubricateU and lubricateU/poly compute velocities and angular velocities such that the hydrodynamic
interaction balances the force and torque due to all other types of interactions.

The interactions have 2 components. The first is Ball-Melrose lubrication terms via the formulas in (Ball and
Melrose)

which represents the dissipation W between two nearby particles due to their relative velocities in the
presence of a background solvent with viscosity mu. Note that this is dynamic viscosity which has units of
mass/distance/time, not kinematic viscosity.

The Asq (squeeze) term is the strongest and is included as long as flagHI is set to 1 (default). It scales as 1/gap
where gap is the separation between the surfaces of the 2 particles. The Ash (shear) and Apu (pump) terms are
only included if flaglog is set to 1. They are the next strongest interactions, and the only other singular
interaction, and scale as log(gap). Note that flaglog = 1 and flagHI = 0 is invalid, and will result in a warning
message, after which flagHI will be set to 1. The Atw (twist) term is currently not included. It is typically a
very small contribution to the lubrication forces.

LIGGGHTS Users Manual

pair_style lubricateU command 863

http://lammps.sandia.gov

The flagHI and flagVF settings are optional. Neither should be used, or both must be defined.

Cutinner sets the minimum center-to-center separation that will be used in calculations irrespective of the
actual separation. Cutoff is the maximum center-to-center separation at which an interaction is computed.
Using a cutoff less than 3 radii is recommended if flaglog is set to 1.

The other component is due to the Fast Lubrication Dynamics (FLD) approximation, described in (Kumar).
The equation being solved to balance the forces and torques is

where U represents the velocities and angular velocities of the particles, U^infty represents the velocities and
the angular velocities of the undisturbed fluid, and E^infty represents the rate of strain tensor of the
undisturbed fluid flow with viscosity mu. Again, note that this is dynamic viscosity which has units of
mass/distance/time, not kinematic viscosity. Volume fraction corrections to R_FU are included if flagVF is set
to 1 (default).

Frest represents the forces and torques due to all other types of interactions, e.g. Brownian, electrostatic etc.
Note that this algorithm neglects the inertial terms, thereby removing the restriction of resolving the small
interial time scale, which may not be of interest for colloidal particles. This pair style solves for the velocity
such that the hydrodynamic force balances all other types of forces, thereby resulting in a net zero force (zero
inertia limit). When defining this pair style, it must be defined last so that when this style is invoked all other
types of forces have already been computed. For the same reason, it won't work if additional non-pair styles
are defined (such as bond or Kspace forces) as they are calculated in LAMMPS after the pairwise interactions
have been computed.

IMPORTANT NOTE: When using these styles, the these pair styles are designed to be used with implicit
time integration and a correspondingly larger timestep. Thus either fix nve/noforce should be used for
spherical particles defined via atom_style sphere or fix nve/asphere/noforce should be used for spherical
particles defined via atom_style ellipsoid. This is because the velocity and angular momentum of each particle
is set by the pair style, and should not be reset by the time integration fix.

Style lubricateU requires monodisperse spherical particles; style lubricateU/poly allows for polydisperse
spherical particles.

If the suspension is sheared via the fix deform command then the pair style uses the shear rate to adjust the
hydrodynamic interactions accordingly. Volume changes due to fix deform are accounted for when computing
the volume fraction corrections to R_FU.

When computing the volume fraction corrections to R_FU, the presence of walls (whether moving or
stationary) will affect the volume fraction available to colloidal particles. This is currently accounted for with
the following types of walls: wall/lj93, wall/lj126, wall/colloid, and "wall/harmonic_fix_wall.html". For these
wall styles, the correct volume fraction will be used when walls do not coincide with the box boundary, as
well as when walls move and thereby cause a change in the volume fraction. To use these wall styles with
pair_style lubricateU or lubricateU/poly, the fld yes option must be specified in the fix wall command.

Since lubrication forces are dissipative, it is usually desirable to thermostat the system at a constant
temperature. If Brownian motion (at a constant temperature) is desired, it can be set using the pair_style
brownian command. These pair styles and the brownian style should use consistent parameters for mu,
flaglog, flagfld, cutinner, cutoff, flagHI and flagVF.

LIGGGHTS Users Manual

pair_style lubricateU/poly command 864

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

cutinner (distance units)•
cutoff (distance units)•

The two coefficients are optional. If neither is specified, the two cutoffs specified in the pair_style command
are used. Otherwise both must be specified.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the two cutoff distances for this pair style can be mixed. The default mix
value is geometric. See the "pair_modify" command for details.

This pair style does not support the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

These styles are part of the FLD package. They are only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Currently, these pair styles assume that all other types of forces/torques on the particles have been already
been computed when it is invoked. This requires this style to be defined as the last of the pair styles, and that
no fixes apply additional constraint forces. One exception is the fix wall/colloid commands, which has an
"fld" option to apply their wall forces correctly.

Only spherical monodisperse particles are allowed for pair_style lubricateU.

Only spherical particles are allowed for pair_style lubricateU/poly.

For sheared suspensions, it is assumed that the shearing is done in the xy plane, with x being the velocity
direction and y being the velocity-gradient direction. In this case, one must use fix deform with the same rate
of shear (erate).

Related commands:

pair_coeff, pair_style lubricate

Default:

The default settings for the optional args are flagHI = 1 and flagVF = 1.

LIGGGHTS Users Manual

pair_style lubricateU/poly command 865

(Ball) Ball and Melrose, Physica A, 247, 444-472 (1997).

(Kumar) Kumar and Higdon, Phys Rev E, 82, 051401 (2010).

LIGGGHTS Users Manual

pair_style lubricateU/poly command 866

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style meam command

Syntax:

pair_style meam

Examples:

pair_style meam
pair_coeff * * ../potentials/library.meam Si ../potentials/si.meam Si
pair_coeff * * ../potentials/library.meam Ni Al NULL Ni Al Ni Ni

Description:

NOTE: The behavior of the MEAM potential for alloy systems has changed as of November 2010; see
description below of the mixture_ref_t parameter

Style meam computes pairwise interactions for a variety of materials using modified embedded-atom method
(MEAM) potentials (Baskes). Conceptually, it is an extension to the original EAM potentials which adds
angular forces. It is thus suitable for modeling metals and alloys with fcc, bcc, hcp and diamond cubic
structures, as well as covalently bonded materials like silicon and carbon.

In the MEAM formulation, the total energy E of a system of atoms is given by:

where F is the embedding energy which is a function of the atomic electron density rho, and phi is a pair
potential interaction. The pair interaction is summed over all neighbors J of atom I within the cutoff distance.
As with EAM, the multi-body nature of the MEAM potential is a result of the embedding energy term. Details
of the computation of the embedding and pair energies, as implemented in LAMMPS, are given in (Gullet)
and references therein.

The various parameters in the MEAM formulas are listed in two files which are specified by the pair_coeff
command. These are ASCII text files in a format consistent with other MD codes that implement MEAM
potentials, such as the serial DYNAMO code and Warp. Several MEAM potential files with parameters for
different materials are included in the "potentials" directory of the LAMMPS distribution with a ".meam"
suffix. All of these are parameterized in terms of LAMMPS metal units.

Note that unlike for other potentials, cutoffs for MEAM potentials are not set in the pair_style or pair_coeff
command; they are specified in the MEAM potential files themselves.

Only a single pair_coeff command is used with the meam style which specifies two MEAM files and the
element(s) to extract information for. The MEAM elements are mapped to LAMMPS atom types by
specifying N additional arguments after the 2nd filename in the pair_coeff command, where N is the number
of LAMMPS atom types:

MEAM library file•

LIGGGHTS Users Manual

pair_style meam command 867

http://lammps.sandia.gov

Elem1, Elem2, ...•
MEAM parameter file•
N element names = mapping of MEAM elements to atom types•

See the pair_coeff doc page for alternate ways to specify the path for the potential files.

As an example, the potentials/library.meam file has generic MEAM settings for a variety of elements. The
potentials/sic.meam file has specific parameter settings for a Si and C alloy system. If your LAMMPS
simulation has 4 atoms types and you want the 1st 3 to be Si, and the 4th to be C, you would use the following
pair_coeff command:

pair_coeff * * library.meam Si C sic.meam Si Si Si C

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The two filenames are for the library
and parameter file respectively. The Si and C arguments (between the file names) are the two elements for
which info will be extracted from the library file. The first three trailing Si arguments map LAMMPS atom
types 1,2,3 to the MEAM Si element. The final C argument maps LAMMPS atom type 4 to the MEAM C
element.

If the 2nd filename is specified as NULL, no parameter file is read, which simply means the generic
parameters in the library file are used. Use of the NULL specification for the parameter file is discouraged for
systems with more than a single element type (e.g. alloys), since the parameter file is expected to set element
interaction terms that are not captured by the information in the library file.

If a mapping value is specified as NULL, the mapping is not performed. This can be used when a meam
potential is used as part of the hybrid pair style. The NULL values are placeholders for atom types that will be
used with other potentials.

The MEAM library file provided with LAMMPS has the name potentials/library.meam. It is the "meamf" file
used by other MD codes. Aside from blank and comment lines (start with #) which can appear anywhere, it is
formatted as a series of entries, each of which has 19 parameters and can span multiple lines:

elt, lat, z, ielement, atwt, alpha, b0, b1, b2, b3, alat, esub, asub, t0, t1, t2, t3, rozero, ibar

The "elt" and "lat" parameters are text strings, such as elt = Si or Cu and lat = dia or fcc. Because the library
file is used by Fortran MD codes, these strings may be enclosed in single quotes, but this is not required. The
other numeric parameters match values in the formulas above. The value of the "elt" string is what is used in
the pair_coeff command to identify which settings from the library file you wish to read in. There can be
multiple entries in the library file with the same "elt" value; LAMMPS reads the 1st matching entry it finds
and ignores the rest.

Other parameters in the MEAM library file correspond to single-element potential parameters:

lat = lattice structure of reference configuration
z = number of nearest neighbors in the reference structure
ielement = atomic number
atwt = atomic weight
alat = lattice constant of reference structure
esub = energy per atom (eV) in the reference structure at equilibrium
asub = "A" parameter for MEAM (see e.g. (Baskes))

The alpha, b0, b1, b2, b3, t0, t1, t2, t3 parameters correspond to the standard MEAM parameters in the
literature (Baskes) (the b parameters are the standard beta parameters). The rozero parameter is an
element-dependent density scaling that weights the reference background density (see e.g. equation 4.5 in
(Gullet)) and is typically 1.0 for single-element systems. The ibar parameter selects the form of the function
G(Gamma) used to compute the electron density; options are

LIGGGHTS Users Manual

pair_style meam command 868

 0 => G = sqrt(1+Gamma)
 1 => G = exp(Gamma/2)
 2 => not implemented
 3 => G = 2/(1+exp(-Gamma))
 4 => G = sqrt(1+Gamma)
 -5 => G = +-sqrt(abs(1+Gamma))

If used, the MEAM parameter file contains settings that override or complement the library file settings.
Examples of such parameter files are in the potentials directory with a ".meam" suffix. Their format is the
same as is read by other Fortran MD codes. Aside from blank and comment lines (start with #) which can
appear anywhere, each line has one of the following forms. Each line can also have a trailing comment
(starting with #) which is ignored.

keyword = value
keyword(I) = value
keyword(I,J) = value
keyword(I,J,K) = value

The recognized keywords are as follows:

Ec, alpha, rho0, delta, lattce, attrac, repuls, nn2, Cmin, Cmax, rc, delr, augt1, gsmooth_factor, re

where

rc = cutoff radius for cutoff function; default = 4.0
delr = length of smoothing distance for cutoff function; default = 0.1
rho0(I) = relative density for element I (overwrites value
 read from meamf file)
Ec(I,J) = cohesive energy of reference structure for I-J mixture
delta(I,J) = heat of formation for I-J alloy; if Ec_IJ is input as
 zero, then LAMMPS sets Ec_IJ = (Ec_II + Ec_JJ)/2 - delta_IJ
alpha(I,J) = alpha parameter for pair potential between I and J (can
 be computed from bulk modulus of reference structure
re(I,J) = equilibrium distance between I and J in the reference
 structure
Cmax(I,J,K) = Cmax screening parameter when I-J pair is screened
 by K (I<=J); default = 2.8
Cmin(I,J,K) = Cmin screening parameter when I-J pair is screened
 by K (I<=J); default = 2.0
lattce(I,J) = lattice structure of I-J reference structure:
 dia = diamond (interlaced fcc for alloy)
 fcc = face centered cubic
 bcc = body centered cubic
 dim = dimer
 b1 = rock salt (NaCl structure)
 hcp = hexagonal close-packed
 c11 = MoSi2 structure
 l12 = Cu3Au structure (lower case L, followed by 12)
 b2 = CsCl structure (interpenetrating simple cubic)
nn2(I,J) = turn on second-nearest neighbor MEAM formulation for
 I-J pair (see for example (Lee)).
 0 = second-nearest neighbor formulation off
 1 = second-nearest neighbor formulation on
 default = 0
attrac(I,J) = additional cubic attraction term in Rose energy I-J pair potential
 default = 0
repuls(I,J) = additional cubic repulsive term in Rose energy I-J pair potential
 default = 0
zbl(I,J) = blend the MEAM I-J pair potential with the ZBL potential for small
 atom separations (ZBL)
 default = 1
gsmooth_factor = factor determining the length of the G-function smoothing
 region; only significant for ibar=0 or ibar=4.
 99.0 = short smoothing region, sharp step

LIGGGHTS Users Manual

pair_style meam command 869

 0.5 = long smoothing region, smooth step
 default = 99.0
augt1 = integer flag for whether to augment t1 parameter by
 3/5*t3 to account for old vs. new meam formulations;
 0 = don't augment t1
 1 = augment t1
 default = 1
ialloy = integer flag to use alternative averaging rule for t parameters,
 for comparison with the DYNAMO MEAM code
 0 = standard averaging (matches ialloy=0 in DYNAMO)
 1 = alternative averaging (matches ialloy=1 in DYNAMO)
 2 = no averaging of t (use single-element values)
 default = 0
mixture_ref_t = integer flag to use mixture average of t to compute the background
 reference density for alloys, instead of the single-element values
 (see description and warning elsewhere in this doc page)
 0 = do not use mixture averaging for t in the reference density
 1 = use mixture averaging for t in the reference density
 default = 0
erose_form = integer value to select the form of the Rose energy function
 (see description below).
 default = 0
emb_lin_neg = integer value to select embedding function for negative densities
 0 = F(rho)=0
 1 = F(rho) = -asub*esub*rho (linear in rho, matches DYNAMO)
 default = 0
bkgd_dyn = integer value to select background density formula
 0 = rho_bkgd = rho_ref_meam(a) (as in the reference structure)
 1 = rho_bkgd = rho0_meam(a)*Z_meam(a) (matches DYNAMO)
 default = 0

Rc, delr, re are in distance units (Angstroms in the case of metal units). Ec and delta are in energy units (eV in
the case of metal units).

Each keyword represents a quantity which is either a scalar, vector, 2d array, or 3d array and must be
specified with the correct corresponding array syntax. The indices I,J,K each run from 1 to N where N is the
number of MEAM elements being used.

Thus these lines

rho0(2) = 2.25
alpha(1,2) = 4.37

set rho0 for the 2nd element to the value 2.25 and set alpha for the alloy interaction between elements 1 and 2
to 4.37.

The augt1 parameter is related to modifications in the MEAM formulation of the partial electron density
function. In recent literature, an extra term is included in the expression for the third-order density in order to
make the densities orthogonal (see for example (Wang), equation 3d); this term is included in the MEAM
implementation in lammps. However, in earlier published work this term was not included when deriving
parameters, including most of those provided in the library.meam file included with lammps, and to account
for this difference the parameter t1 must be augmented by 3/5*t3. If augt1=1, the default, this augmentation is
done automatically. When parameter values are fit using the modified density function, as in more recent
literature, augt1 should be set to 0.

The mixture_ref_t parameter is available to match results with those of previous versions of lammps (before
January 2011). Newer versions of lammps, by default, use the single-element values of the t parameters to
compute the background reference density. This is the proper way to compute these parameters. Earlier
versions of lammps used an alloy mixture averaged value of t to compute the background reference density.
Setting mixture_ref_t=1 gives the old behavior. WARNING: using mixture_ref_t=1 will give results that are

LIGGGHTS Users Manual

pair_style meam command 870

demonstrably incorrect for second-neighbor MEAM, and non-standard for first-neighbor MEAM; this option
is included only for matching with previous versions of lammps and should be avoided if possible.

The parameters attrac and repuls, along with the integer selection parameter erose_form, can be used to
modify the Rose energy function used to compute the pair potential. This function gives the energy of the
reference state as a function of interatomic spacing. The form of this function is:

astar = alpha * (r/re - 1.d0)
if erose_form = 0: erose = -Ec*(1+astar+a3*(astar**3)/(r/re))*exp(-astar)
if erose_form = 1: erose = -Ec*(1+astar+(-attrac+repuls/r)*(astar**3))*exp(-astar)
if erose_form = 2: erose = -Ec*(1 +astar + a3*(astar**3))*exp(-astar)
a3 = repuls, astar <0
a3 = attrac, astar >= 0

Most published MEAM parameter sets use the default values attrac=repulse=0. Setting repuls=attrac=delta
corresponds to the form used in several recent published MEAM parameter sets, such as (Vallone)

NOTE: The default form of the erose expression in LAMMPS was corrected in March 2009. The current
version is correct, but may show different behavior compared with earlier versions of lammps with the attrac
and/or repuls parameters are non-zero. To obtain the previous default form, use erose_form = 1 (this form
does not seem to appear in the literature). An alternative form (see e.g. (Lee2)) is available using erose_form
= 2.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, where types I and J correspond to two different element types, mixing is
performed by LAMMPS with user-specifiable parameters as described above. You never need to specify a
pair_coeff command with I != J arguments for this style.

This pair style does not support the pair_modify shift, table, and tail options.

This pair style does not write its information to binary restart files, since it is stored in potential files. Thus,
you need to re-specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This style is part of the MEAM package. It is only enabled if LAMMPS was built with that package, which
also requires the MEAM library be built and linked with LAMMPS. See the Making LAMMPS section for
more info.

Related commands:

pair_coeff, pair_style eam, pair_style meam/spline

Default: none

(Baskes) Baskes, Phys Rev B, 46, 2727-2742 (1992).

(Gullet) Gullet, Wagner, Slepoy, SANDIA Report 2003-8782 (2003). This report may be accessed on-line via
this link.

LIGGGHTS Users Manual

pair_style meam command 871

http://infoserve.sandia.gov/sand_doc/2003/038782.pdf

(Lee) Lee, Baskes, Phys. Rev. B, 62, 8564-8567 (2000).

(Lee2) Lee, Baskes, Kim, Cho. Phys. Rev. B, 64, 184102 (2001).

(Valone) Valone, Baskes, Martin, Phys. Rev. B, 73, 214209 (2006).

(Wang) Wang, Van Hove, Ross, Baskes, J. Chem. Phys., 121, 5410 (2004).

(ZBL) J.F. Ziegler, J.P. Biersack, U. Littmark, "Stopping and Ranges of Ions in Matter", Vol 1, 1985,
Pergamon Press.

LIGGGHTS Users Manual

pair_style meam command 872

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style meam/spline

pair_style meam/spline/omp

Syntax:

pair_style meam/spline

Examples:

pair_style meam/spline
pair_coeff * * Ti.meam.spline Ti
pair_coeff * * Ti.meam.spline Ti Ti Ti

Description:

The meam/spline style computes pairwise interactions for metals using a variant of modified embedded-atom
method (MEAM) potentials (Lenosky). The total energy E is given by

where rho_i is the density at atom I, theta_jik is the angle between atoms J, I, and K centered on atom I. The
five functions Phi, U, rho, f, and g are represented by cubic splines.

The cutoffs and the coefficients for these spline functions are listed in a parameter file which is specified by
the pair_coeff command. Parameter files for different elements are included in the "potentials" directory of the
LAMMPS distribution and have a ".meam.spline" file suffix. All of these files are parameterized in terms of
LAMMPS metal units.

Note that unlike for other potentials, cutoffs for spline-based MEAM potentials are not set in the pair_style or
pair_coeff command; they are specified in the potential files themselves.

Unlike the EAM pair style, which retrieves the atomic mass from the potential file, the spline-based MEAM
potentials do not include mass information; thus you need to use the mass command to specify it.

Only a single pair_coeff command is used with the meam/spline style which specifies a potential file with
parameters for all needed elements. These are mapped to LAMMPS atom types by specifying N additional
arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom types:

filename•
N element names = mapping of spline-based MEAM elements to atom types•

See the pair_coeff doc page for alternate ways to specify the path for the potential file.

LIGGGHTS Users Manual

pair_style meam/spline 873

http://lammps.sandia.gov

As an example, imagine the Ti.meam.spline file has values for Ti. If your LAMMPS simulation has 3 atoms
types and they are all to be treated with this potentials, you would use the following pair_coeff command:

pair_coeff * * Ti.meam.spline Ti Ti Ti

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The three Ti arguments map
LAMMPS atom types 1,2,3 to the Ti element in the potential file. If a mapping value is specified as NULL,
the mapping is not performed. This can be used when a meam/spline potential is used as part of the hybrid
pair style. The NULL values are placeholders for atom types that will be used with other potentials.

IMPORTANT NOTE: The meam/spline style currently supports only single-element MEAM potentials. It
may be extended for alloy systems in the future.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

The current version of this pair style does not support multiple element types or mixing. It has been designed
for pure elements only.

This pair style does not support the pair_modify shift, table, and tail options.

The meam/spline pair style does not write its information to binary restart files, since it is stored in an external
potential parameter file. Thus, you need to re-specify the pair_style and pair_coeff commands in an input
script that reads a restart file.

The meam/spline pair style can only be used via the pair keyword of the run_style respa command. They do
not support the inner, middle, outer keywords.

Restrictions:

This pair style requires the newton setting to be "on" for pair interactions.

This pair style is only enabled if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info.

Related commands:

pair_coeff, pair_style meam

Default: none

LIGGGHTS Users Manual

pair_style meam/spline/omp 874

(Lenosky) Lenosky, Sadigh, Alonso, Bulatov, de la Rubia, Kim, Voter, Kress, Modelling Simulation
Materials Science Enginerring, 8, 825 (2000).

LIGGGHTS Users Manual

pair_style meam/spline/omp 875

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style meam/sw/spline

pair_style meam/sw/spline/omp

Syntax:

pair_style meam/sw/spline

Examples:

pair_style meam/sw/spline
pair_coeff * * Ti.meam.sw.spline Ti
pair_coeff * * Ti.meam.sw.spline Ti Ti Ti

Description:

The meam/sw/spline style computes pairwise interactions for metals using a variant of modified
embedded-atom method (MEAM) potentials (Lenosky) with an additional Stillinger-Weber (SW) term
(Stillinger) in the energy. This form of the potential was first proposed by Nicklas, Fellinger, and Park
(Nicklas). We refer to it as MEAM+SW. The total energy E is given by

where rho_I is the density at atom I, theta_JIK is the angle between atoms J, I, and K centered on atom I. The
seven functions Phi, F, G, U, rho, f, and g are represented by cubic splines.

The cutoffs and the coefficients for these spline functions are listed in a parameter file which is specified by
the pair_coeff command. Parameter files for different elements are included in the "potentials" directory of the
LAMMPS distribution and have a ".meam.sw.spline" file suffix. All of these files are parameterized in terms
of LAMMPS metal units.

Note that unlike for other potentials, cutoffs for spline-based MEAM+SW potentials are not set in the
pair_style or pair_coeff command; they are specified in the potential files themselves.

Unlike the EAM pair style, which retrieves the atomic mass from the potential file, the spline-based
MEAM+SW potentials do not include mass information; thus you need to use the mass command to specify
it.

Only a single pair_coeff command is used with the meam/sw/spline style which specifies a potential file with
parameters for all needed elements. These are mapped to LAMMPS atom types by specifying N additional
arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom types:

LIGGGHTS Users Manual

pair_style meam/sw/spline 876

http://lammps.sandia.gov

filename•
N element names = mapping of spline-based MEAM+SW elements to atom types•

See the pair_coeff doc page for alternate ways to specify the path for the potential file.

As an example, imagine the Ti.meam.sw.spline file has values for Ti. If your LAMMPS simulation has 3
atoms types and they are all to be treated with this potential, you would use the following pair_coeff
command:

pair_coeff * * Ti.meam.sw.spline Ti Ti Ti

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The three Ti arguments map
LAMMPS atom types 1,2,3 to the Ti element in the potential file. If a mapping value is specified as NULL,
the mapping is not performed. This can be used when a meam/sw/spline potential is used as part of the hybrid
pair style. The NULL values are placeholders for atom types that will be used with other potentials.

IMPORTANT NOTE: The meam/sw/spline style currently supports only single-element MEAM+SW
potentials. It may be extended for alloy systems in the future.

Example input scripts that use this pair style are provided in the examples/USER/misc/meam_sw_spline
directory.

Mixing, shift, table, tail correction, restart, rRESPA info:

The pair style does not support multiple element types or mixing. It has been designed for pure elements only.

This pair style does not support the pair_modify shift, table, and tail options.

The meam/sw/spline pair style does not write its information to binary restart files, since it is stored in an
external potential parameter file. Thus, you need to re-specify the pair_style and pair_coeff commands in an
input script that reads a restart file.

The meam/sw/spline pair style can only be used via the pair keyword of the run_style respa command. They
do not support the inner, middle, outer keywords.

Restrictions:

This pair style requires the newton setting to be "on" for pair interactions.

This pair style is only enabled if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info.

Related commands:

pair_coeff, pair_style meam, pair_style meam/spline

Default: none

(Lenosky) Lenosky, Sadigh, Alonso, Bulatov, de la Rubia, Kim, Voter, Kress, Modell. Simul. Mater. Sci.
Eng. 8, 825 (2000).

(Stillinger) Stillinger, Weber, Phys. Rev. B 31, 5262 (1985).

LIGGGHTS Users Manual

pair_style meam/sw/spline/omp 877

(Nicklas) The spline-based MEAM+SW format was first devised and used to develop potentials for bcc
transition metals by Jeremy Nicklas, Michael Fellinger, and Hyoungki Park at The Ohio State University.

LIGGGHTS Users Manual

pair_style meam/sw/spline/omp 878

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style mie/cut command

pair_style mie/cut/gpu command

Syntax:

pair_style mie/cut cutoff

cutoff = global cutoff for mie/cut interactions (distance units)•

Examples:

pair_style mie/cut 10.0
pair_coeff 1 1 0.72 3.40 23.00 6.66
pair_coeff 2 2 0.30 3.55 12.65 6.00
pair_coeff 1 2 0.46 3.32 16.90 6.31

Description:

The mie/cut style computes the Mie potential, given by

Rc is the cutoff and C is a function that depends on the repulsive and attractive exponents, given by:

Note that for 12/6 exponents, C is equal to 4 and the formula is the same as the standard Lennard-Jones
potential.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

epsilon (energy units)•
sigma (distance units)•
gammaR•
gammaA•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global cutoff specified in the pair_style command is used.

Mixing, shift, table, tail correction, restart, rRESPA info:

LIGGGHTS Users Manual

pair_style mie/cut command 879

http://lammps.sandia.gov

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of the mie/cut
pair styles can be mixed. If not explicity defined, both the repulsive and attractive gamma exponents for
different atoms will be calculated following the same mixing rule defined for distances. The default mix value
is geometric. See the "pair_modify" command for details.

This pair style supports the pair_modify shift option for the energy of the pair interaction.

This pair style supports the pair_modify tail option for adding a long-range tail correction to the energy and
pressure of the pair interaction.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style supports the use of the inner, middle, and outer keywords of the run_style respa command,
meaning the pairwise forces can be partitioned by distance at different levels of the rRESPA hierarchy. See
the run_style command for details.

Restrictions: none

Related commands:

pair_coeff

Default: none

(Mie) G. Mie, Ann Phys, 316, 657 (1903).

(Avendano) C. Avendano, T. Lafitte, A. Galindo, C. S. Adjiman, G. Jackson, E. Muller, J Phys Chem B, 115,
11154 (2011).

LIGGGHTS Users Manual

pair_style mie/cut/gpu command 880

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_modify command

Syntax:

pair_modify keyword value ...

one or more keyword/value pairs may be listed•
keyword = shift or mix or table or table/disp or tabinner or tabinner/disp or tail or compute

mix value = geometric or arithmetic or sixthpower
shift value = yes or no
table value = N

 2^N = # of values in table
table/disp value = N

 2^N = # of values in table
tabinner value = cutoff

 cutoff = inner cutoff at which to begin table (distance units)
tabinner/disp value = cutoff

 cutoff = inner cutoff at which to begin table (distance units)
tail value = yes or no
compute value = yes or no

•

Examples:

pair_modify shift yes mix geometric
pair_modify tail yes
pair_modify table 12

Description:

Modify the parameters of the currently defined pair style. Not all parameters are relevant to all pair styles.

The mix keyword affects pair coefficients for interactions between atoms of type I and J, when I != J and the
coefficients are not explicitly set in the input script. Note that coefficients for I = J must be set explicitly,
either in the input script via the "pair_coeff" command or in the "Pair Coeffs" section of the data file. For
some pair styles it is not necessary to specify coefficients when I != J, since a "mixing" rule will create them
from the I,I and J,J settings. The pair_modify mix value determines what formulas are used to compute the
mixed coefficients. In each case, the cutoff distance is mixed the same way as sigma.

Note that not all pair styles support mixing. Also, some mix options are not available for certain pair styles.
See the doc page for individual pair styles for those restrictions. Note also that the pair_coeff command also
can be to directly set coefficients for a specific I != J pairing, in which case no mixing is performed.

mix geometric

epsilon_ij = sqrt(epsilon_i * epsilon_j)
sigma_ij = sqrt(sigma_i * sigma_j)

mix arithmetic

epsilon_ij = sqrt(epsilon_i * epsilon_j)
sigma_ij = (sigma_i + sigma_j) / 2

mix sixthpower

epsilon_ij = (2 * sqrt(epsilon_i*epsilon_j) * sigma_i^3 * sigma_j^3) /

LIGGGHTS Users Manual

pair_modify command 881

http://lammps.sandia.gov

 (sigma_i^6 + sigma_j^6)
sigma_ij = ((sigma_i**6 + sigma_j**6) / 2) ^ (1/6)

The shift keyword determines whether a Lennard-Jones potential is shifted at its cutoff to 0.0. If so, this adds
an energy term to each pairwise interaction which will be included in the thermodynamic output, but does not
affect pair forces or atom trajectories. See the doc page for individual pair styles to see which ones support
this option.

The table and table/disp keywords apply to pair styles with a long-range Coulombic term or long-range
dispersion term respectively; see the doc page for individual styles to see which potentials support these
options. If N is non-zero, a table of length 2^N is pre-computed for forces and energies, which can shrink their
computational cost by up to a factor of 2. The table is indexed via a bit-mapping technique (Wolff) and a
linear interpolation is performed between adjacent table values. In our experiments with different table styles
(lookup, linear, spline), this method typically gave the best performance in terms of speed and accuracy.

The choice of table length is a tradeoff in accuracy versus speed. A larger N yields more accurate force
computations, but requires more memory which can slow down the computation due to cache misses. A
reasonable value of N is between 8 and 16. The default value of 12 (table of length 4096) gives approximately
the same accuracy as the no-table (N = 0) option. For N = 0, forces and energies are computed directly, using
a polynomial fit for the needed erfc() function evaluation, which is what earlier versions of LAMMPS did.
Values greater than 16 typically slow down the simulation and will not improve accuracy; values from 1 to 8
give unreliable results.

The tabinner and tabinner/disp keywords set an inner cutoff above which the pairwise computation is done by
table lookup (if tables are invoked), for the corresponding Coulombic and dispersion tables discussed with the
table and table/disp keywords. The smaller the cutoff is set, the less accurate the table becomes (for a given
number of table values), which can require use of larger tables. The default cutoff value is sqrt(2.0) distance
units which means nearly all pairwise interactions are computed via table lookup for simulations with "real"
units, but some close pairs may be computed directly (non-table) for simulations with "lj" units.

When the tail keyword is set to yes, certain pair styles will add a long-range VanderWaals tail "correction" to
the energy and pressure. See the doc page for individual styles to see which support this option. These
corrections are included in the calculation and printing of thermodynamic quantities (see the thermo_style
command). Their effect will also be included in constant NPT or NPH simulations where the pressure
influences the simulation box dimensions (e.g. the fix npt and fix nph commands). The formulas used for the
long-range corrections come from equation 5 of (Sun).

Several assumptions are inherent in using tail corrections, including the following:

The simulated system is a 3d bulk homogeneous liquid. This option should not be used for systems
that are non-liquid, 2d, have a slab geometry (only 2d periodic), or inhomogeneous.

•

G(r), the radial distribution function (rdf), is unity beyond the cutoff, so a fairly large cutoff should be
used (i.e. 2.5 sigma for an LJ fluid), and it is probably a good idea to verify this assumption by
checking the rdf. The rdf is not exactly unity beyond the cutoff for each pair of interaction types, so
the tail correction is necessarily an approximation.

•

Thermophysical properties obtained from calculations with this option enabled will not be
thermodynamically consistent with the truncated force-field that was used. In other words, atoms do
not feel any LJ pair interactions beyond the cutoff, but the energy and pressure reported by the
simulation include an estimated contribution from those interactions.

•

The compute keyword allows pairwise computations to be turned off, even though a pair_style is defined. This
is not useful for running a real simulation, but can be useful for debugging purposes or for computing only
partial forces that do not include the pairwise contribution. You can also do this by simply not defining a
pair_style, but a Kspace-compatible pair_style is required if you also want to define a kspace_style. This
keyword gives you that option.

LIGGGHTS Users Manual

pair_modify command 882

Restrictions: none

You cannot use shift yes with tail yes, since those are conflicting options. You cannot use tail yes with 2d
simulations.

Related commands:

pair_style, pair_coeff, thermo_style

Default:

The option defaults are mix = geometric, shift = no, table = 12, tabinner = sqrt(2.0), tail = no, and compute =
yes.

Note that some pair styles perform mixing, but only a certain style of mixing. See the doc pages for individual
pair styles for details.

(Wolff) Wolff and Rudd, Comp Phys Comm, 120, 200-32 (1999).

(Sun) Sun, J Phys Chem B, 102, 7338-7364 (1998).

LIGGGHTS Users Manual

pair_modify command 883

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style morse command

pair_style morse/cuda command

pair_style morse/gpu command

pair_style morse/omp command

pair_style morse/opt command

Syntax:

pair_style morse cutoff

cutoff = global cutoff for Morse interactions (distance units)•

Examples:

pair_style morse 2.5
pair_coeff * * 100.0 2.0 1.5
pair_coeff 1 1 100.0 2.0 1.5 3.0

Description:

Style morse computes pairwise interactions with the formula

Rc is the cutoff.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands:

D0 (energy units)•
alpha (1/distance units)•
r0 (distance units)•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global morse cutoff is used.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

LIGGGHTS Users Manual

pair_style morse command 884

http://lammps.sandia.gov

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

None of these pair styles support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

All of these pair styles support the pair_modify shift option for the energy of the pair interaction.

The pair_modify table options is not relevant for the Morse pair styles.

None of these pair styles support the pair_modify tail option for adding long-range tail corrections to energy
and pressure.

All of these pair styles write their information to binary restart files, so pair_style and pair_coeff commands
do not need to be specified in an input script that reads a restart file.

These pair styles can only be used via the pair keyword of the run_style respa command. They do not support
the inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff

Default: none

LIGGGHTS Users Manual

pair_style morse/opt command 885

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style nb3b/harmonic command

pair_style nb3b/harmonic/omp command

Syntax:

pair_style nb3b/harmonic

Examples:

pair_style nb3b/harmonic
pair_coeff * * MgOH.nb3bharmonic Mg O H

Description:

This pair style computes a nonbonded 3-body harmonic potential for the energy E of a system of atoms as

where theta_0 is the equilibrium value of the angle and K is a prefactor. Note that the usual 1/2 factor is
included in K. The form of the potential is identical to that used in angle_style harmonic, but in this case, the
atoms do not need to be explicitly bonded.

Only a single pair_coeff command is used with this style which specifies a potential file with parameters for
specified elements. These are mapped to LAMMPS atom types by specifying N additional arguments after the
filename in the pair_coeff command, where N is the number of LAMMPS atom types:

filename•
N element names = mapping of elements to atom types•

See the pair_coeff doc page for alternate ways to specify the path for the potential file.

As an example, imagine a file SiC.nb3b.harmonic has potential values for Si and C. If your LAMMPS
simulation has 4 atoms types and you want the 1st 3 to be Si, and the 4th to be C, you would use the following
pair_coeff command:

pair_coeff * * SiC.nb3b.harmonic Si Si Si C

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first three Si arguments map
LAMMPS atom types 1,2,3 to the Si element in the potential file. The final C argument maps LAMMPS atom
type 4 to the C element in the potential file. If a mapping value is specified as NULL, the mapping is not
performed. This can be used when the potential is used as part of the hybrid pair style. The NULL values are
placeholders for atom types that will be used with other potentials. An example of a pair_coeff command for
use with the hybrid pair style is:

pair_coeff * * nb3b/harmonic MgOH.nb3b.harmonic Mg O H

Three-body nonbonded harmonic files in the potentials directory of the LAMMPS distribution have a
".nb3b.harmonic" suffix. Lines that are not blank or comments (starting with #) define parameters for a triplet
of elements.

LIGGGHTS Users Manual

pair_style nb3b/harmonic command 886

http://lammps.sandia.gov

Each entry has six arguments. The first three are atom types as referenced in the LAMMPS input file. The
first argument specifies the central atom. The fourth argument indicates the K parameter. The fifth argument
indicates theta_0. The sixth argument indicates a separation cutoff in Angstroms.

For a given entry, if the second and third arguments are identical, then the entry is for a cutoff for the distance
between types 1 and 2 (values for K and theta_0 are irrelevant in this case).

For a given entry, if the first three arguments are all different, then the entry is for the K and theta_0
parameters (the cutoff in this case is irrelevant).

It is not required that the potential file contain entries for all of the elements listed in the pair_coeff command.
It can also contain entries for additional elements not being used in a particular simulation; LAMMPS ignores
those entries.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This pair style can only be used if LAMMPS was built with the MANYBODY package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:

pair_coeff

Default: none

LIGGGHTS Users Manual

pair_style nb3b/harmonic/omp command 887

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style nm/cut command

pair_style nm/cut/coul/cut command

pair_style nm/cut/coul/long command

pair_style nm/cut/omp command

pair_style nm/cut/coul/cut/omp command

pair_style nm/cut/coul/long/omp command

Syntax:

pair_style style args

style = nm/cut or nm/cut/coul/cut or nm/cut/coul/long•
args = list of arguments for a particular style

nm/cut args = cutoff
 cutoff = global cutoff for Pair interactions (distance units)

nm/cut/coul/cut args = cutoff (cutoff2)
 cutoff = global cutoff for Pair (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

nm/cut/coul/long args = cutoff (cutoff2)
 cutoff = global cutoff for Pair (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

•

Examples:

pair_style nm/cut 12.0
pair_coeff * * 0.01 5.4 8.0 7.0
pair_coeff 1 1 0.01 4.4 7.0 6.0

pair_style nm/cut/coul/cut 12.0 15.0
pair_coeff * * 0.01 5.4 8.0 7.0
pair_coeff 1 1 0.01 4.4 7.0 6.0

pair_style nm/cut/coul/long 12.0 15.0
pair_coeff * * 0.01 5.4 8.0 7.0
pair_coeff 1 1 0.01 4.4 7.0 6.0

Description:

Style nm computes site-site interactions based on the N-M potential by Clarke, mainly used for ionic liquids.
A site can represent a single atom or a united-atom site. The energy of an interaction has the following form:

Rc is the cutoff.

LIGGGHTS Users Manual

pair_style nm/cut command 888

http://lammps.sandia.gov

Style nm/cut/coul/cut adds a Coulombic pairwise interaction given by

where C is an energy-conversion constant, Qi and Qj are the charges on the 2 atoms, and epsilon is the
dielectric constant which can be set by the dielectric command. If one cutoff is specified in the pair_style
command, it is used for both the NM and Coulombic terms. If two cutoffs are specified, they are used as
cutoffs for the NM and Coulombic terms respectively.

Styles nm/cut/coul/long compute the same Coulombic interactions as style nm/cut/coul/cut except that an
additional damping factor is applied to the Coulombic term so it can be used in conjunction with the
kspace_style command and its ewald or pppm option. The Coulombic cutoff specified for this style means that
pairwise interactions within this distance are computed directly; interactions outside that distance are
computed in reciprocal space.

For all of the nm pair styles, the following coefficients must be defined for each pair of atoms types via the
pair_coeff command as in the examples above, or in the data file or restart files read by the read_data or
read_restart commands.

E0 (energy units)•
r0 (distance units)•
n (unitless)•
m (unitless)•
cutoff1 (distance units)•
cutoff2 (distance units)•

The latter 2 coefficients are optional. If not specified, the global NM and Coulombic cutoffs specified in the
pair_style command are used. If only one cutoff is specified, it is used as the cutoff for both NM and
Coulombic interactions for this type pair. If both coefficients are specified, they are used as the NM and
Coulombic cutoffs for this type pair. You cannot specify 2 cutoffs for style nm, since it has no Coulombic
terms.

For nm/cut/coul/long only the NM cutoff can be specified since a Coulombic cutoff cannot be specified for an
individual I,J type pair. All type pairs use the same global Coulombic cutoff specified in the pair_style
command.

Mixing, shift, table, tail correction, restart, rRESPA info:

These pair styles do not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

All of the nm pair styles supports the pair_modify shift option for the energy of the pair interaction.

The nm/cut/coul/long pair styles support the pair_modify table option since they can tabulate the short-range
portion of the long-range Coulombic interaction.

All of the nm pair styles support the pair_modify tail option for adding a long-range tail correction to the
energy and pressure for the NM portion of the pair interaction.

All of the nm pair styles write their information to binary restart files, so pair_style and pair_coeff commands
do not need to be specified in an input script that reads a restart file.

LIGGGHTS Users Manual

pair_style nm/cut/coul/long/omp command 889

All of the nm pair styles can only be used via the pair keyword of the run_style respa command. They do not
support the inner, middle, outer keywords.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

These pair styles are part of the MISC package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

pair_coeff

Default: none

(Clarke) Clarke and Smith, J Chem Phys, 84, 2290 (1986).

LIGGGHTS Users Manual

pair_style nm/cut/coul/long/omp command 890

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style none command

Syntax:

pair_style none

Examples:

pair_style none

Description:

Using a pair style of none means pair forces are not computed.

With this choice, the force cutoff is 0.0, which means that only atoms within the neighbor skin distance (see
the neighbor command) are communicated between processors. You must insure the skin distance is large
enough to acquire atoms needed for computing bonds, angles, etc.

A pair style of none will also prevent pairwise neighbor lists from being built. However if the neighbor style
is bin, data structures for binning are still allocated. If the neighbor skin distance is small, then these data
structures can consume a large amount of memory. So you should either set the neighbor style to nsq or set
the skin distance to a larger value.

Restrictions: none

Related commands: none

Default: none

LIGGGHTS Users Manual

pair_style none command 891

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style peri/pmb command

pair_style peri/pmb/omp command

pair_style peri/lps command

pair_style peri/lps/omp command

pair_style peri/ves command

Syntax:

pair_style style

style = peri/pmb or peri/lps or peri/ves•

Examples:

pair_style peri/pmb
pair_coeff * * 1.6863e22 0.0015001 0.0005 0.25

pair_style peri/lps
pair_coeff * * 14.9e9 14.9e9 0.0015001 0.0005 0.25

pair_style peri/ves
pair_coeff * * 14.9e9 14.9e9 0.0015001 0.0005 0.25 0.5 0.001

Description:

The peridynamic pair styles implement material models that can be used at the mescscopic and macroscopic
scales.

Style peri/pmb implements the Peridynamic bond-based prototype microelastic brittle (PMB) model.

Style peri/lps implements the Peridynamic state-based linear peridynamic solid (LPS) model.

Style peri/ves implements the Peridynamic state-based linear peridynamic viscoelastic solid (VES) model.

The canonical papers on Peridynamics are (Silling 2000) and (Silling 2007). The implementation of
Peridynamics in LAMMPS is described in (Parks). Also see the PDLAMMPS user guide for more details
about the implementation of peridynamics in LAMMPS.

The peridynamic VES model in PDLAMMPS is implemented by R. Rahman and J.T Foster at University of
Texas at San Antonio. The VES formulation is described in (Mitchell). An additional PDF doc with details is
in doc/PDF/PDLammps_VES.pdf. For questions regarding VES implementation in LAMMPS please contact
Rezwan Rahman: rezwanur.rahman at utsa.edu.

The following coefficients must be defined for each pair of atom types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below.

For the peri/pmb style:

LIGGGHTS Users Manual

pair_style peri/pmb command 892

http://lammps.sandia.gov
http://www.sandia.gov/~mlparks/papers/PDLAMMPS.pdf

c (energy/distance/volume^2 units)•
horizon (distance units)•
s00 (unitless)•
alpha (unitless)•

C is the effectively a spring constant for Peridynamic bonds, the horizon is a cutoff distance for truncating
interactions, and s00 and alpha are used as a bond breaking criteria. The units of c are such that c/distance =
stiffness/volume^2, where stiffness is energy/distance^2 and volume is distance^3. See the users guide for
more details.

For the peri/lps style:

K (force/area units)•
G (force/area units)•
horizon (distance units)•
s00 (unitless)•
alpha (unitless)•

K is the bulk modulus and G is the shear modulus. The horizon is a cutoff distance for truncating interactions,
and s00 and alpha are used as a bond breaking criteria. See the users guide for more details.

For the peri/ves style:

K (force/area units)•
G (force/area units)•
horizon (distance units)•
s00 (unitless)•
alpha (unitless)•
m_lambdai (unitless)•
m_taubi (unitless)•

The same as for peri/lps, K is the bulk modulus and G is the shear modulus. The horizon is a cutoff distance
for truncating interactions, and s00 and alpha are used as a bond breaking criteria. m_lambdai and m_taubi are
the viscoelastic relaxation parameter and time constant, respectively. m_lambdai varies within zero to one.
For very small values of m_lambdai the viscoelsatic model responds very similar to a linear elastic model. For
details see the description in (Mitchell).

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

LIGGGHTS Users Manual

pair_style peri/ves command 893

These pair styles do not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

These pair styles do not support the pair_modify shift option.

The pair_modify table and tail options are not relevant for these pair styles.

These pair styles write their information to binary restart files, so pair_style and pair_coeff commands do not
need to be specified in an input script that reads a restart file.

These pair styles can only be used via the pair keyword of the run_style respa command. They do not support
the inner, middle, outer keywords.

Restrictions:

The peri/pmb, peri/lps and peri/ves styles are part of the PERI package. They are only enabled if LAMMPS
was built with that package. See the Making LAMMPS section for more info.

Related commands:

pair_coeff

Default: none

(Parks) Parks, Lehoucq, Plimpton, Silling, Comp Phys Comm, 179(11), 777-783 (2008).

(Silling 2000) Silling, J Mech Phys Solids, 48, 175-209 (2000).

(Silling 2007) Silling, Epton, Weckner, Xu, Askari, J Elasticity, 88, 151-184 (2007).

(Mitchell) Mitchell, "A non-local, ordinary-state-based viscoelasticity model for peridynamics", Sandia
National Lab Report, 8064:1-28 (2011).

LIGGGHTS Users Manual

pair_style peri/ves command 894

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style reax/c command

Syntax:

pair_style reax/c cfile keyword value

cfile = NULL or name of a control file•
zero or more keyword/value pairs may be appended

keyword = checkqeq or lgvdw or safezone or mincap
checkqeq value = yes or no = whether or not to require qeq/reax fix
lgvdw value = yes or no = whether or not to use a low gradient vdW correction
safezone = factor used for array allocation
mincap = minimum size for array allocation

•

Examples:

pair_style reax/c NULL
pair_style reax/c controlfile checkqeq no
pair_style reax/c NULL lgvdw yes
pair_style reax/c NULL safezone 1.6 mincap 100
pair_coeff * * ffield.reax C H O N

Description:

Style reax/c computes the ReaxFF potential of van Duin, Goddard and co-workers. ReaxFF uses
distance-dependent bond-order functions to represent the contributions of chemical bonding to the potential
energy. There is more than one version of ReaxFF. The version implemented in LAMMPS uses the functional
forms documented in the supplemental information of the following paper: (Chenoweth et al., 2008). The
version integrated into LAMMPS matches the most up-to-date version of ReaxFF as of summer 2010. For
more technical details about the pair reax/c implementation of ReaxFF, see the (Aktulga) paper.

The reax/c style differs from the pair_style reax command in the lo-level implementation details. The reax
style is a Fortran library, linked to LAMMPS. The reax/c style was initially implemented as stand-alone C
code and is now integrated into LAMMPS as a package.

LAMMPS provides several different versions of ffield.reax in its potentials dir, each called
potentials/ffield.reax.label. These are documented in potentials/README.reax. The default ffield.reax
contains parameterizations for the following elements: C, H, O, N, S.

The format of these files is identical to that used originally by van Duin. We have tested the accuracy of
pair_style reax/c potential against the original ReaxFF code for the systems mentioned above. You can use
other ffield files for specific chemical systems that may be available elsewhere (but note that their accuracy
may not have been tested).

IMPORTANT NOTE: We do not distribute a wide variety of ReaxFF force field files with LAMMPS. Adri
van Duin's group at PSU is the central repository for this kind of data as they are continuously deriving and
updating parameterizations for different classes of materials. You can visit their WWW site at
http://www.engr.psu.edu/adri, register as a "new user", and then submit a request to their group describing
material(s) you are interested in modeling with ReaxFF. They can tell you what is currently available or what
it would take to create a suitable ReaxFF parameterization.

The cfile setting can be specified as NULL, in which case default settings are used. A control file can be
specified which defines values of control variables. Some control variables are global parameters for the

LIGGGHTS Users Manual

pair_style reax/c command 895

http://lammps.sandia.gov
http://www.engr.psu.edu/adri

ReaxFF potential. Others define certain performance and output settings. Each line in the control file specifies
the value for a control variable. The format of the control file is described below.

IMPORTANT NOTE: The LAMMPS default values for the ReaxFF global parameters correspond to those
used by Adri van Duin's stand-alone serial code. If these are changed by setting control variables in the
control file, the results from LAMMPS and the serial code will not agree.

Two examples using pair_style reax/c are provided in the examples/reax sub-directory, along with
corresponding examples for pair_style reax.

Use of this pair style requires that a charge be defined for every atom. See the atom_style and read_data
commands for details on how to specify charges.

The ReaxFF parameter files provided were created using a charge equilibration (QEq) model for handling the
electrostatic interactions. Therefore, by default, LAMMPS requires that the fix qeq/reax command be used
with pair_style reax/c when simulating a ReaxFF model, to equilibrate charge each timestep. Using the
keyword checkqeq with the value no turns off the check for fix qeq/reax, allowing a simulation to be run
without charge equilibration. In this case, the static charges you assign to each atom will be used for
computing the electrostatic interactions in the system. See the fix qeq/reax command for details.

Using the optional keyword lgvdw with the value yes turns on the low-gradient correction of the ReaxFF/C for
long-range London Dispersion, as described in the (Liu) paper. Force field file ffield.reax.lg is designed for
this correction, and is trained for several energetic materials (see "Liu"). When using lg-correction,
recommended value for parameter thb is 0.01, which can be set in the control file. Note: Force field files are
different for the original or lg corrected pair styles, using wrong ffield file generates an error message.

Optional keywords safezone and mincap are used for allocating reax/c arrays. Increase these values can avoid
memory problems, such as segmentation faults and bondchk failed errors, that could occur under certain
conditions.

The thermo variable evdwl stores the sum of all the ReaxFF potential energy contributions, with the exception
of the Coulombic and charge equilibration contributions which are stored in the thermo variable ecoul. The
output of these quantities is controlled by the thermo command.

This pair style tallies a breakdown of the total ReaxFF potential energy into sub-categories, which can be
accessed via the compute pair command as a vector of values of length 14. The 14 values correspond to the
following sub-categories (the variable names in italics match those used in the original FORTRAN ReaxFF
code):

eb = bond energy1.
ea = atom energy2.
elp = lone-pair energy3.
emol = molecule energy (always 0.0)4.
ev = valence angle energy5.
epen = double-bond valence angle penalty6.
ecoa = valence angle conjugation energy7.
ehb = hydrogen bond energy8.
et = torsion energy9.
eco = conjugation energy10.
ew = van der Waals energy11.
ep = Coulomb energy12.
efi = electric field energy (always 0.0)13.
eqeq = charge equilibration energy14.

LIGGGHTS Users Manual

pair_style reax/c command 896

To print these quantities to the log file (with descriptive column headings) the following commands could be
included in an input script:

compute reax all pair reax/c
variable eb equal c_reax[1]
variable ea equal c_reax[2]
...
variable eqeq equal c_reax[14]
thermo_style custom step temp epair v_eb v_ea ... v_eqeq

Only a single pair_coeff command is used with the reax/c style which specifies a ReaxFF potential file with
parameters for all needed elements. These are mapped to LAMMPS atom types by specifying N additional
arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom types:

filename•
N indices = ReaxFF elements•

The filename is the ReaxFF potential file. Unlike for the reax pair style, any filename can be used.

In the ReaxFF potential file, near the top, after the general parameters, is the atomic parameters section that
contains element names, each with a couple dozen numeric parameters. If there are M elements specified in
the ffield file, think of these as numbered 1 to M. Each of the N indices you specify for the N atom types of
LAMMPS atoms must be an integer from 1 to M. Atoms with LAMMPS type 1 will be mapped to whatever
element you specify as the first index value, etc. If a mapping value is specified as NULL, the mapping is not
performed. This can be used when the reax/c style is used as part of the hybrid pair style. The NULL values
are placeholders for atom types that will be used with other potentials.

IMPORTANT NOTE: Currently the reax/c pair style cannot be used as part of the hybrid pair style. Some
additional work still need to be done to enable this.

As an example, say your LAMMPS simulation has 4 atom types and the elements are ordered as C, H, O, N in
the ffield file. If you want the LAMMPS atom type 1 and 2 to be C, type 3 to be N, and type 4 to be H, you
would use the following pair_coeff command:

pair_coeff * * ffield.reax C C N H

The format of a line in the control file is as follows:

variable_name value

and it may be followed by an "!" character and a trailing comment.

If the value of a control variable is not specified, then default values are used. What follows is the list of
variables along with a brief description of their use and default values.

simulation_name: Output files produced by pair_style reax/c carry this name + extensions specific to their
contents. Partial energies are reported with a ".pot" extension, while the trajectory file has ".trj" extension.

tabulate_long_range: To improve performance, long range interactions can optionally be tabulated (0 means
no tabulation). Value of this variable denotes the size of the long range interaction table. The range from 0 to
long range cutoff (defined in the ffield file) is divided into tabulate_long_range points. Then at the start of
simulation, we fill in the entries of the long range interaction table by computing the energies and forces
resulting from van der Waals and Coulomb interactions between every possible atom type pairs present in the
input system. During the simulation we consult to the long range interaction table to estimate the energy and
forces between a pair of atoms. Linear interpolation is used for estimation. (default value = 0)

LIGGGHTS Users Manual

pair_style reax/c command 897

energy_update_freq: Denotes the frequency (in number of steps) of writes into the partial energies file.
(default value = 0)

nbrhood_cutoff: Denotes the near neighbors cutoff (in Angstroms) regarding the bonded interactions. (default
value = 5.0)

hbond_cutoff: Denotes the cutoff distance (in Angstroms) for hydrogen bond interactions.(default value = 7.5.
Value of 0.0 turns off hydrogen bonds)

bond_graph_cutoff: is the threshold used in determining what is a physical bond, what is not. Bonds and
angles reported in the trajectory file rely on this cutoff. (default value = 0.3)

thb_cutoff: cutoff value for the strength of bonds to be considered in three body interactions. (default value =
0.001)

thb_cutoff_sq: cutoff value for the strength of bond order products to be considered in three body interactions.
(default value = 0.00001)

write_freq: Frequency of writes into the trajectory file. (default value = 0)

traj_title: Title of the trajectory - not the name of the trajectory file.

atom_info: 1 means print only atomic positions + charge (default = 0)

atom_forces: 1 adds net forces to atom lines in the trajectory file (default = 0)

atom_velocities: 1 adds atomic velocities to atoms line (default = 0)

bond_info: 1 prints bonds in the trajectory file (default = 0)

angle_info: 1 prints angles in the trajectory file (default = 0)

Mixing, shift, table, tail correction, restart, rRESPA info:

This pair style does not support the pair_modify mix, shift, table, and tail options.

This pair style does not write its information to binary restart files, since it is stored in potential files. Thus,
you need to re-specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the USER-REAXC package. It is only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info.

The ReaxFF potential files provided with LAMMPS in the potentials directory are parameterized for real
units. You can use the ReaxFF potential with any LAMMPS units, but you would need to create your own
potential file with coefficients listed in the appropriate units if your simulation doesn't use "real" units.

Related commands:

pair_coeff, fix qeq/reax, fix reax/c/bonds, fix reax/c/species, pair_style reax

LIGGGHTS Users Manual

pair_style reax/c command 898

Default:

The keyword defaults are checkqeq = yes, lgvdw = no, safezone = 1.2, mincap = 50.

(Chenoweth_2008) Chenoweth, van Duin and Goddard, Journal of Physical Chemistry A, 112, 1040-1053
(2008).

(Aktulga) Aktulga, Fogarty, Pandit, Grama, Parallel Computing, 38, 245-259 (2012).

(Liu) L. Liu, Y. Liu, S. V. Zybin, H. Sun and W. A. Goddard, Journal of Physical Chemistry A, 115,
11016-11022 (2011).

LIGGGHTS Users Manual

pair_style reax/c command 899

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style reax command

Syntax:

pair_style reax hbcut hbnewflag tripflag precision

hbcut = hydrogen-bond cutoff (optional) (distance units)•
hbnewflag = use old or new hbond function style (0 or 1) (optional)•
tripflag = apply stabilization to all triple bonds (0 or 1) (optional)•
precision = precision for charge equilibration (optional)•

Examples:

pair_style reax
pair_style reax 10.0 0 1 1.0e-5
pair_coeff * * ffield.reax 3 1 2 2
pair_coeff * * ffield.reax 3 NULL NULL 3

Description:

Style reax computes the ReaxFF potential of van Duin, Goddard and co-workers. ReaxFF uses
distance-dependent bond-order functions to represent the contributions of chemical bonding to the potential
energy. There is more than one version of ReaxFF. The version implemented in LAMMPS uses the functional
forms documented in the supplemental information of the following paper: (Chenoweth). The version
integrated into LAMMPS matches the most up-to-date version of ReaxFF as of summer 2010.

The reax style differs from the pair_style reax/c command in the lo-level implementation details. The reax
style is a Fortran library, linked to LAMMPS. The reax/c style was initially implemented as stand-alone C
code and is now integrated into LAMMPS as a package.

LAMMPS requires that a file called ffield.reax be provided, containing the ReaxFF parameters for each atom
type, bond type, etc. The format is identical to the ffield file used by van Duin and co-workers. The filename
is required as an argument in the pair_coeff command. Any value other than "ffield.reax" will be rejected (see
below).

LAMMPS provides several different versions of ffield.reax in its potentials dir, each called
potentials/ffield.reax.label. These are documented in potentials/README.reax. The default ffield.reax
contains parameterizations for the following elements: C, H, O, N, S.

IMPORTANT NOTE: We do not distribute a wide variety of ReaxFF force field files with LAMMPS. Adri
van Duin's group at PSU is the central repository for this kind of data as they are continuously deriving and
updating parameterizations for different classes of materials. You can visit their WWW site at
http://www.engr.psu.edu/adri, register as a "new user", and then submit a request to their group describing
material(s) you are interested in modeling with ReaxFF. They can tell you what is currently available or what
it would take to create a suitable ReaxFF parameterization.

The format of these files is identical to that used originally by van Duin. We have tested the accuracy of
pair_style reax potential against the original ReaxFF code for the systems mentioned above. You can use
other ffield files for specific chemical systems that may be available elsewhere (but note that their accuracy
may not have been tested).

The hbcut, hbnewflag, tripflag, and precision settings are optional arguments. If none are provided, default
settings are used: hbcut = 6 (which is Angstroms in real units), hbnewflag = 1 (use new hbond function style),

LIGGGHTS Users Manual

pair_style reax command 900

http://lammps.sandia.gov
http://www.engr.psu.edu/adri

tripflag = 1 (apply stabilization to all triple bonds), and precision = 1.0e-6 (one part in 10^6). If you wish to
override any of these defaults, then all of the settings must be specified.

Two examples using pair_style reax are provided in the examples/reax sub-directory, along with
corresponding examples for pair_style reax/c.

Use of this pair style requires that a charge be defined for every atom since the reax pair style performs a
charge equilibration (QEq) calculation. See the atom_style and read_data commands for details on how to
specify charges.

The thermo variable evdwl stores the sum of all the ReaxFF potential energy contributions, with the exception
of the Coulombic and charge equilibration contributions which are stored in the thermo variable ecoul. The
output of these quantities is controlled by the thermo command.

This pair style tallies a breakdown of the total ReaxFF potential energy into sub-categories, which can be
accessed via the compute pair command as a vector of values of length 14. The 14 values correspond to the
following sub-categories (the variable names in italics match those used in the ReaxFF FORTRAN library):

eb = bond energy1.
ea = atom energy2.
elp = lone-pair energy3.
emol = molecule energy (always 0.0)4.
ev = valence angle energy5.
epen = double-bond valence angle penalty6.
ecoa = valence angle conjugation energy7.
ehb = hydrogen bond energy8.
et = torsion energy9.
eco = conjugation energy10.
ew = van der Waals energy11.
ep = Coulomb energy12.
efi = electric field energy (always 0.0)13.
eqeq = charge equilibration energy14.

To print these quantities to the log file (with descriptive column headings) the following commands could be
included in an input script:

compute reax all pair reax
variable eb equal c_reax[1]
variable ea equal c_reax[2]
...
variable eqeq equal c_reax[14]
thermo_style custom step temp epair v_eb v_ea ... v_eqeq

Only a single pair_coeff command is used with the reax style which specifies a ReaxFF potential file with
parameters for all needed elements. These are mapped to LAMMPS atom types by specifying N additional
arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom types:

filename•
N indices = mapping of ReaxFF elements to atom types•

The specification of the filename and the mapping of LAMMPS atom types recognized by the ReaxFF is done
differently than for other LAMMPS potentials, due to the non-portable difficulty of passing character strings
(e.g. filename, element names) between C++ and Fortran.

The filename has to be "ffield.reax" and it has to exist in the directory you are running LAMMPS in. This
means you cannot prepend a path to the file in the potentials dir. Rather, you should copy that file into the

LIGGGHTS Users Manual

pair_style reax command 901

directory you are running from. If you wish to use another ReaxFF potential file, then name it "ffield.reax"
and put it in the directory you run from.

In the ReaxFF potential file, near the top, after the general parameters, is the atomic parameters section that
contains element names, each with a couple dozen numeric parameters. If there are M elements specified in
the ffield file, think of these as numbered 1 to M. Each of the N indices you specify for the N atom types of
LAMMPS atoms must be an integer from 1 to M. Atoms with LAMMPS type 1 will be mapped to whatever
element you specify as the first index value, etc. If a mapping value is specified as NULL, the mapping is not
performed. This can be used when a ReaxFF potential is used as part of the hybrid pair style. The NULL
values are placeholders for atom types that will be used with other potentials.

IMPORTANT NOTE: Currently the reax pair style cannot be used as part of the hybrid pair style. Some
additional changes still need to be made to enable this.

As an example, say your LAMMPS simulation has 4 atom types and the elements are ordered as C, H, O, N in
the ffield file. If you want the LAMMPS atom type 1 and 2 to be C, type 3 to be N, and type 4 to be H, you
would use the following pair_coeff command:

pair_coeff * * ffield.reax 1 1 4 2

Mixing, shift, table, tail correction, restart, rRESPA info:

This pair style does not support the pair_modify mix, shift, table, and tail options.

This pair style does not write its information to binary restart files, since it is stored in potential files. Thus,
you need to re-specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

The ReaxFF potential files provided with LAMMPS in the potentials directory are parameterized for real
units. You can use the ReaxFF potential with any LAMMPS units, but you would need to create your own
potential file with coefficients listed in the appropriate units if your simulation doesn't use "real" units.

Related commands:

pair_coeff, pair_style reax/c, fix_reax_bonds

Default:

The keyword defaults are hbcut = 6, hbnewflag = 1, tripflag = 1, precision = 1.0e-6.

(Chenoweth_2008) Chenoweth, van Duin and Goddard, Journal of Physical Chemistry A, 112, 1040-1053
(2008).

LIGGGHTS Users Manual

pair_style reax command 902

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style resquared command

pair_style resquared/gpu command

pair_style resquared/omp command

Syntax:

pair_style resquared cutoff

cutoff = global cutoff for interactions (distance units)•

Examples:

pair_style resquared 10.0
pair_coeff * * 1.0 1.0 1.7 3.4 3.4 1.0 1.0 1.0

Description:

Style resquared computes the RE-squared anisotropic interaction (Everaers), (Babadi) between pairs of
ellipsoidal and/or spherical Lennard-Jones particles. For ellipsoidal interactions, the potential considers the
ellipsoid as being comprised of small spheres of size sigma. LJ particles are a single sphere of size sigma. The
distinction is made to allow the pair style to make efficient calculations of ellipsoid/solvent interactions.

Details for the equations used are given in the references below and in this supplementary document.

Use of this pair style requires the NVE, NVT, or NPT fixes with the asphere extension (e.g. fix nve/asphere)
in order to integrate particle rotation. Additionally, atom_style ellipsoid should be used since it defines the
rotational state and the size and shape of each ellipsoidal particle.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands:

A12 = Energy Prefactor/Hamaker constant (energy units)•
sigma = atomic interaction diameter (distance units)•
epsilon_i_a = relative well depth of type I for side-to-side interactions•
epsilon_i_b = relative well depth of type I for face-to-face interactions•
epsilon_i_c = relative well depth of type I for end-to-end interactions•
epsilon_j_a = relative well depth of type J for side-to-side interactions•
epsilon_j_b = relative well depth of type J for face-to-face interactions•
epsilon_j_c = relative well depth of type J for end-to-end interactions•
cutoff (distance units)•

The parameters used depend on the type of the interacting particles, i.e. ellipsoids or LJ spheres. The type of a
particle is determined by the diameters specified for its 3 shape paramters. If all 3 shape parameters = 0.0,
then the particle is treated as an LJ sphere. The epsilon_i_* or epsilon_j_* parameters are ignored for LJ
spheres. If the 3 shape paraemters are > 0.0, then the particle is treated as an ellipsoid (even if the 3
parameters are equal to each other).

A12 specifies the energy prefactor which depends on the types of the two interacting particles.

LIGGGHTS Users Manual

pair_style resquared command 903

http://lammps.sandia.gov

For ellipsoid/ellipsoid interactions, the interaction is computed by the formulas in the supplementary
docuement referenced above. A12 is the Hamaker constant as described in (Everaers). In LJ units:

where rho gives the number density of the spherical particles composing the ellipsoids and epsilon_LJ
determines the interaction strength of the spherical particles.

For ellipsoid/LJ sphere interactions, the interaction is also computed by the formulas in the supplementary
docuement referenced above. A12 has a modifed form (see here for details):

For ellipsoid/LJ sphere interactions, a correction to the distance- of-closest approach equation has been
implemented to reduce the error from two particles of disparate sizes; see this supplementary document.

For LJ sphere/LJ sphere interactions, the interaction is computed using the standard Lennard-Jones formula,
which is much cheaper to compute than the ellipsoidal formulas. A12 is used as epsilon in the standard LJ
formula:

and the specified sigma is used as the sigma in the standard LJ formula.

When one of both of the interacting particles are ellipsoids, then sigma specifies the diameter of the
continuous distribution of constituent particles within each ellipsoid used to model the RE-squared potential.
Note that this is a different meaning for sigma than the pair_style gayberne potential uses.

The epsilon_i and epsilon_j coefficients are defined for atom types, not for pairs of atom types. Thus, in a
series of pair_coeff commands, they only need to be specified once for each atom type.

Specifically, if any of epsilon_i_a, epsilon_i_b, epsilon_i_c are non-zero, the three values are assigned to
atom type I. If all the epsilon_i values are zero, they are ignored. If any of epsilon_j_a, epsilon_j_b,
epsilon_j_c are non-zero, the three values are assigned to atom type J. If all three epsilon_i values are zero,
they are ignored. Thus the typical way to define the epsilon_i and epsilon_j coefficients is to list their values
in "pair_coeff I J" commands when I = J, but set them to 0.0 when I != J. If you do list them when I != J, you
should insure they are consistent with their values in other pair_coeff commands.

Note that if this potential is being used as a sub-style of pair_style hybrid, and there is no "pair_coeff I I"
setting made for RE-squared for a particular type I (because I-I interactions are computed by another hybrid
pair potential), then you still need to insure the epsilon a,b,c coefficients are assigned to that type in a
"pair_coeff I J" command.

For large uniform molecules it has been shown that the epsilon_*_* energy parameters are approximately
representable in terms of local contact curvatures (Everaers):

LIGGGHTS Users Manual

pair_style resquared/omp command 904

where a, b, and c give the particle diameters.

The last coefficient is optional. If not specified, the global cutoff specified in the pair_style command is used.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance can be mixed, but
only for sphere pairs. The default mix value is geometric. See the "pair_modify" command for details. Other
type pairs cannot be mixed, due to the different meanings of the energy prefactors used to calculate the
interactions and the implicit dependence of the ellipsoid-sphere interaction on the equation for the Hamaker
constant presented here. Mixing of sigma and epsilon followed by calculation of the energy prefactors using
the equations above is recommended.

This pair styles supports the pair_modify shift option for the energy of the Lennard-Jones portion of the pair
interaction, but only for sphere-sphere interactions. There is no shifting performed for ellipsoidal interactions
due to the anisotropic dependence of the interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords of the run_style command.

Restrictions:

This style is part of the ASPHERE package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

LIGGGHTS Users Manual

pair_style resquared/omp command 905

This pair style requires that atoms be ellipsoids as defined by the atom_style ellipsoid command.

Particles acted on by the potential can be finite-size aspherical or spherical particles, or point particles.
Spherical particles have all 3 of their shape parameters equal to each other. Point particles have all 3 of their
shape parameters equal to 0.0.

The distance-of-closest-approach approximation used by LAMMPS becomes less accurate when high-aspect
ratio ellipsoids are used.

Related commands:

pair_coeff, fix nve/asphere, compute temp/asphere, pair_style gayberne

Default: none

(Everaers) Everaers and Ejtehadi, Phys Rev E, 67, 041710 (2003).

(Berardi) Babadi, Ejtehadi, Everaers, J Comp Phys, 219, 770-779 (2006).

LIGGGHTS Users Manual

pair_style resquared/omp command 906

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style lj/sdk command

pair_style lj/sdk/gpu command

pair_style lj/sdk/omp command

pair_style lj/sdk/coul/long command

pair_style lj/sdk/coul/long/gpu command

pair_style lj/sdk/coul/long/omp command

Syntax:

pair_style style args

style = lj/sdk or lj/sdk/coul/long•
args = list of arguments for a particular style•

lj/sdk args = cutoff
 cutoff = global cutoff for Lennard Jones interactions (distance units)

lj/sdk/coul/long args = cutoff (cutoff2)
 cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
 cutoff2 = global cutoff for Coulombic (optional) (distance units)

Examples:

pair_style lj/sdk 2.5
pair_coeff 1 1 lj12_6 1 1.1 2.8

pair_style lj/sdk/coul/long 10.0
pair_style lj/sdk/coul/long 10.0 12.0
pair_coeff 1 1 lj9_6 100.0 3.5 12.0

Description:

The lj/sdk styles compute a 9/6, 12/4, or 12/6 Lennard-Jones potential, given by

as required for the SDK Coarse-grained MD parametrization discussed in (Shinoda) and (DeVane). Rc is the
cutoff.

LIGGGHTS Users Manual

pair_style lj/sdk command 907

http://lammps.sandia.gov

Style lj/sdk/coul/long computes the adds Coulombic interactions with an additional damping factor applied so
it can be used in conjunction with the kspace_style command and its ewald or pppm or pppm/cg option. The
Coulombic cutoff specified for this style means that pairwise interactions within this distance are computed
directly; interactions outside that distance are computed in reciprocal space.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

cg_type (lj9_6, lj12_4, or lj12_6)•
epsilon (energy units)•
sigma (distance units)•
cutoff1 (distance units)•

Note that sigma is defined in the LJ formula as the zero-crossing distance for the potential, not as the energy
minimum. The prefactors are chosen so that the potential minimum is at -epsilon.

The latter 2 coefficients are optional. If not specified, the global LJ and Coulombic cutoffs specified in the
pair_style command are used. If only one cutoff is specified, it is used as the cutoff for both LJ and
Coulombic interactions for this type pair. If both coefficients are specified, they are used as the LJ and
Coulombic cutoffs for this type pair.

For lj/sdk/coul/long only the LJ cutoff can be specified since a Coulombic cutoff cannot be specified for an
individual I,J type pair. All type pairs use the same global Coulombic cutoff specified in the pair_style
command.

Styles with a cuda, gpu, omp or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP, and OPT packages respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, and rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of the lj/sdk
pair styles cannot be mixed, since different pairs may have different exponents. So all parameters for all pairs
have to be specified explicitly through the "pair_coeff" command. Defining then in a data file is also not
supported, due to limitations of that file format.

All of the lj/sdk pair styles support the pair_modify shift option for the energy of the Lennard-Jones portion of
the pair interaction.

The lj/sdk/coul/long pair styles support the pair_modify table option since they can tabulate the short-range
portion of the long-range Coulombic interaction.

LIGGGHTS Users Manual

pair_style lj/sdk/coul/long/omp command 908

All of the lj/sdk pair styles write their information to binary restart files, so pair_style and pair_coeff
commands do not need to be specified in an input script that reads a restart file.

The lj/sdk and lj/cut/coul/long pair styles do not support the use of the inner, middle, and outer keywords of
the run_style respa command.

Restrictions:

All of the lj/sdk pair styles are part of the USER-CG-CMM package. The lj/sdk/coul/long style also requires
the KSPACE package to be built (which is enabled by default). They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

Related commands:

pair_coeff, angle_style sdk

Default: none

(Shinoda) Shinoda, DeVane, Klein, Mol Sim, 33, 27 (2007).

(DeVane) Shinoda, DeVane, Klein, Soft Matter, 4, 2453-2462 (2008).

LIGGGHTS Users Manual

pair_style lj/sdk/coul/long/omp command 909

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style soft command

pair_style soft/gpu command

pair_style soft/omp command

Syntax:

pair_style soft cutoff

cutoff = global cutoff for soft interactions (distance units)•

Examples:

pair_style soft 2.5
pair_coeff * * 10.0
pair_coeff 1 1 10.0 3.0

pair_style soft 2.5
pair_coeff * * 0.0
variable prefactor equal ramp(0,30)
fix 1 all adapt 1 pair soft a * * v_prefactor

Description:

Style soft computes pairwise interactions with the formula

It is useful for pushing apart overlapping atoms, since it does not blow up as r goes to 0. A is a pre-factor that
can be made to vary in time from the start to the end of the run (see discussion below), e.g. to start with a very
soft potential and slowly harden the interactions over time. Rc is the cutoff. See the fix nve/limit command for
another way to push apart overlapping atoms.

The following coefficients must be defined for each pair of atom types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

A (energy units)•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global soft cutoff is used.

IMPORTANT NOTE: The syntax for pair_coeff with a single A coeff is different in the current version of
LAMMPS than in older versions which took two values, Astart and Astop, to ramp between them. This
functionality is now available in a more general form through the fix adapt command, as explained below.
Note that if you use an old input script and specify Astart and Astop without a cutoff, then LAMMPS will
interpret that as A and a cutoff, which is probabably not what you want.

LIGGGHTS Users Manual

pair_style soft command 910

http://lammps.sandia.gov

The fix adapt command can be used to vary A for one or more pair types over the course of a simulation, in
which case pair_coeff settings for A must still be specified, but will be overridden. For example these
commands will vary the prefactor A for all pairwise interactions from 0.0 at the beginning to 30.0 at the end
of a run:

variable prefactor equal ramp(0,30)
fix 1 all adapt 1 pair soft a * * v_prefactor

Note that a formula defined by an equal-style variable can use the current timestep, elapsed time in the current
run, elapsed time since the beginning of a series of runs, as well as access other variables.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the A coefficient and cutoff distance for this pair style can be mixed. A is
always mixed via a geometric rule. The cutoff is mixed according to the pair_modify mix value. The default
mix value is geometric. See the "pair_modify" command for details.

This pair style does not support the pair_modify shift option, since the pair interaction goes to 0.0 at the
cutoff.

The pair_modify table and tail options are not relevant for this pair style.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff, fix nve/limit, fix adapt

Default: none

LIGGGHTS Users Manual

pair_style soft/omp command 911

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

pair_style sph/artVisc/tensCorr command

Syntax:

pair_style sph/artVisc/tensCorr kernelstyle args keyword values ...

sph/artVisc/tensCorr = name of this pair_style command•
kernelstyle = cubicspline or wendland•
args = list of arguments for a particular style•

cubicspline or wendland args = h
 h = smoothing length

zero or more keyword/value pairs may be appended to args•
keyword = artVisc or tensCorr•

artVisc values = alpha beta eta
 alpha = free parameter to control shear viscosity
 beta = free parameter to control bulk viscosity
 eta = coefficient to avoid singularities

tensCorr values = epsilon deltap
 epsilon = free parameter
 deltap = initial particle distribution

Examples:

pair_style sph wendland 0.001 artVisc 1e-4 0 1e-8
pair_style sph cubicspline 0.001 artVisc 1e-4 0 1e-8 tensCorr 0.2 1e-2

LIGGGHTS vs. LAMMPS Info:

This command is not available in LAMMPS.

Description:

The sph/artVisc/tensCorr style uses the smoothed particle hydrodynamics (SPH) method according to
Monaghan (1992). The acting force is calculated from the acceleration as stated in the equation:

Whereas the indices a and b stand for particles, Pj stands for pressure and ρj for the density. Wab represents
the kernel, which is defined by the kernelstyle.

For kernelstyle cubicspline a piecewise defined, 3-order kernel is used:

The wendland kernel (Wendland,1995) is defined as

LIGGGHTS Users Manual

pair_style sph/artVisc/tensCorr command 912

http://www.cfdem.com
http://lammps.sandia.gov

The smoothing length h is the most important parameter for SPH-calculations. It depends on initial particle
spacing, initial density ρ0 and mass per particle mj. In case that the smoothing length is about 1.2 times the
initial particle spacing and it is a 3-dimensional cubic lattice (therefore the summation is over 57 particles),
you can use the following equation (Liu and Liu, 2003, p. 211-213):

The atom style sph/var uses the input argument h as initial smoothing length for all particles. In case the atom
style sph (per-type smoothing length) is used an additional per-type property sl must be defined, e.g.,

fix m2 all property/global sl peratomtype 0.0012

For further details on the basics of the SPH-method we recommend the papers from Monaghan (1992),
(1994), etc.

Optionally, this pairstyle can take into account the artificial viscosity proposed my Monaghan (1985), if the
artVisc keyword is appended. In this case, Πab is added to the bracket term in the above acceleration equation,
where Πab is given by

and

This expression produces a shear and bulk viscosity. The quadratic term enables simulation of high Mach
number shocks. The parameter η2 prevents singularities. A good choice is normally η2=0.01h2.

The choice of α and β should not be critical, although there are some aspects which you should take into
account:

"In the present case, with negligible changes in the density [weakly compressible SPH], the viscosity is almost
entirely shear viscosity with a viscosity coefficient approximately αhc." (Monaghan, 1994)

Bar-parameters like cab and ρab are mean values of particle a and b. NOTE: ρab is calculated, and for the
calculation of cab the per-type property speedOfSound has to be defined, e.g.,

fix m1 all property/global speedOfSound peratomtype 20.

By appending the keyword tensCorr you enable the tensile correction algorithm (Monaghan, 2000) which
improves results in combination with negative pressures (e.g. EOS like Tait's equation). This method adds
R*(fab)n to the bracket term, where the factor R is related to the pressure and can be calculated by R=Ra + Rb.
In case of negative pressures (Pa < 0) we use the rule

LIGGGHTS Users Manual

pair_style sph/artVisc/tensCorr command 913

otherwise Ra is zero. Typical values of epsilon are about 0.2. fab is calculated by

where ∆p denotes the initial particle spacing. NOTE: In a next version this calculation should be improved
too.

Mixing, shift, table, tail correction, restart, rRESPA info:

The pair_modify mix, shift, table, and tail options are not relevant for sph pair styles.

These pair styles write their information to binary restart files, so a pair_style command does not need to be
specified in an input script that reads a restart file.

These pair styles can only be used via the pair keyword of the run_style respa command. They do not support
the inner, middle, outer keywords.

Restrictions:

...

Related commands:

pair_coeff

Default: none

(Liu and Liu, 2003) "Smoothed Particle Hydrodynamics: A Meshfree Particle Method", G. R. Liu and M. B.
Liu, World Scientific, p. 449 (2003).

(Monaghan, 1992) "Smoothed Particle Hydrodynamics", J. J. Monaghan, Annu. Rev. Astron. Astrophys., 30,
p. 543-574 (1992).

(Monaghan, 1994) J. J. Monaghan, Journal of Computational Physics, 110, p. 399-406 (1994).

(Monaghan, 2000) J. J. Monaghan, Journal of Computational Physics, 159, p. 290-311 (2000).

LIGGGHTS Users Manual

pair_style sph/artVisc/tensCorr command 914

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style sph/heatconduction command

Syntax:

pair_style sph/heatconduction

Examples:

pair_style sph/heatconduction
pair_coeff * * 1.0 2.4

Description:

The sph/heatconduction style computes heat transport between SPH particles. The transport model is the
diffusion euqation for the internal energy.

See this PDF guide to using SPH in LAMMPS.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above.

D diffusion coefficient (length^2/time units)•
h kernel function cutoff (distance units)•

Mixing, shift, table, tail correction, restart, rRESPA info:

This style does not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

This style does not support the pair_modify shift, table, and tail options.

This style does not write information to binary restart files. Thus, you need to re-specify the pair_style and
pair_coeff commands in an input script that reads a restart file.

This style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

pair_coeff, pair_sph/rhosum

Default: none

LIGGGHTS Users Manual

pair_style sph/heatconduction command 915

http://lammps.sandia.gov

LIGGGHTS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

pair_style sph command

Syntax:

pair_style sph kernelstyle args keyword values ...

sph = name of this pair_style command•
kernelstyle = cubicspline or wendland•
args = list of arguments for a particular style

cubicspline or wendland args = h
 h = smoothing length

•

zero or more keyword/value pairs may be appended to args•
keyword = artVisc or tensCorr

artVisc values = alpha beta cAB eta
 alpha = free parameter to control shear viscosity
 beta = free parameter to control bulk viscosity
 cAB = average speed of sound (velocity units)
 eta = coefficient to avoid singularities

tensCorr values = epsilon
 epsilon = free parameter

•

Examples:

pair_style sph wendland 0.001 artVisc 1e-4 0 1484. 1e-8
pair_style sph cubicspline 0.001 artVisc 1e-4 0 480 1e-8 tensCorr 0.2

LIGGGHTS vs. LAMMPS Info:

This command is not available in LAMMPS.

Description:

The sph style use the smoothed particle hydrodynamics (SPH) method according to Monaghan: "Smoothed
Particle Hydrodynamics", J. J. Monaghan, Annual Review of Astronomy and Astrophysics (1992), Volume
30, Pages 543-574. The acting force is calculated from the acceleration as stated in the equation:

Whereas the indices a and b stand for particles, Pj stands for pressure and ρj for the density. Wab represents
the kernel, which is defined by the kernelstyle.

For kernelstyle cubicspline a piecewise defined, 3-order kernel is used:

The wendland kernel (Wendland,1995) is defined as

LIGGGHTS Users Manual

pair_style sph command 916

http://www.liggghts.com/

The smoothing length h is the most important parameter for SPH-calculations. It depends on initial particle
spacing, initial density ρ0 and mass per particle mj. In case that the smoothing length is about 1.2 times the
initial particle spacing and it is a 3-dimensional cubic lattice (therefore the summation is over 57 particles),
you can use the following equation (Liu and Liu, 2003, p. 211-213):

For further details on the basics of the SPH-method we recommend the papers from Monaghan 1992,1994,
etc.

Optionally, this pairstyle can take into account the artificial viscosity proposed my Monaghan (1985), if the
artVisc keyword is appended. In this case, Πab is added to the bracket term in the above acceleration equation,
where Πab is given by

and

This expression produces a shear and bulk viscosity. The quadratic term enables simulation of high Mach
number shocks. The parameter η2 prevents singularities. A good choice is normally η2=0.01h2.
The choice of α and β should not be critical, although there are some aspects which you should take into
account:

 In case of negligible changes in the density (weakly compressible SPH) it is almost only shear viscosity with a viscosity coefficient approximately αhc. (Monaghan, 1994)

Bar-parameters like cab and ρab are mean values of particle a and b.
NOTE: ρab is calculated, whereas cab is a given parameter. In a next version speed of sound should be added
as atom property.

By appending the keyword tensCorr you enable the tensile correction algorithm (Monaghan, 2000) which
improves results in combination with negative pressures (e.g. EOS like Tait's equation). This method adds
R*(fab)n to the bracket term, where the factor R is related to the pressure and can be calculated by R=Ra + Rb.
In case of negative pressures (Pa < 0) we use the rule

otherwise Ra is zero. Typical values of epsilon are about 0.2.
fab is calculated by

LIGGGHTS Users Manual

pair_style sph command 917

where ∆p denotes the initial particle spacing.
NOTE: In a next version this calculation should be improved too.

Restart info:

Until now there is no restart option implemented.

Restrictions:

...

Related commands:

pair_coeff

Default: none

(Monaghan1992) J. J. Monaghan, Annu. Rev. Astron. Astrophys., 30, p. 543-574 (1992).

(Monaghan1994) J. J. Monaghan, Journal of Computational Physics, 110, p. 399-406 (1994).

(Monaghan2000) J. J. Monaghan, Journal of Computational Physics, 159, p. 290-311 (2000).

LIGGGHTS Users Manual

pair_style sph command 918

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style sph/idealgas command

Syntax:

pair_style sph/idealgas

Examples:

pair_style sph/idealgas
pair_coeff * * 1.0 2.4

Description:

The sph/idealgas style computes pressure forces between particles according to the ideal gas equation of state:

where gamma = 1.4 is the heat capacity ratio, rho is the local density, and e is the internal energy per unit
mass. This pair style also computes Monaghan's artificial viscosity to prevent particles from interpentrating
(Monaghan).

See this PDF guide to using SPH in LAMMPS.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above.

nu artificial viscosity (no units)•
h kernel function cutoff (distance units)•

Mixing, shift, table, tail correction, restart, rRESPA info:

This style does not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

This style does not support the pair_modify shift, table, and tail options.

This style does not write information to binary restart files. Thus, you need to re-specify the pair_style and
pair_coeff commands in an input script that reads a restart file.

This style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

pair_coeff, pair_sph/rhosum

LIGGGHTS Users Manual

pair_style sph/idealgas command 919

http://lammps.sandia.gov

Default: none

(Monaghan) Monaghan and Gingold, Journal of Computational Physics, 52, 374-389 (1983).

LIGGGHTS Users Manual

pair_style sph/idealgas command 920

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style sph/lj command

Syntax:

pair_style sph/lj

Examples:

pair_style sph/lj
pair_coeff * * 1.0 2.4

Description:

The sph/lj style computes pressure forces between particles according to the Lennard-Jones equation of state,
which is computed according to Ree's 1980 polynomial fit (Ree). The Lennard-Jones parameters epsilon and
sigma are set to unity. This pair style also computes Monaghan's artificial viscosity to prevent particles from
interpentrating (Monaghan).

See this PDF guide to using SPH in LAMMPS.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above.

nu artificial viscosity (no units)•
h kernel function cutoff (distance units)•

Mixing, shift, table, tail correction, restart, rRESPA info:

This style does not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

This style does not support the pair_modify shift, table, and tail options.

This style does not write information to binary restart files. Thus, you need to re-specify the pair_style and
pair_coeff commands in an input script that reads a restart file.

This style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

As noted above, the Lennard-Jones parameters epsilon and sigma are set to unity.

This pair style is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

pair_coeff, pair_sph/rhosum

Default: none

LIGGGHTS Users Manual

pair_style sph/lj command 921

http://lammps.sandia.gov

(Ree) Ree, Journal of Chemical Physics, 73, 5401 (1980).

(Monaghan) Monaghan and Gingold, Journal of Computational Physics, 52, 374-389 (1983).

LIGGGHTS Users Manual

pair_style sph/lj command 922

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style sph/rhosum command

Syntax:

pair_style sph/rhosum Nstep

Nstep = timestep interval•

Examples:

pair_style sph/rhosum 10
pair_coeff * * 2.4

Description:

The sph/rhosum style computes the local particle mass density rho for SPH particles by kernel function
interpolation, every Nstep timesteps.

See this PDF guide to using SPH in LAMMPS.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above.

h (distance units)•

Mixing, shift, table, tail correction, restart, rRESPA info:

This style does not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

This style does not support the pair_modify shift, table, and tail options.

This style does not write information to binary restart files. Thus, you need to re-specify the pair_style and
pair_coeff commands in an input script that reads a restart file.

This style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

Related commands:

pair_coeff, pair_sph/taitwater

Default: none

LIGGGHTS Users Manual

pair_style sph/rhosum command 923

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style sph/taitwater command

Syntax:

pair_style sph/taitwater

Examples:

pair_style sph/taitwater
pair_coeff * * 1000.0 1430.0 1.0 2.4

Description:

The sph/taitwater style computes pressure forces between SPH particles according to Tait's equation of state:

where gamma = 7 and B = c_0^2 rho_0 / gamma, with rho_0 being the reference density and c_0 the
reference speed of sound.

This pair style also computes Monaghan's artificial viscosity to prevent particles from interpentrating
(Monaghan).

See this PDF guide to using SPH in LAMMPS.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above.

rho0 reference density (mass/volume units)•
c0 reference soundspeed (distance/time units)•
nu artificial viscosity (no units)•
h kernel function cutoff (distance units)•

Mixing, shift, table, tail correction, restart, rRESPA info:

This style does not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

This style does not support the pair_modify shift, table, and tail options.

This style does not write information to binary restart files. Thus, you need to re-specify the pair_style and
pair_coeff commands in an input script that reads a restart file.

This style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

LIGGGHTS Users Manual

pair_style sph/taitwater command 924

http://lammps.sandia.gov

Related commands:

pair_coeff, pair_sph/rhosum

Default: none

(Monaghan) Monaghan and Gingold, Journal of Computational Physics, 52, 374-389 (1983).

LIGGGHTS Users Manual

pair_style sph/taitwater command 925

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style sph/taitwater/morris command

Syntax:

pair_style sph/taitwater/morris

Examples:

pair_style sph/taitwater/morris
pair_coeff * * 1000.0 1430.0 1.0 2.4

Description:

The sph/taitwater/morris style computes pressure forces between SPH particles according to Tait's equation of
state:

where gamma = 7 and B = c_0^2 rho_0 / gamma, with rho_0 being the reference density and c_0 the
reference speed of sound.

This pair style also computes laminar viscosity (Morris).

See this PDF guide to using SPH in LAMMPS.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above.

rho0 reference density (mass/volume units)•
c0 reference soundspeed (distance/time units)•
nu dynamic viscosity (mass*distance/time units)•
h kernel function cutoff (distance units)•

Mixing, shift, table, tail correction, restart, rRESPA info:

This style does not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

This style does not support the pair_modify shift, table, and tail options.

This style does not write information to binary restart files. Thus, you need to re-specify the pair_style and
pair_coeff commands in an input script that reads a restart file.

This style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

LIGGGHTS Users Manual

pair_style sph/taitwater/morris command 926

http://lammps.sandia.gov

Related commands:

pair_coeff, pair_sph/rhosum

Default: none

(Morris) Morris, Fox, Zhu, J Comp Physics, 136, 214-226 (1997).

LIGGGHTS Users Manual

pair_style sph/taitwater/morris command 927

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style command

Syntax:

pair_style style args

style = one of the styles from the list below•
args = arguments used by a particular style•

Examples:

pair_style lj/cut 2.5
pair_style eam/alloy
pair_style hybrid lj/charmm/coul/long 10.0 eam
pair_style table linear 1000
pair_style none

Description:

Set the formula(s) LAMMPS uses to compute pairwise interactions. In LAMMPS, pair potentials are defined
between pairs of atoms that are within a cutoff distance and the set of active interactions typically changes
over time. See the bond_style command to define potentials between pairs of bonded atoms, which typically
remain in place for the duration of a simulation.

In LAMMPS, pairwise force fields encompass a variety of interactions, some of which include many-body
effects, e.g. EAM, Stillinger-Weber, Tersoff, REBO potentials. They are still classified as "pairwise"
potentials because the set of interacting atoms changes with time (unlike molecular bonds) and thus a
neighbor list is used to find nearby interacting atoms.

Hybrid models where specified pairs of atom types interact via different pair potentials can be setup using the
hybrid pair style.

The coefficients associated with a pair style are typically set for each pair of atom types, and are specified by
the pair_coeff command or read from a file by the read_data or read_restart commands.

The pair_modify command sets options for mixing of type I-J interaction coefficients and adding energy
offsets or tail corrections to Lennard-Jones potentials. Details on these options as they pertain to individual
potentials are described on the doc page for the potential. Likewise, info on whether the potential information
is stored in a restart file is listed on the potential doc page.

In the formulas listed for each pair style, E is the energy of a pairwise interaction between two atoms
separated by a distance r. The force between the atoms is the negative derivative of this expression.

If the pair_style command has a cutoff argument, it sets global cutoffs for all pairs of atom types. The
distance(s) can be smaller or larger than the dimensions of the simulation box.

Typically, the global cutoff value can be overridden for a specific pair of atom types by the pair_coeff
command. The pair style settings (including global cutoffs) can be changed by a subsequent pair_style
command using the same style. This will reset the cutoffs for all atom type pairs, including those previously
set explicitly by a pair_coeff command. The exceptions to this are that pair_style table and hybrid settings
cannot be reset. A new pair_style command for these styles will wipe out all previously specified pair_coeff
values.

LIGGGHTS Users Manual

pair_style command 928

http://lammps.sandia.gov

Here is an alphabetic list of pair styles defined in LAMMPS. Click on the style to display the formula it
computes, arguments specified in the pair_style command, and coefficients specified by the associated
pair_coeff command.

Note that there are also additional pair styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the pair section of this page.

There are also additional accelerated pair styles included in the LAMMPS distribution for faster performance
on CPUs and GPUs. The list of these with links to the individual styles are given in the pair section of this
page.

pair_style none - turn off pairwise interactions•
pair_style hybrid - multiple styles of pairwise interactions•
pair_style hybrid/overlay - multiple styles of superposed pairwise interactions•

pair_style adp - angular dependent potential (ADP) of Mishin•
pair_style airebo - AIREBO potential of Stuart•
pair_style beck - Beck potential•
pair_style body - interactions between body particles•
pair_style bop - BOP potential of Pettifor•
pair_style born - Born-Mayer-Huggins potential•
pair_style born/coul/long - Born-Mayer-Huggins with long-range Coulombics•
pair_style born/coul/msm - Born-Mayer-Huggins with long-range MSM Coulombics•
pair_style born/coul/wolf - Born-Mayer-Huggins with Coulombics via Wolf potential•
pair_style brownian - Brownian potential for Fast Lubrication Dynamics•
pair_style brownian/poly - Brownian potential for Fast Lubrication Dynamics with polydispersity•
pair_style buck - Buckingham potential•
pair_style buck/coul/cut - Buckingham with cutoff Coulomb•
pair_style buck/coul/long - Buckingham with long-range Coulombics•
pair_style buck/coul/msm - Buckingham long-range MSM Coulombics•
pair_style buck/long/coul/long - long-range Buckingham with long-range Coulombics•
pair_style colloid - integrated colloidal potential•
pair_style comb - charge-optimized many-body (COMB) potential•
pair_style coul/cut - cutoff Coulombic potential•
pair_style coul/debye - cutoff Coulombic potential with Debye screening•
pair_style coul/dsf - Coulombics via damped shifted forces•
pair_style coul/long - long-range Coulombic potential•
pair_style coul/msm - long-range MSM Coulombics•
pair_style coul/wolf - Coulombics via Wolf potential•
pair_style dipole/cut - point dipoles with cutoff•
pair_style dpd - dissipative particle dynamics (DPD)•
pair_style dpd/tstat - DPD thermostatting•
pair_style dsmc - Direct Simulation Monte Carlo (DSMC)•
pair_style eam - embedded atom method (EAM)•
pair_style eam/alloy - alloy EAM•
pair_style eam/fs - Finnis-Sinclair EAM•
pair_style eim - embedded ion method (EIM)•
pair_style gauss - Gaussian potential•
pair_style gayberne - Gay-Berne ellipsoidal potential•
pair_style gran/hertz/history - granular potential with Hertzian interactions•
pair_style gran/hooke - granular potential with history effects•
pair_style gran/hooke/history - granular potential without history effects•
pair_style hbond/dreiding/lj - DREIDING hydrogen bonding LJ potential•
pair_style hbond/dreiding/morse - DREIDING hydrogen bonding Morse potential•

LIGGGHTS Users Manual

pair_style command 929

pair_style kim - interface to potentials provided by KIM project•
pair_style lcbop - long-range bond-order potential (LCBOP)•
pair_style line/lj - LJ potential between line segments•
pair_style lj/charmm/coul/charmm - CHARMM potential with cutoff Coulomb•
pair_style lj/charmm/coul/charmm/implicit - CHARMM for implicit solvent•
pair_style lj/charmm/coul/long - CHARMM with long-range Coulomb•
pair_style lj/charmm/coul/msm - CHARMM with long-range MSM Coulombics•
pair_style lj/class2 - COMPASS (class 2) force field with no Coulomb•
pair_style lj/class2/coul/cut - COMPASS with cutoff Coulomb•
pair_style lj/class2/coul/long - COMPASS with long-range Coulomb•
pair_style lj/cut - cutoff Lennard-Jones potential with no Coulomb•
pair_style lj/cut/coul/cut - LJ with cutoff Coulomb•
pair_style lj/cut/coul/debye - LJ with Debye screening added to Coulomb•
pair_style lj/cut/coul/dsf - LJ with Coulombics via damped shifted forces•
pair_style lj/cut/coul/long - LJ with long-range Coulombics•
pair_style lj/cut/coul/msm - LJ with long-range MSM Coulombics•
pair_style lj/cut/tip4p/cut - LJ with cutoff Coulomb for TIP4P water•
pair_style lj/cut/tip4p/long - LJ with long-range Coulomb for TIP4P water•
pair_style lj/expand - Lennard-Jones for variable size particles•
pair_style lj/gromacs - GROMACS-style Lennard-Jones potential•
pair_style lj/gromacs/coul/gromacs - GROMACS-style LJ and Coulombic potential•
pair_style lj/long/coul/long - long-range LJ and long-range Coulombics•
pair_style lj/long/tip4p/long - long-range LJ and long-range Coulomb for TIP4P water•
pair_style lj/smooth - smoothed Lennard-Jones potential•
pair_style lj/smooth/linear - linear smoothed Lennard-Jones potential•
pair_style lj96/cut - Lennard-Jones 9/6 potential•
pair_style lubricate - hydrodynamic lubrication forces•
pair_style lubricate/poly - hydrodynamic lubrication forces with polydispersity•
pair_style lubricateU - hydrodynamic lubrication forces for Fast Lubrication Dynamics•
pair_style lubricateU/poly - hydrodynamic lubrication forces for Fast Lubrication with polydispersity•
pair_style meam - modified embedded atom method (MEAM)•
pair_style mie/cut - Mie potential•
pair_style morse - Morse potential•
pair_style peri/lps - peridynamic LPS potential•
pair_style peri/pmb - peridynamic PMB potential•
pair_style reax - ReaxFF potential•
pair_style rebo - 2nd generation REBO potential of Brenner•
pair_style resquared - Everaers RE-Squared ellipsoidal potential•
pair_style soft - Soft (cosine) potential•
pair_style sw - Stillinger-Weber 3-body potential•
pair_style table - tabulated pair potential•
pair_style tersoff - Tersoff 3-body potential•
pair_style tersoff/zbl - Tersoff/ZBL 3-body potential•
pair_style tri/lj - LJ potential between triangles•
pair_style yukawa - Yukawa potential•
pair_style yukawa/colloid - screened Yukawa potential for finite-size particles•
pair_style zbl - Ziegler-Biersack-Littmark potential•

Restrictions:

This command must be used before any coefficients are set by the pair_coeff, read_data, or read_restart
commands.

Some pair styles are part of specific packages. They are only enabled if LAMMPS was built with that

LIGGGHTS Users Manual

pair_style command 930

package. See the Making LAMMPS section for more info on packages. The doc pages for individual pair
potentials tell if it is part of a package.

Related commands:

pair_coeff, read_data, pair_modify, kspace_style, dielectric, pair_write

Default:

pair_style none

LIGGGHTS Users Manual

pair_style command 931

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style sw command

pair_style sw/cuda command

pair_style sw/gpu command

pair_style sw/omp command

Syntax:

pair_style sw

Examples:

pair_style sw
pair_coeff * * si.sw Si
pair_coeff * * GaN.sw Ga N Ga

Description:

The sw style computes a 3-body Stillinger-Weber potential for the energy E of a system of atoms as

where phi2 is a two-body term and phi3 is a three-body term. The summations in the formula are over all
neighbors J and K of atom I within a cutoff distance = a*sigma.

Only a single pair_coeff command is used with the sw style which specifies a Stillinger-Weber potential file
with parameters for all needed elements. These are mapped to LAMMPS atom types by specifying N
additional arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom
types:

filename•
N element names = mapping of SW elements to atom types•

See the pair_coeff doc page for alternate ways to specify the path for the potential file.

As an example, imagine a file SiC.sw has Stillinger-Weber values for Si and C. If your LAMMPS simulation
has 4 atoms types and you want the 1st 3 to be Si, and the 4th to be C, you would use the following pair_coeff
command:

LIGGGHTS Users Manual

pair_style sw command 932

http://lammps.sandia.gov

pair_coeff * * SiC.sw Si Si Si C

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first three Si arguments map
LAMMPS atom types 1,2,3 to the Si element in the SW file. The final C argument maps LAMMPS atom type
4 to the C element in the SW file. If a mapping value is specified as NULL, the mapping is not performed.
This can be used when a sw potential is used as part of the hybrid pair style. The NULL values are
placeholders for atom types that will be used with other potentials.

Stillinger-Weber files in the potentials directory of the LAMMPS distribution have a ".sw" suffix. Lines that
are not blank or comments (starting with #) define parameters for a triplet of elements. The parameters in a
single entry correspond to the two-body and three-body coefficients in the formula above:

element 1 (the center atom in a 3-body interaction)•
element 2•
element 3•
epsilon (energy units)•
sigma (distance units)•
a•
lambda•
gamma•
costheta0•
A•
B•
p•
q•
tol•

The A, B, p, and q parameters are used only for two-body interactions. The lambda and costheta0 parameters
are used only for three-body interactions. The epsilon, sigma and a parameters are used for both two-body and
three-body interactions. gamma is used only in the three-body interactions, but is defined for pairs of atoms.
The non-annotated parameters are unitless.

LAMMPS introduces an additional performance-optimization parameter tol that is used for both two-body
and three-body interactions. In the Stillinger-Weber potential, the interaction energies become negligibly
small at atomic separations substantially less than the theoretical cutoff distances. LAMMPS therefore defines
a virtual cutoff distance based on a user defined tolerance tol. The use of the virtual cutoff distance in
constructing atom neighbor lists can significantly reduce the neighbor list sizes and therefore the
computational cost. LAMMPS provides a tol value for each of the three-body entries so that they can be
separately controlled. If tol = 0.0, then the standard Stillinger-Weber cutoff is used.

The Stillinger-Weber potential file must contain entries for all the elements listed in the pair_coeff command.
It can also contain entries for additional elements not being used in a particular simulation; LAMMPS ignores
those entries.

For a single-element simulation, only a single entry is required (e.g. SiSiSi). For a two-element simulation, the
file must contain 8 entries (for SiSiSi, SiSiC, SiCSi, SiCC, CSiSi, CSiC, CCSi, CCC), that specify SW
parameters for all permutations of the two elements interacting in three-body configurations. Thus for 3
elements, 27 entries would be required, etc.

As annotated above, the first element in the entry is the center atom in a three-body interaction. Thus an entry
for SiCC means a Si atom with 2 C atoms as neighbors. The parameter values used for the two-body
interaction come from the entry where the 2nd and 3rd elements are the same. Thus the two-body parameters
for Si interacting with C, comes from the SiCC entry. The three-body parameters can in principle be specific
to the three elements of the configuration. In the literature, however, the three-body parameters are usually
defined by simple formulas involving two sets of pair-wise parameters, corresponding to the ij and ik pairs,

LIGGGHTS Users Manual

pair_style sw/omp command 933

where i is the center atom. The user must ensure that the correct combining rule is used to calculate the values
of the threebody parameters for alloys. Note also that the function phi3 contains two exponential screening
factors with parameter values from the ij pair and ik pairs. So phi3 for a C atom bonded to a Si atom and a
second C atom will depend on the three-body parameters for the CSiC entry, and also on the two-body
parameters for the CCC and CSiSi entries. Since the order of the two neighbors is arbitrary, the threebody
parameters for entries CSiC and CCSi should be the same. Similarly, the two-body parameters for entries
SiCC and CSiSi should also be the same. The parameters used only for two-body interactions (A, B, p, and q)
in entries whose 2nd and 3rd element are different (e.g. SiCSi) are not used for anything and can be set to 0.0
if desired. This is also true for the parameters in phi3 that are taken from the ij and ik pairs (sigma, a, gamma)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, where types I and J correspond to two different element types, mixing is
performed by LAMMPS as described above from values in the potential file.

This pair style does not support the pair_modify shift, table, and tail options.

This pair style does not write its information to binary restart files, since it is stored in potential files. Thus,
you need to re-specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the MANYBODY package. It is only enabled if LAMMPS was built with that
package (which it is by default). See the Making LAMMPS section for more info.

This pair style requires the newton setting to be "on" for pair interactions.

The Stillinger-Weber potential files provided with LAMMPS (see the potentials directory) are parameterized
for metal units. You can use the SW potential with any LAMMPS units, but you would need to create your
own SW potential file with coefficients listed in the appropriate units if your simulation doesn't use "metal"
units.

The sw/gpu style is currently limited to a single element.

Related commands:

LIGGGHTS Users Manual

pair_style sw/omp command 934

pair_coeff

Default: none

(Stillinger) Stillinger and Weber, Phys Rev B, 31, 5262 (1985).

LIGGGHTS Users Manual

pair_style sw/omp command 935

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style table command

pair_style table/gpu command

pair_style table/omp command

Syntax:

pair_style table style N keyword ...

style = lookup or linear or spline or bitmap = method of interpolation•
N = use N values in lookup, linear, spline tables•
N = use 2^N values in bitmap tables•
zero or more keywords may be appended•
keyword = ewald or pppm or msm or dispersion or tip4p•

Examples:

pair_style table linear 1000
pair_style table linear 1000 pppm
pair_style table bitmap 12
pair_coeff * 3 morse.table ENTRY1
pair_coeff * 3 morse.table ENTRY1 7.0

Description:

Style table creates interpolation tables of length N from pair potential and force values listed in a file(s) as a
function of distance. The files are read by the pair_coeff command.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and
force values at each of N distances. During a simulation, these tables are used to interpolate energy and force
values as needed. The interpolation is done in one of 4 styles: lookup, linear, spline, or bitmap.

For the lookup style, the distance between 2 atoms is used to find the nearest table entry, which is the energy
or force.

For the linear style, the pair distance is used to find 2 surrounding table values from which an energy or force
is computed by linear interpolation.

For the spline style, a cubic spline coefficients are computed and stored at each of the N values in the table.
The pair distance is used to find the appropriate set of coefficients which are used to evaluate a cubic
polynomial which computes the energy or force.

For the bitmap style, the N means to create interpolation tables that are 2^N in length. (Wolff) and a linear
interpolation is performed between adjacent table values.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above.

filename•
keyword•
cutoff (distance units)•

LIGGGHTS Users Manual

pair_style table command 936

http://lammps.sandia.gov

The filename specifies a file containing tabulated energy and force values. The keyword specifies a section of
the file. The cutoff is an optional coefficient. If not specified, the outer cutoff in the table itself (see below)
will be used to build an interpolation table that extend to the largest tabulated distance. If specified, only file
values up to the cutoff are used to create the interpolation table. The format of this file is described below.

If your tabulated potential(s) are designed to be used as the short-range part of one of the long-range solvers
specified by the kspace_style command, then you must use one or more of the optional keywords listed above
for the pair_style command. These are ewald or pppm or msm or dispersion or tip4p. This is so LAMMPS can
insure the short-range potential and long-range solver are compatible with each other, as it does for other
short-range pair styles, such as pair_style lj/cut/coul/long. Note that it is up to you to insure the tabulated
values for each pair of atom types has the correct functional form to be compatible with the matching
long-range solver.

Here are some guidelines for using the pair_style table command to best effect:

Vary the number of table points; you may need to use more than you think to get good resolution.•
Always use the pair_write command to produce a plot of what the final interpolated potential looks
like. This can show up interpolation "features" you may not like.

•

Start with the linear style; it's the style least likely to have problems.•
Use N in the pair_style command equal to the "N" in the tabulation file, and use the "RSQ" or
"BITMAP" parameter, so additional interpolation is not needed. See discussion below.

•

Make sure that your tabulated forces and tabulated energies are consistent (dE/dr = -F) along the
entire range of r values.

•

Use as large an inner cutoff as possible. This avoids fitting splines to very steep parts of the potential.•

The format of a tabulated file is as follows (without the parenthesized comments):

Morse potential for Fe (one or more comment or blank lines)

MORSE_FE (keyword is first text on line)
N 500 R 1.0 10.0 (N, R, RSQ, BITMAP, FPRIME parameters)
 (blank)
1 1.0 25.5 102.34 (index, r, energy, force)
2 1.02 23.4 98.5
...
500 10.0 0.001 0.003

A section begins with a non-blank line whose 1st character is not a "#"; blank lines or lines starting with "#"
can be used as comments between sections. The first line begins with a keyword which identifies the section.
The line can contain additional text, but the initial text must match the argument specified in the pair_coeff
command. The next line lists (in any order) one or more parameters for the table. Each parameter is a keyword
followed by one or more numeric values.

The parameter "N" is required and its value is the number of table entries that follow. Note that this may be
different than the N specified in the pair_style table command. Let Ntable = N in the pair_style command, and
Nfile = "N" in the tabulated file. What LAMMPS does is a preliminary interpolation by creating splines using
the Nfile tabulated values as nodal points. It uses these to interpolate as needed to generate energy and force
values at Ntable different points. The resulting tables of length Ntable are then used as described above, when
computing energy and force for individual pair distances. This means that if you want the interpolation tables
of length Ntable to match exactly what is in the tabulated file (with effectively no preliminary interpolation),
you should set Ntable = Nfile, and use the "RSQ" or "BITMAP" parameter. The internal table abscissa is RSQ
(separation distance squared).

All other parameters are optional. If "R" or "RSQ" or "BITMAP" does not appear, then the distances in each
line of the table are used as-is to perform spline interpolation. In this case, the table values can be spaced in r
uniformly or however you wish to position table values in regions of large gradients.

LIGGGHTS Users Manual

pair_style table/omp command 937

If used, the parameters "R" or "RSQ" are followed by 2 values rlo and rhi. If specified, the distance associated
with each energy and force value is computed from these 2 values (at high accuracy), rather than using the
(low-accuracy) value listed in each line of the table. The distance values in the table file are ignored in this
case. For "R", distances uniformly spaced between rlo and rhi are computed; for "RSQ", squared distances
uniformly spaced between rlo*rlo and rhi*rhi are computed.

If used, the parameter "BITMAP" is also followed by 2 values rlo and rhi. These values, along with the "N"
value determine the ordering of the N lines that follow and what distance is associated with each. This
ordering is complex, so it is not documented here, since this file is typically produced by the pair_write
command with its bitmap option. When the table is in BITMAP format, the "N" parameter in the file must be
equal to 2^M where M is the value specified in the pair_style command. Also, a cutoff parameter cannot be
used as an optional 3rd argument in the pair_coeff command; the entire table extent as specified in the file
must be used.

If used, the parameter "FPRIME" is followed by 2 values fplo and fphi which are the derivative of the force at
the innermost and outermost distances listed in the table. These values are needed by the spline construction
routines. If not specified by the "FPRIME" parameter, they are estimated (less accurately) by the first 2 and
last 2 force values in the table. This parameter is not used by BITMAP tables.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from
1 to N, the 2nd value is r (in distance units), the 3rd value is the energy (in energy units), and the 4th is the
force (in force units). The r values must increase from one line to the next (unless the BITMAP parameter is
specified).

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section
by section until it finds one that matches the specified keyword.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

This pair style does not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

The pair_modify shift, table, and tail options are not relevant for this pair style.

This pair style writes the settings for the "pair_style table" command to binary restart files, so a pair_style
command does not need to specified in an input script that reads a restart file. However, the coefficient
information is not stored in the restart file, since it is tabulated in the potential files. Thus, pair_coeff
commands do need to be specified in the restart input script.

LIGGGHTS Users Manual

pair_style table/omp command 938

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff

Default: none

(Wolff) Wolff and Rudd, Comp Phys Comm, 120, 200-32 (1999).

LIGGGHTS Users Manual

pair_style table/omp command 939

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style tersoff command

pair_style tersoff/table command

pair_style tersoff/cuda

pair_style tersoff/omp

pair_style tersoff/table/omp command

Syntax:

pair_style style

style = tersoff or tersoff/table or tersoff/cuda or tersoff/omp or tersoff/table/omp

Examples:

pair_style tersoff
pair_coeff * * Si.tersoff Si
pair_coeff * * SiC.tersoff Si C Si

pair_style tersoff/table
pair_coeff * * SiCGe.tersoff Si(D)

Description:

The tersoff style computes a 3-body Tersoff potential (Tersoff_1) for the energy E of a system of atoms as

LIGGGHTS Users Manual

pair_style tersoff command 940

http://lammps.sandia.gov

where f_R is a two-body term and f_A includes three-body interactions. The summations in the formula are
over all neighbors J and K of atom I within a cutoff distance = R + D.

The tersoff/table style uses tabulated forms for the two-body, environment and angular functions. Linear
interpolation is performed between adjacent table entries. The table length is chosen to be accurate within
10^-6 with respect to the tersoff style energy. The tersoff/table should give better performance in terms of
speed.

Only a single pair_coeff command is used with the tersoff style which specifies a Tersoff potential file with
parameters for all needed elements. These are mapped to LAMMPS atom types by specifying N additional
arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom types:

filename•
N element names = mapping of Tersoff elements to atom types•

See the pair_coeff doc page for alternate ways to specify the path for the potential file.

As an example, imagine the SiC.tersoff file has Tersoff values for Si and C. If your LAMMPS simulation has
4 atoms types and you want the 1st 3 to be Si, and the 4th to be C, you would use the following pair_coeff
command:

pair_coeff * * SiC.tersoff Si Si Si C

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first three Si arguments map
LAMMPS atom types 1,2,3 to the Si element in the Tersoff file. The final C argument maps LAMMPS atom
type 4 to the C element in the Tersoff file. If a mapping value is specified as NULL, the mapping is not
performed. This can be used when a tersoff potential is used as part of the hybrid pair style. The NULL values

LIGGGHTS Users Manual

pair_style tersoff/table/omp command 941

are placeholders for atom types that will be used with other potentials.

Tersoff files in the potentials directory of the LAMMPS distribution have a ".tersoff" suffix. Lines that are not
blank or comments (starting with #) define parameters for a triplet of elements. The parameters in a single
entry correspond to coefficients in the formula above:

element 1 (the center atom in a 3-body interaction)•
element 2 (the atom bonded to the center atom)•
element 3 (the atom influencing the 1-2 bond in a bond-order sense)•
m•
gamma•
lambda3 (1/distance units)•
c•
d•
costheta0 (can be a value < -1 or > 1)•
n•
beta•
lambda2 (1/distance units)•
B (energy units)•
R (distance units)•
D (distance units)•
lambda1 (1/distance units)•
A (energy units)•

The n, beta, lambda2, B, lambda1, and A parameters are only used for two-body interactions. The m, gamma,
lambda3, c, d, and costheta0 parameters are only used for three-body interactions. The R and D parameters are
used for both two-body and three-body interactions. The non-annotated parameters are unitless. The value of
m must be 3 or 1.

The Tersoff potential file must contain entries for all the elements listed in the pair_coeff command. It can
also contain entries for additional elements not being used in a particular simulation; LAMMPS ignores those
entries.

For a single-element simulation, only a single entry is required (e.g. SiSiSi). For a two-element simulation, the
file must contain 8 entries (for SiSiSi, SiSiC, SiCSi, SiCC, CSiSi, CSiC, CCSi, CCC), that specify Tersoff
parameters for all permutations of the two elements interacting in three-body configurations. Thus for 3
elements, 27 entries would be required, etc.

As annotated above, the first element in the entry is the center atom in a three-body interaction and it is
bonded to the 2nd atom and the bond is influenced by the 3rd atom. Thus an entry for SiCC means Si bonded
to a C with another C atom influencing the bond. Thus three-body parameters for SiCSi and SiSiC entries will
not, in general, be the same. The parameters used for the two-body interaction come from the entry where the
2nd element is repeated. Thus the two-body parameters for Si interacting with C, comes from the SiCC entry.

The parameters used for a particular three-body interaction come from the entry with the corresponding three
elements. The parameters used only for two-body interactions (n, beta, lambda2, B, lambda1, and A) in entries
whose 2nd and 3rd element are different (e.g. SiCSi) are not used for anything and can be set to 0.0 if desired.

Note that the twobody parameters in entries such as SiCC and CSiSi are often the same, due to the common
use of symmetric mixing rules, but this is not always the case. For example, the beta and n parameters in
Tersoff_2 (Tersoff_2) are not symmetric.

We chose the above form so as to enable users to define all commonly used variants of the Tersoff potential.
In particular, our form reduces to the original Tersoff form when m = 3 and gamma = 1, while it reduces to

LIGGGHTS Users Manual

pair_style tersoff/table/omp command 942

the form of Albe et al. when beta = 1 and m = 1. Note that in the current Tersoff implementation in
LAMMPS, m must be specified as either 3 or 1. Tersoff used a slightly different but equivalent form for
alloys, which we will refer to as Tersoff_2 potential (Tersoff_2). The tersoff/table style implements Tersoff_2
parameterization only.

LAMMPS parameter values for Tersoff_2 can be obtained as follows: gamma_ijk = omega_ik, lambda3 = 0
and the value of m has no effect. The parameters for species i and j can be calculated using the Tersoff_2
mixing rules:

Tersoff_2 parameters R and S must be converted to the LAMMPS parameters R and D (R is different in both
forms), using the following relations: R=(R'+S')/2 and D=(S'-R')/2, where the primes indicate the Tersoff_2
parameters.

In the potentials directory, the file SiCGe.tersoff provides the LAMMPS parameters for Tersoff's various
versions of Si, as well as his alloy parameters for Si, C, and Ge. This file can be used for pure Si, (three
different versions), pure C, pure Ge, binary SiC, and binary SiGe. LAMMPS will generate an error if this file
is used with any combination involving C and Ge, since there are no entries for the GeC interactions (Tersoff
did not publish parameters for this cross-interaction.) Tersoff files are also provided for the SiC alloy
(SiC.tersoff) and the GaN (GaN.tersoff) alloys.

Many thanks to Rutuparna Narulkar, David Farrell, and Xiaowang Zhou for helping clarify how Tersoff
parameters for alloys have been defined in various papers.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

LIGGGHTS Users Manual

pair_style tersoff/table/omp command 943

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, where types I and J correspond to two different element types, mixing is
performed by LAMMPS as described above from values in the potential file.

This pair style does not support the pair_modify shift, table, and tail options.

This pair style does not write its information to binary restart files, since it is stored in potential files. Thus,
you need to re-specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the MANYBODY package. It is only enabled if LAMMPS was built with that
package (which it is by default). See the Making LAMMPS section for more info.

This pair style requires the newton setting to be "on" for pair interactions.

The Tersoff potential files provided with LAMMPS (see the potentials directory) are parameterized for metal
units. You can use the Tersoff potential with any LAMMPS units, but you would need to create your own
Tersoff potential file with coefficients listed in the appropriate units if your simulation doesn't use "metal"
units.

Related commands:

pair_coeff

Default: none

(Tersoff_1) J. Tersoff, Phys Rev B, 37, 6991 (1988).

(Albe) J. Nord, K. Albe, P. Erhart, and K. Nordlund, J. Phys.: Condens. Matter, 15, 5649(2003).

(Tersoff_2) J. Tersoff, Phys Rev B, 39, 5566 (1989); errata (PRB 41, 3248)

LIGGGHTS Users Manual

pair_style tersoff/table/omp command 944

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style tersoff/mod command

pair_style tersoff/mod/omp command

Syntax:

pair_style tersoff/mod

Examples:

pair_style tersoff/mod
pair_coeff * * Si.tersoff.mod Si Si

Description:

The tersoff/mod style computes a bond-order type interatomic potential (Kumagai) based on a 3-body Tersoff
potential (Tersoff_1), (Tersoff_2) with modified cutoff function and angular-dependent term, giving the
energy E of a system of atoms as

LIGGGHTS Users Manual

pair_style tersoff/mod command 945

http://lammps.sandia.gov

where f_R is a two-body term and f_A includes three-body interactions. The summations in the formula are
over all neighbors J and K of atom I within a cutoff distance = R + D.

The modified cutoff function f_C proposed by (Murty) and having a continuous second-order differential is
employed. The angular-dependent term g(theta) was modified to increase the flexibility of the potential.

The tersoff/mod potential is fitted to both the elastic constants and melting point by employing the modified
Tersoff potential function form in which the angular-dependent term is improved. The model performs
extremely well in describing the crystalline, liquid, and amorphous phases (Schelling).

Only a single pair_coeff command is used with the tersoff/mod style which specifies a Tersoff/MOD potential
file with parameters for all needed elements. These are mapped to LAMMPS atom types by specifying N
additional arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom
types:

filename•
N element names = mapping of Tersoff/MOD elements to atom types•

As an example, imagine the Si.tersoff_mod file has Tersoff values for Si. If your LAMMPS simulation has 3
Si atoms types, you would use the following pair_coeff command:

pair_coeff * * Si.tersoff_mod Si Si Si

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The three Si arguments map
LAMMPS atom types 1,2,3 to the Si element in the Tersoff/MOD file. If a mapping value is specified as
NULL, the mapping is not performed. This can be used when a tersoff/mod potential is used as part of the
hybrid pair style. The NULL values are placeholders for atom types that will be used with other potentials.

Tersoff/MOD file in the potentials directory of the LAMMPS distribution have a ".tersoff.mod" suffix. Lines
that are not blank or comments (starting with #) define parameters for a triplet of elements. The parameters in
a single entry correspond to coefficients in the formula above:

element 1 (the center atom in a 3-body interaction)•
element 2 (the atom bonded to the center atom)•
element 3 (the atom influencing the 1-2 bond in a bond-order sense)•
beta•
alpha•
h•
eta•
beta_ters = 1 (dummy parameter)•
lambda2 (1/distance units)•
B (energy units)•
R (distance units)•
D (distance units)•
lambda1 (1/distance units)•
A (energy units)•
n•
c1•
c2•
c3•
c4•
c5•

The n, eta, lambda2, B, lambda1, and A parameters are only used for two-body interactions. The beta, alpha,
c1, c2, c3, c4, c5, h parameters are only used for three-body interactions. The R and D parameters are used for

LIGGGHTS Users Manual

pair_style tersoff/mod/omp command 946

both two-body and three-body interactions. The non-annotated parameters are unitless.

The Tersoff/MOD potential file must contain entries for all the elements listed in the pair_coeff command. It
can also contain entries for additional elements not being used in a particular simulation; LAMMPS ignores
those entries.

For a single-element simulation, only a single entry is required (e.g. SiSiSi). As annotated above, the first
element in the entry is the center atom in a three-body interaction and it is bonded to the 2nd atom and the
bond is influenced by the 3rd atom. Thus an entry for SiSiSi means Si bonded to a Si with another Si atom
influencing the bond.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

This pair style does not support the pair_modify shift, table, and tail options.

This pair style does not write its information to binary restart files, since it is stored in potential files. Thus,
you need to re-specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the MANYBODY package. It is only enabled if LAMMPS was built with that
package (which it is by default). See the Making LAMMPS section for more info.

This pair style requires the newton setting to be "on" for pair interactions.

The Tersoff/MOD potential files provided with LAMMPS (see the potentials directory) are parameterized for
metal units. You can use the Tersoff/MOD potential with any LAMMPS units, but you would need to create
your own Tersoff/MOD potential file with coefficients listed in the appropriate units if your simulation doesn't
use "metal" units.

Related commands:

pair_coeff

Default: none

LIGGGHTS Users Manual

pair_style tersoff/mod/omp command 947

(Kumagai) T. Kumagai, S. Izumi, S. Hara, S. Sakai, Comp. Mat. Science, 39, 457 (2007).

(Tersoff_1) J. Tersoff, Phys Rev B, 37, 6991 (1988).

(Tersoff_2) J. Tersoff, Phys Rev B, 38, 9902 (1988).

(Murty) M.V.R. Murty, H.A. Atwater, Phys Rev B, 51, 4889 (1995).

(Schelling) Patrick K. Schelling, Comp. Mat. Science, 44, 274 (2008).

LIGGGHTS Users Manual

pair_style tersoff/mod/omp command 948

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style tersoff/zbl command

pair_style tersoff/zbl/omp command

Syntax:

pair_style tersoff/zbl

Examples:

pair_style tersoff/zbl
pair_coeff * * SiC.tersoff.zbl Si C Si

Description:

The tersoff/zbl style computes a 3-body Tersoff potential (Tersoff_1) with a close-separation pairwise
modification based on a Coulomb potential and the Ziegler-Biersack-Littmark universal screening function
(ZBL), giving the energy E of a system of atoms as

LIGGGHTS Users Manual

pair_style tersoff/zbl command 949

http://lammps.sandia.gov

The f_F term is a fermi-like function used to smoothly connect the ZBL repulsive potential with the Tersoff
potential. There are 2 parameters used to adjust it: A_F and r_C. A_F controls how "sharp" the transition is
between the two, and r_C is essentially the cutoff for the ZBL potential.

LIGGGHTS Users Manual

pair_style tersoff/zbl/omp command 950

For the ZBL portion, there are two terms. The first is the Coulomb repulsive term, with Z1, Z2 as the number
of protons in each nucleus, e as the electron charge (1 for metal and real units) and epsilon0 as the permittivity
of vacuum. The second part is the ZBL universal screening function, with a0 being the Bohr radius (typically
0.529 Angstroms), and the remainder of the coefficients provided by the original paper. This screening
function should be applicable to most systems. However, it is only accurate for small separations (i.e. less
than 1 Angstrom).

For the Tersoff portion, f_R is a two-body term and f_A includes three-body interactions. The summations in
the formula are over all neighbors J and K of atom I within a cutoff distance = R + D.

Only a single pair_coeff command is used with the tersoff/zbl style which specifies a Tersoff/ZBL potential
file with parameters for all needed elements. These are mapped to LAMMPS atom types by specifying N
additional arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom
types:

filename•
N element names = mapping of Tersoff/ZBL elements to atom types•

See the pair_coeff doc page for alternate ways to specify the path for the potential file.

As an example, imagine the SiC.tersoff.zbl file has Tersoff/ZBL values for Si and C. If your LAMMPS
simulation has 4 atoms types and you want the 1st 3 to be Si, and the 4th to be C, you would use the following
pair_coeff command:

pair_coeff * * SiC.tersoff Si Si Si C

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first three Si arguments map
LAMMPS atom types 1,2,3 to the Si element in the Tersoff/ZBL file. The final C argument maps LAMMPS
atom type 4 to the C element in the Tersoff/ZBL file. If a mapping value is specified as NULL, the mapping is
not performed. This can be used when a tersoff/zbl potential is used as part of the hybrid pair style. The NULL
values are placeholders for atom types that will be used with other potentials.

Tersoff/ZBL files in the potentials directory of the LAMMPS distribution have a ".tersoff.zbl" suffix. Lines
that are not blank or comments (starting with #) define parameters for a triplet of elements. The parameters in
a single entry correspond to coefficients in the formula above:

element 1 (the center atom in a 3-body interaction)•
element 2 (the atom bonded to the center atom)•
element 3 (the atom influencing the 1-2 bond in a bond-order sense)•
m•
gamma•
lambda3 (1/distance units)•
c•
d•
costheta0 (can be a value < -1 or > 1)•
n•
beta•
lambda2 (1/distance units)•
B (energy units)•
R (distance units)•
D (distance units)•
lambda1 (1/distance units)•
A (energy units)•
Z_i•
Z_j•

LIGGGHTS Users Manual

pair_style tersoff/zbl/omp command 951

ZBLcut (distance units)•
ZBLexpscale (1/distance units)•

The n, beta, lambda2, B, lambda1, and A parameters are only used for two-body interactions. The m, gamma,
lambda3, c, d, and costheta0 parameters are only used for three-body interactions. The R and D parameters are
used for both two-body and three-body interactions. The Z_i,Z_j, ZBLcut, ZBLexpscale parameters are used
in the ZBL repulsive portion of the potential and in the Fermi-like function. The non-annotated parameters are
unitless. The value of m must be 3 or 1.

The Tersoff/ZBL potential file must contain entries for all the elements listed in the pair_coeff command. It
can also contain entries for additional elements not being used in a particular simulation; LAMMPS ignores
those entries.

For a single-element simulation, only a single entry is required (e.g. SiSiSi). For a two-element simulation, the
file must contain 8 entries (for SiSiSi, SiSiC, SiCSi, SiCC, CSiSi, CSiC, CCSi, CCC), that specify Tersoff
parameters for all permutations of the two elements interacting in three-body configurations. Thus for 3
elements, 27 entries would be required, etc.

As annotated above, the first element in the entry is the center atom in a three-body interaction and it is
bonded to the 2nd atom and the bond is influenced by the 3rd atom. Thus an entry for SiCC means Si bonded
to a C with another C atom influencing the bond. Thus three-body parameters for SiCSi and SiSiC entries will
not, in general, be the same. The parameters used for the two-body interaction come from the entry where the
2nd element is repeated. Thus the two-body parameters for Si interacting with C, comes from the SiCC entry.
By symmetry, the twobody parameters in the SiCC and CSiSi entries should thus be the same. The parameters
used for a particular three-body interaction come from the entry with the corresponding three elements. The
parameters used only for two-body interactions (n, beta, lambda2, B, lambda1, and A) in entries whose 2nd
and 3rd element are different (e.g. SiCSi) are not used for anything and can be set to 0.0 if desired.

We chose the above form so as to enable users to define all commonly used variants of the Tersoff portion of
the potential. In particular, our form reduces to the original Tersoff form when m = 3 and gamma = 1, while it
reduces to the form of Albe et al. when beta = 1 and m = 1. Note that in the current Tersoff implementation in
LAMMPS, m must be specified as either 3 or 1. Tersoff used a slightly different but equivalent form for
alloys, which we will refer to as Tersoff_2 potential (Tersoff_2).

LAMMPS parameter values for Tersoff_2 can be obtained as follows: gamma = 1, just as for Tersoff_1, but
now lambda3 = 0 and the value of m has no effect. The parameters for species i and j can be calculated using
the Tersoff_2 mixing rules:

LIGGGHTS Users Manual

pair_style tersoff/zbl/omp command 952

Values not shown are determined by the first atom type. Finally, the Tersoff_2 parameters R and S must be
converted to the LAMMPS parameters R and D (R is different in both forms), using the following relations:
R=(R'+S')/2 and D=(S'-R')/2, where the primes indicate the Tersoff_2 parameters.

In the potentials directory, the file SiCGe.tersoff provides the LAMMPS parameters for Tersoff's various
versions of Si, as well as his alloy parameters for Si, C, and Ge. This file can be used for pure Si, (three
different versions), pure C, pure Ge, binary SiC, and binary SiGe. LAMMPS will generate an error if this file
is used with any combination involving C and Ge, since there are no entries for the GeC interactions (Tersoff
did not publish parameters for this cross-interaction.) Tersoff files are also provided for the SiC alloy
(SiC.tersoff) and the GaN (GaN.tersoff) alloys.

Many thanks to Rutuparna Narulkar, David Farrell, and Xiaowang Zhou for helping clarify how Tersoff
parameters for alloys have been defined in various papers. Also thanks to Ram Devanathan for providing the
base ZBL implementation.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, where types I and J correspond to two different element types, mixing is
performed by LAMMPS as described above from values in the potential file.

This pair style does not support the pair_modify shift, table, and tail options.

This pair style does not write its information to binary restart files, since it is stored in potential files. Thus,
you need to re-specify the pair_style and pair_coeff commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This pair style is part of the MANYBODY package. It is only enabled if LAMMPS was built with that
package (which it is by default). See the Making LAMMPS section for more info.

This pair style requires the newton setting to be "on" for pair interactions.

The Tersoff/ZBL potential files provided with LAMMPS (see the potentials directory) are parameterized for
metal units. You can use the Tersoff potential with any LAMMPS units, but you would need to create your
own Tersoff potential file with coefficients listed in the appropriate units if your simulation doesn't use
"metal" units.

LIGGGHTS Users Manual

pair_style tersoff/zbl/omp command 953

Related commands:

pair_coeff

Default: none

(Tersoff_1) J. Tersoff, Phys Rev B, 37, 6991 (1988).

(ZBL) J.F. Ziegler, J.P. Biersack, U. Littmark, 'Stopping and Ranges of Ions in Matter' Vol 1, 1985,
Pergamon Press.

(Albe) J. Nord, K. Albe, P. Erhartand K. Nordlund, J. Phys.: Condens. Matter, 15, 5649(2003).

(Tersoff_2) J. Tersoff, Phys Rev B, 39, 5566 (1989)

LIGGGHTS Users Manual

pair_style tersoff/zbl/omp command 954

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style tri/lj command

pair_style tri/lj/omp command

Syntax:

pair_style tri/lj cutoff

cutoff = global cutoff for interactions (distance units)

Examples:

pair_style tri/lj 3.0
pair_coeff * * 1.0 1.0
pair_coeff 1 1 1.0 1.5 2.5

Description:

Style tri/lj treats particles which are triangles as a set of small spherical particles that tile the triangle surface
as explained below. Interactions between two triangles, each with N1 and N2 spherical particles, are
calculated as the pairwise sum of N1*N2 Lennard-Jones interactions. Interactions between a triangle with N
spherical particles and a point particle are treated as the pairwise sum of N Lennard-Jones interactions. See the
pair_style lj/cut doc page for the definition of Lennard-Jones interactions.

The cutoff distance for an interaction between 2 triangles, or between a triangle and a point particle, is
calculated from the position of the triangle (its centroid), not between pairs of individual spheres comprising
the triangle. Thus an interaction is either calculated in its entirety or not at all.

The set of non-overlapping spherical particles that represent a triangle, for purposes of this pair style, are
generated in the following manner. Assume the triangle is of type I, and sigma_II has been specified. We want
a set of spheres with centers in the plane of the triangle, none of them larger in diameter than sigma_II, which
completely cover the triangle's area, but with minimial overlap and a minimal total number of spheres. This is
done in a recursive manner. Place a sphere at the centroid of the original triangle. Calculate what diameter it
must have to just cover all 3 corner points of the triangle. If that diameter is equal to or smaller than sigma_II,
then include a sphere of the calculated diameter in the set of covering spheres. It the diameter is larger than
sigma_II, then split the triangle into 2 triangles by bisecting its longest side. Repeat the process on each
sub-triangle, recursing as far as needed to generate a set of covering spheres. When finished, the original
criteria are met, and the set of covering spheres shoule be near minimal in number and overlap, at least for
input triangles with a reasonable aspect-ratio.

The LJ interaction between 2 spheres on different triangles of types I,J is computed with an arithmetic mixing
of the sigma values of the 2 spheres and using the specified epsilon value for I,J atom types. Note that because
the sigma values for triangles spheres is computed using only sigma_II values, specific to the triangles's type,
this means that any specified sigma_IJ values (for I != J) are effectively ignored.

For style tri/lj, the following coefficients must be defined for each pair of atoms types via the pair_coeff
command as in the examples above, or in the data file or restart files read by the read_data or read_restart
commands:

epsilon (energy units)•
sigma (distance units)•
cutoff (distance units)•

LIGGGHTS Users Manual

pair_style tri/lj command 955

http://lammps.sandia.gov

The last coefficient is optional. If not specified, the global cutoff is used.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the epsilon and sigma coefficients and cutoff distance for all of this pair
style can be mixed. The default mix value is geometric. See the "pair_modify" command for details.

This pair style does not support the pair_modify shift, table, and tail options.

This pair style does not write its information to binary restart files.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This style is part of the ASPHERE package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Defining particles to be triangles so they participate in tri/tri or tri/particle interactions requires the use the
atom_style tri command.

Related commands:

pair_coeff, pair_style line/lj

Default: none

LIGGGHTS Users Manual

pair_style tri/lj/omp command 956

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_write command

Syntax:

pair_write itype jtype N style inner outer file keyword Qi Qj

itype,jtype = 2 atom types•
N = # of values•
style = r or rsq or bitmap•
inner,outer = inner and outer cutoff (distance units)•
file = name of file to write values to•
keyword = section name in file for this set of tabulated values•
Qi,Qj = 2 atom charges (charge units) (optional)•

Examples:

pair_write 1 3 500 r 1.0 10.0 table.txt LJ
pair_write 1 1 1000 rsq 2.0 8.0 table.txt Yukawa_1_1 -0.5 0.5

Description:

Write energy and force values to a file as a function of distance for the currently defined pair potential. This is
useful for plotting the potential function or otherwise debugging its values. If the file already exists, the table
of values is appended to the end of the file to allow multiple tables of energy and force to be included in one
file.

The energy and force values are computed at distances from inner to outer for 2 interacting atoms of type
itype and jtype, using the appropriate pair_coeff coefficients. If the style is r, then N distances are used,
evenly spaced in r; if the style is rsq, N distances are used, evenly spaced in r^2.

For example, for N = 7, style = r, inner = 1.0, and outer = 4.0, values are computed at r = 1.0, 1.5, 2.0, 2.5,
3.0, 3.5, 4.0.

If the style is bitmap, then 2^N values are written to the file in a format and order consistent with how they are
read in by the pair_coeff command for pair style table. For reasonable accuracy in a bitmapped table, choose
N >= 12, an inner value that is smaller than the distance of closest approach of 2 atoms, and an outer value <=
cutoff of the potential.

If the pair potential is computed between charged atoms, the charges of the pair of interacting atoms can
optionally be specified. If not specified, values of Qi = Qj = 1.0 are used.

The file is written in the format used as input for the pair_style table option with keyword as the section name.
Each line written to the file lists an index number (1-N), a distance (in distance units), an energy (in energy
units), and a force (in force units).

Restrictions:

All force field coefficients for pair and other kinds of interactions must be set before this command can be
invoked.

Due to how the pairwise force is computed, an inner value > 0.0 must be specified even if the potential has a
finite value at r = 0.0.

LIGGGHTS Users Manual

pair_write command 957

http://lammps.sandia.gov

For EAM potentials, the pair_write command only tabulates the pairwise portion of the potential, not the
embedding portion.

Related commands:

pair_style, pair_coeff

Default: none

LIGGGHTS Users Manual

pair_write command 958

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style yukawa/colloid command

pair_style yukawa/colloid/gpu command

pair_style yukawa/colloid/omp command

Syntax:

pair_style yukawa/colloid kappa cutoff

kappa = screening length (inverse distance units)•
cutoff = global cutoff for colloidal Yukawa interactions (distance units)•

Examples:

pair_style yukawa/colloid 2.0 2.5
pair_coeff 1 1 100.0 2.3
pair_coeff * * 100.0

Description:

Style yukawa/colloid computes pairwise interactions with the formula

where Ri and Rj are the radii of the two particles and Rc is the cutoff.

In contrast to pair_style yukawa, this functional form arises from the Coulombic interaction between two
colloid particles, screened due to the presence of an electrolyte, see the book by Safran for a derivation in the
context of DVLO theory. Pair_style yukawa is a screened Coulombic potential between two point-charges and
uses no such approximation.

This potential applies to nearby particle pairs for which the Derjagin approximation holds, meaning h << Ri +
Rj, where h is the surface-to-surface separation of the two particles.

When used in combination with pair_style colloid, the two terms become the so-called DLVO potential,
which combines electrostatic repulsion and van der Waals attraction.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

A (energy/distance units)•
cutoff (distance units)•

The prefactor A is determined from the relationship between surface charge and surface potential due to the
presence of electrolyte. Note that the A for this potential style has different units than the A used in pair_style
yukawa. For low surface potentials, i.e. less than about 25 mV, A can be written as:

LIGGGHTS Users Manual

pair_style yukawa/colloid command 959

http://lammps.sandia.gov

A = 2 * PI * R*eps*eps0 * kappa * psi^2

where

R = colloid radius (distance units)•
eps0 = permittivity of free space (charge^2/energy/distance units)•
eps = relative permittivity of fluid medium (dimensionless)•
kappa = inverse screening length (1/distance units)•
psi = surface potential (energy/charge units)•

The last coefficient is optional. If not specified, the global yukawa/colloid cutoff is used.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the A coefficient and cutoff distance for this pair style can be mixed. A is an
energy value mixed like a LJ epsilon. The default mix value is geometric. See the "pair_modify" command for
details.

This pair style supports the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions:

This style is part of the COLLOID package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

This pair style requires that atoms be finite-size spheres with a diameter, as defined by the atom_style sphere
command.

LIGGGHTS Users Manual

pair_style yukawa/colloid/omp command 960

Per-particle polydispersity is not yet supported by this pair style; per-type polydispersity is allowed. This
means all particles of the same type must have the same diameter. Each type can have a different diameter.

Related commands:

pair_coeff

Default: none

(Safran) Safran, Statistical Thermodynamics of Surfaces, Interfaces, And Membranes, Westview Press,
ISBN: 978-0813340791 (2003).

LIGGGHTS Users Manual

pair_style yukawa/colloid/omp command 961

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style yukawa command

pair_style yukawa/gpu command

pair_style yukawa/omp command

Syntax:

pair_style yukawa kappa cutoff

kappa = screening length (inverse distance units)•
cutoff = global cutoff for Yukawa interactions (distance units)•

Examples:

pair_style yukawa 2.0 2.5
pair_coeff 1 1 100.0 2.3
pair_coeff * * 100.0

Description:

Style yukawa computes pairwise interactions with the formula

Rc is the cutoff.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by
mixing as described below:

A (energy*distance units)•
cutoff (distance units)•

The last coefficient is optional. If not specified, the global yukawa cutoff is used.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

LIGGGHTS Users Manual

pair_style yukawa command 962

http://lammps.sandia.gov

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

For atom type pairs I,J and I != J, the A coefficient and cutoff distance for this pair style can be mixed. A is an
energy value mixed like a LJ epsilon. The default mix value is geometric. See the "pair_modify" command for
details.

This pair style supports the pair_modify shift option for the energy of the pair interaction.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff

Default: none

LIGGGHTS Users Manual

pair_style yukawa/omp command 963

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style zbl command

pair_style zbl/omp command

Syntax:

pair_style zbl inner outer

inner = distance where switching function begins•
outer = global cutoff for ZBL interaction•

Examples:

pair_style zbl 3.0 4.0
pair_coeff * * 73.0
pair_coeff 1 1 14.0

Description:

Style zbl computes the Ziegler-Biersack-Littmark (ZBL) screened nuclear repulsion for describing
high-energy collisions between atoms. (Ziegler). It includes an additional switching function that ramps the
energy, force, and curvature smoothly to zero between an inner and outer cutoff. The potential energy due to a
pair of atoms at a distance r_ij is given by:

where e is the electron charge, epsilon_0 is the electrical permittivity of vacuum, and Z_i and Z_j are the
nuclear charges of the two atoms in electron charge units. The switching function S(r) is identical to that used
by pair_style lj/gromacs. Here, the inner and outer cutoff are the same for all pairs of atom types.

The following coefficient must be defined for each pair of atom types via the pair_coeff command as in the
examples above, or in the LAMMPS data file. Z can not be specified for two different atoms types. Therefore
the lists of atom types I and atom types J must match.

Z (electron charge)•

Although Z must be defined for all atom type pairs I,J, it is only stored for individual atom types, i.e. when I =
J. Z is normally equal to the atomic number of the atom type.

IMPORTANT NOTE: The numerical values of the exponential decay constants in the screening function
depend on the unit of distance. In the above equation they are given for units of angstroms. LAMMPS will
automatically convert these values to the distance unit of the specified LAMMPS units setting. The values of
Z should always be given in units of electron charge.

LIGGGHTS Users Manual

pair_style zbl command 964

http://lammps.sandia.gov

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the
suffix. They have been optimized to run faster, depending on your available hardware, as discussed in
Section_accelerate of the manual. The accelerated styles take the same arguments and should produce the
same results, except for round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively.
They are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for
more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use
the -suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your
input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

Mixing is not relevant for this pair style, since as explained above, Z values are stored on a per-type basis, and
both Zi and Zj are used explicitly in the ZBL formula.

The ZBL pair style does not support the pair_modify shift option, since the ZBL interaction is already
smoothed to 0.0 at the cutoff.

The pair_modify table option is not relevant for this pair style.

This pair style does not support the pair_modify tail option for adding long-range tail corrections to energy
and pressure, since there are no corrections for a potential that goes to 0.0 at the cutoff.

This pair style does not write information to binary restart files, so pair_style and pair_coeff commands must
be specified in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the
inner, middle, outer keywords.

Restrictions: none

Related commands:

pair_coeff

Default: none

(Ziegler) J.F. Ziegler, J. P. Biersack and U. Littmark, "The Stopping and Range of Ions in Matter," Volume 1,
Pergamon, 1985.

LIGGGHTS Users Manual

pair_style zbl/omp command 965

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

partition command

Syntax:

partition style N command ...

style = yes or no•
N = partition number (see asterisk form below)•
command = any LAMMPS command•

Examples:

partition yes 1 processors 4 10 6
partition no 5 print "Active partition"
partition yes *5 fix all nve
partition yes 6* fix all nvt temp 1.0 1.0 0.1

Description:

This command invokes the specified command on a subset of the partitions of processors you have defined
via the -partition command-line switch. See Section_start 6 for an explanation of the switch.

Normally, every input script command in your script is invoked by every partition. This behavior can be
modified by defining world- or universe-style variables that have different values for each partition. This
mechanism can be used to cause your script to jump to different input script files on different partitions, if
such a variable is used in a jump command.

The "partition" command is another mechanism for having as input script operate differently on different
partitions. It is basically a prefix on any LAMMPS command. The commmand will only be invoked on the
partition(s) specified by the style and N arguments.

If the style is yes, the command will be invoked on any partition which matches the N argument. If the style is
no the command will be invoked on all the partitions which do not match the Np argument.

Partitions are numbered from 1 to Np, where Np is the number of partitions specified by the -partition
command-line switch.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild-card asterisk can be used to span a range of partition numbers. This takes the form "*" or "*n" or "n*"
or "m*n". An asterisk with no numeric values means all partitions from 1 to Np. A leading asterisk means all
partitions from 1 to n (inclusive). A trailing asterisk means all partitions from n to Np (inclusive). A middle
asterisk means all partitions from m to n (inclusive).

This command can be useful for the "run_style verlet/split" command which imposed requirements on how
the processors command lays out a 3d grid of processors in each of 2 partitions.

Restrictions: none

Related commands:

run_style verlet/split

Default: none

LIGGGHTS Users Manual

partition command 966

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

prd command

Syntax:

prd N t_event n_dephase t_dephase t_correlate compute-ID seed keyword value ...

N = # of timesteps to run (not including dephasing/quenching)•
t_event = timestep interval between event checks•
n_dephase = number of velocity randomizations to perform in each dephase run•
t_dephase = number of timesteps to run dynamics after each velocity randomization during dephase•
t_correlate = number of timesteps within which 2 consecutive events are considered to be correlated•
compute-ID = ID of the compute used for event detection•
random_seed = random # seed (positive integer)•
zero or more keyword/value pairs may be appended•
keyword = min or temp or vel

min values = etol ftol maxiter maxeval
 etol = stopping tolerance for energy, used in quenching
 ftol = stopping tolerance for force, used in quenching
 maxiter = max iterations of minimize, used in quenching
 maxeval = max number of force/energy evaluations, used in quenching

temp value = Tdephase
 Tdephase = target temperature for velocity randomization, used in dephasing

vel values = loop dist
 loop = all or local or geom, used in dephasing
 dist = uniform or gaussian, used in dephasing

•

Examples:

prd 5000 100 10 10 100 1 54982
prd 5000 100 10 10 100 1 54982 min 0.1 0.1 100 200

Description:

Run a parallel replica dynamics (PRD) simulation using multiple replicas of a system. One or more replicas
can be used.

PRD is described in this paper by Art Voter. It is a method for performing accelerated dynamics that is
suitable for infrequent-event systems that obey first-order kinetics. A good overview of accelerated dynamics
methods for such systems in given in this review paper from the same group. To quote from the paper: "The
dynamical evolution is characterized by vibrational excursions within a potential basin, punctuated by
occasional transitions between basins." The transition probability is characterized by p(t) = k*exp(-kt) where k
is the rate constant. Running multiple replicas gives an effective enhancement in the timescale spanned by the
multiple simulations, while waiting for an event to occur.

Each replica runs on a partition of one or more processors. Processor partitions are defined at run-time using
the -partition command-line switch; see Section_start 6 of the manual. Note that if you have MPI installed,
you can run a multi-replica simulation with more replicas (partitions) than you have physical processors, e.g
you can run a 10-replica simulation on one or two processors. For PRD, this makes little sense, since this
offers no effective parallel speed-up in searching for infrequent events. See Section_howto 5 of the manual for
further discussion.

When a PRD simulation is performed, it is assumed that each replica is running the same model, though
LAMMPS does not check for this. I.e. the simulation domain, the number of atoms, the interaction potentials,

LIGGGHTS Users Manual

prd command 967

http://lammps.sandia.gov

etc should be the same for every replica.

A PRD run has several stages, which are repeated each time an "event" occurs in one of the replicas, as
defined below. The logic for a PRD run is as follows:

while (time remains):
 dephase for n_dephase*t_dephase steps
 until (event occurs on some replica):
 run dynamics for t_event steps
 quench
 check for uncorrelated event on any replica
 until (no correlated event occurs):
 run dynamics for t_correlate steps
 quench
 check for correlated event on this replica
 event replica shares state with all replicas

Before this loop begins, the state of the system on replica 0 is shared with all replicas, so that all replicas
begin from the same initial state. The first potential energy basin is identified by quenching (an energy
minimization, see below) the initial state and storing the resulting coordinates for reference.

In the first stage, dephasing is performed by each replica independently to eliminate correlations between
replicas. This is done by choosing a random set of velocities, based on the random_seed that is specified, and
running t_dephase timesteps of dynamics. This is repeated n_dephase times. If the temp keyword is not
specified, the target temperature for velocity randomization for each replica is the current temperature of that
replica. Otherwise, it is the specified Tdephase temperature. The style of velocity randomization is controlled
using the keyword vel with arguments that have the same meaning as their counterparts in the velocity
command.

In the second stage, each replica runs dynamics continuously, stopping every t_event steps to check if a
transition event has occurred. This check is performed by quenching the system and comparing the resulting
atom coordinates to the coordinates from the previous basin. The first time through the PRD loop, the
"previous basin" is the set of quenched coordinates from the initial state of the system.

A quench is an energy minimization and is performed by whichever algorithm has been defined by the
min_style command. Minimization parameters may be set via the min_modify command and by the min
keyword of the PRD command. The latter are the settings that would be used with the minimize command.
Note that typically, you do not need to perform a highly-converged minimization to detect a transition event.

The event check is performed by a compute with the specified compute-ID. Currently there is only one
compute that works with the PRD commmand, which is the compute event/displace command. Other
event-checking computes may be added. Compute event/displace checks whether any atom in the compute
group has moved further than a specified threshold distance. If so, an "event" has occurred.

In the third stage, the replica on which the event occurred (event replica) continues to run dynamics to search
for correlated events. This is done by running dynamics for t_correlate steps, quenching every t_event steps,
and checking if another event has occurred. The first time no correlated event occurs, the final state of the
event replica is shared with all replicas, the new basin reference coordinates are updated with the quenched
state, and the outer loop begins again. While the replica event is searching for correlated events, all the other
replicas also run dynamics and event checking with the same schedule, but the final states are always
overwritten by the state of the event replica.

Four kinds of output can be generated during a PRD run: event statistics, thermodynamic output by each
replica, dump files, and restart files.

When running with multiple partitions (each of which is a replica in this case), the print-out to the screen and

LIGGGHTS Users Manual

prd command 968

master log.lammps file is limited to event statistics. Note that if a PRD run is performed on only a single
replica then the event statistics will be intermixed with the usual thermodynamic output discussed below.

The quantities printed each time an event occurs are the timestep, CPU time, clock, event number, a
correlation flag, the number of coincident events, and the replica number of the chosen event.

The timestep is the usual LAMMPS timestep, except that time does not advance during dephasing or
quenches, but only during dynamics. Note that are two kinds of dynamics in the PRD loop listed above. The
first is when all replicas are performing independent dynamics. The second is when correlated events are
being searched for and only one replica is running dynamics.

The CPU time is the total processor time since the start of the PRD run.

The clock is the same as the timestep except that it advances by M steps every timestep during the first kind of
dynamics when the M replicas are running independently. The clock represents the real time that effectively
elapses during a PRD simulation of N steps on M replicas. If most of the PRD run is spent in the second stage
of the loop above, searching for infrequent events, then the clock will advance nearly N*M steps. Note the
clock time between events will be drawn from p(t).

The event number is a counter that increments with each event, whether it is uncorrelated or correlated.

The correlation flag will be 0 when an uncorrelated event occurs during the second stage of the loop listed
above, i.e. when all replicas are running independently. The correlation flag will be 1 when a correlated event
occurs during the third stage of the loop listed above, i.e. when only one replica is running dynamics.

When more than one replica detects an event at the end of the second stage, then one of them is chosen at
random. The number of coincident events is the number of replicas that detected an event. Normally, we
expect this value to be 1. If it is often greater than 1, then either the number of replicas is too large, or t_event
is too large.

The replica number is the ID of the replica (from 0 to M-1) that found the event.

When running on multiple partitions, LAMMPS produces additional log files for each partition, e.g.
log.lammps.0, log.lammps.1, etc. For the PRD command, these contain the thermodynamic output for each
replica. You will see short runs and minimizations corresponding to the dynamics and quench operations of
the loop listed above. The timestep will be reset aprpopriately depending on whether the operation advances
time or not.

After the PRD command completes, timing statistics for the PRD run are printed in each replica's log file,
giving a breakdown of how much CPU time was spent in each stage (dephasing, dynamics, quenching, etc).

Any dump files defined in the input script, will be written to during a PRD run at timesteps corresponding to
both uncorrelated and correlated events. This means the the requested dump frequency in the dump command
is ignored. There will be one dump file (per dump command) created for all partitions.

The atom coordinates of the dump snapshot are those of the minimum energy configuration resulting from
quenching following a transition event. The timesteps written into the dump files correspond to the timestep at
which the event occurred and NOT the clock. A dump snapshot corresponding to the initial minimum state
used for event detection is written to the dump file at the beginning of each PRD run.

If the restart command is used, a single restart file for all the partitions is generated, which allows a PRD run
to be continued by a new input script in the usual manner.

LIGGGHTS Users Manual

prd command 969

The restart file is generated at the end of the loop listed above. If no correlated events are found, this means it
contains a snapshot of the system at time T + t_correlate, where T is the time at which the uncorrelated event
occurred. If correlated events were found, then it contains a snapshot of the system at time T + t_correlate,
where T is the time of the last correlated event.

The restart frequency specified in the restart command is interpreted differently when performing a PRD run.
It does not mean the timestep interval between restart files. Instead it means an event interval for uncorrelated
events. Thus a frequency of 1 means write a restart file every time an uncorrelated event occurs. A frequency
of 10 means write a restart file every 10th uncorrelated event.

When an input script reads a restart file from a previous PRD run, the new script can be run on a different
number of replicas or processors. However, it is assumed that t_correlate in the new PRD command is the
same as it was previously. If not, the calculation of the "clock" value for the first event in the new run will be
slightly off.

Restrictions:

This command can only be used if LAMMPS was built with the REPLICA package. See the Making
LAMMPS section for more info on packages.

N and t_correlate settings must be integer multiples of t_event.

Runs restarted from restart file written during a PRD run will not produce identical results due to changes in
the random numbers used for dephasing.

This command cannot be used when any fixes are defined that keep track of elapsed time to perform
time-dependent operations. Examples include the "ave" fixes such as fix ave/spatial. Also fix dt/reset and fix
deposit.

Related commands:

compute event/displace, min_modify, min_style, run_style, minimize, velocity, temper, neb, tad

Default:

The option defaults are min = 0.1 0.1 40 50, no temp setting, and vel = geom gaussian.

(Voter) Voter, Phys Rev B, 57, 13985 (1998).

(Voter2) Voter, Montalenti, Germann, Annual Review of Materials Research 32, 321 (2002).

LIGGGHTS Users Manual

prd command 970

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

print command

Syntax:

print string keyword value:pre

string = text string to print, which may contain variables•
zero or more keyword/value pairs may be appended•
keyword = file or append or screen

file value = filename
append value = filename
screen value = yes or no

•

Examples:

print "Done with equilibration" file info.dat
print Vol=$v append info.dat screen no
print "The system volume is now $v"
print 'The system volume is now $v'

Description:

Print a text string to the screen and logfile. One line of output is generated. The text string must be a single
argument, so it should be enclosed in double quotes if it is more than one word. If it contains variables, they
will be evaluated and their current values printed.

If the file or append keyword is used, a filename is specified to which the output will be written. If file is used,
then the filename is overwritten if it already exists. If append is used, then the filename is appended to if it
already exists, or created if it does not exist.

If the screen keyword is used, output to the screen and logfile can be turned on or off as desired.

If you want the print command to be executed multiple times (with changing variable values), there are 3
options. First, consider using the fix print command, which will print a string periodically during a simulation.
Second, the print command can be used as an argument to the every option of the run command. Third, the
print command could appear in a section of the input script that is looped over (see the jump and next
commands).

See the variable command for a description of equal style variables which are typically the most useful ones
to use with the print command. Equal-style variables can calculate formulas involving mathematical
operations, atom properties, group properties, thermodynamic properties, global values calculated by a
compute or fix, or references to other variables.

Restrictions: none

Related commands:

fix print, variable

Default:

The option defaults are no file output and screen = yes.

LIGGGHTS Users Manual

print command 971

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

processors command

Syntax:

processors Px Py Pz keyword args ...

Px,Py,Pz = # of processors in each dimension of 3d grid overlaying the simulation domain•
zero or more keyword/arg pairs may be appended•
keyword = grid or map or part or file

grid arg = gstyle params ...
 gstyle = onelevel or twolevel or numa or custom
 onelevel params = none
 twolevel params = Nc Cx Cy Cz
 Nc = number of cores per node
 Cx,Cy,Cz = # of cores in each dimension of 3d sub-grid assigned to each node
 numa params = none
 custom params = infile
 infile = file containing grid layout

map arg = cart or cart/reorder or xyz or xzy or yxz or yzx or zxy or zyx
 cart = use MPI_Cart() methods to map processors to 3d grid with reorder = 0
 cart/reorder = use MPI_Cart() methods to map processors to 3d grid with reorder = 1
 xyz,xzy,yxz,yzx,zxy,zyx = map procesors to 3d grid in IJK ordering

numa arg = none
part args = Psend Precv cstyle

 Psend = partition # (1 to Np) which will send its processor layout
 Precv = partition # (1 to Np) which will recv the processor layout
 cstyle = multiple

multiple = Psend grid will be multiple of Precv grid in each dimension
file arg = outfile

 outfile = name of file to write 3d grid of processors to

•

Examples:

processors * * 5
processors 2 4 4
processors * * 8 map xyz
processors * * * grid numa
processors * * * grid twolevel 4 * * 1
processors 4 8 16 grid custom myfile
processors * * * part 1 2 multiple

Description:

Specify how processors are mapped as a 3d logical grid to the global simulation box. This involves 2 steps.
First if there are P processors it means choosing a factorization P = Px by Py by Pz so that there are Px
processors in the x dimension, and similarly for the y and z dimensions. Second, the P processors are mapped
to the logical 3d grid. The arguments to this command control each of these 2 steps.

The Px, Py, Pz parameters affect the factorization. Any of the 3 parameters can be specified with an asterisk
"*", which means LAMMPS will choose the number of processors in that dimension of the grid. It will do this
based on the size and shape of the global simulation box so as to minimize the surface-to-volume ratio of each
processor's sub-domain.

Since LAMMPS does not load-balance by changing the grid of 3d processors on-the-fly, choosing explicit
values for Px or Py or Pz can be used to override the LAMMPS default if it is known to be sub-optimal for a
particular problem. E.g. a problem where the extent of atoms will change dramatically in a particular

LIGGGHTS Users Manual

processors command 972

http://lammps.sandia.gov

dimension over the course of the simulation.

The product of Px, Py, Pz must equal P, the total # of processors LAMMPS is running on. For a 2d
simulation, Pz must equal 1.

Note that if you run on a prime number of processors P, then a grid such as 1 x P x 1 will be required, which
may incur extra communication costs due to the high surface area of each processor's sub-domain.

Also note that if multiple partitions are being used then P is the number of processors in this partition; see this
section for an explanation of the -partition command-line switch. Also note that you can prefix the processors
command with the partition command to easily specify different Px,Py,Pz values for different partitions.

You can use the partition command to specify different processor grids for different partitions, e.g.

partition yes 1 processors 4 4 4
partition yes 2 processors 2 3 2

The grid keyword affects the factorization of P into Px,Py,Pz and it can also affect how the P processor IDs
are mapped to the 3d grid of processors.

The onelevel style creates a 3d grid that is compatible with the Px,Py,Pz settings, and which minimizes the
surface-to-volume ratio of each processor's sub-domain, as described above. The mapping of processors to the
grid is determined by the map keyword setting.

The twolevel style can be used on machines with multicore nodes to minimize off-node communication. It
insures that contiguous sub-sections of the 3d grid are assigned to all the cores of a node. For example if Nc is
4, then 2x2x1 or 2x1x2 or 1x2x2 sub-sections of the 3d grid will correspond to the cores of each node. This
affects both the factorization and mapping steps.

The Cx, Cy, Cz settings are similar to the Px, Py, Pz settings, only their product should equal Nc. Any of the 3
parameters can be specified with an asterisk "*", which means LAMMPS will choose the number of cores in
that dimension of the node's sub-grid. As with Px,Py,Pz, it will do this based on the size and shape of the
global simulation box so as to minimize the surface-to-volume ratio of each processor's sub-domain.

IMPORTANT NOTE: For the twolevel style to work correctly, it assumes the MPI ranks of processors
LAMMPS is running on are ordered by core and then by node. E.g. if you are running on 2 quad-core nodes,
for a total of 8 processors, then it assumes processors 0,1,2,3 are on node 1, and processors 4,5,6,7 are on node
2. This is the default rank ordering for most MPI implementations, but some MPIs provide options for this
ordering, e.g. via environment variable settings.

The numa style operates similar to the twolevel keyword except that it auto-detects which cores are running on
which nodes. Currently, it does this in only 2 levels, but it may be extended in the future to account for socket
topology and other non-uniform memory access (NUMA) costs. It also uses a different algorithm than the
twolevel keyword for doing the two-level factorization of the simulation box into a 3d processor grid to
minimize off-node communication, and it does its own MPI-based mapping of nodes and cores to the logical
3d grid. Thus it may produce a different layout of the processors than the twolevel options.

The numa style will give an error if the number of MPI processes is not divisible by the number of cores used
per node, or any of the Px or Py of Pz values is greater than 1.

IMPORTANT NOTE: Unlike the twolevel style, the numa style does not require any particular ordering of
MPI ranks i norder to work correctly. This is because it auto-detects which processes are running on which
nodes.

LIGGGHTS Users Manual

processors command 973

The custom style uses the file infile to define both the 3d factorization and the mapping of processors to the
grid.

The file should have the following format. Any number of initial blank or comment lines (starting with a "#"
character) can be present. The first non-blank, non-comment line should have 3 values:

Px Py Py

These must be compatible with the total number of processors and the Px, Py, Pz settings of the processors
commmand.

This line should be immediately followed by P = Px*Py*Pz lines of the form:

ID I J K

where ID is a processor ID (from 0 to P-1) and I,J,K are the processors location in the 3d grid. I must be a
number from 1 to Px (inclusive) and similarly for J and K. The P lines can be listed in any order, but no
processor ID should appear more than once.

The map keyword affects how the P processor IDs (from 0 to P-1) are mapped to the 3d grid of processors. It
is only used by the onelevel and twolevel grid settings.

The cart style uses the family of MPI Cartesian functions to perform the mapping, namely MPI_Cart_create(),
MPI_Cart_get(), MPI_Cart_shift(), and MPI_Cart_rank(). It invokes the MPI_Cart_create() function with its
reorder flag = 0, so that MPI is not free to reorder the processors.

The cart/reorder style does the same thing as the cart style except it sets the reorder flag to 1, so that MPI can
reorder processors if it desires.

The xyz, xzy, yxz, yzx, zxy, and zyx styles are all similar. If the style is IJK, then it maps the P processors to the
grid so that the processor ID in the I direction varies fastest, the processor ID in the J direction varies next
fastest, and the processor ID in the K direction varies slowest. For example, if you select style xyz and you
have a 2x2x2 grid of 8 processors, the assignments of the 8 octants of the simulation domain will be:

proc 0 = lo x, lo y, lo z octant
proc 1 = hi x, lo y, lo z octant
proc 2 = lo x, hi y, lo z octant
proc 3 = hi x, hi y, lo z octant
proc 4 = lo x, lo y, hi z octant
proc 5 = hi x, lo y, hi z octant
proc 6 = lo x, hi y, hi z octant
proc 7 = hi x, hi y, hi z octant

Note that, in principle, an MPI implementation on a particular machine should be aware of both the machine's
network topology and the specific subset of processors and nodes that were assigned to your simulation. Thus
its MPI_Cart calls can optimize the assignment of MPI processes to the 3d grid to minimize communication
costs. In practice, however, few if any MPI implementations actually do this. So it is likely that the cart and
cart/reorder styles simply give the same result as one of the IJK styles.

Also note, that for the twolevel grid style, the map setting is used to first map the nodes to the 3d grid, then
again to the cores within each node. For the latter step, the cart and cart/reorder styles are not supported, so
an xyz style is used in their place.

The part keyword affects the factorization of P into Px,Py,Pz.

LIGGGHTS Users Manual

processors command 974

It can be useful when running in multi-partition mode, e.g. with the run_style verlet/split command. It
specifies a dependency bewteen a sending partition Psend and a receiving partition Precv which is enforced
when each is setting up their own mapping of their processors to the simulation box. Each of Psend and Precv
must be integers from 1 to Np, where Np is the number of partitions you have defined via the -partition
command-line switch.

A "dependency" means that the sending partition will create its 3d logical grid as Px by Py by Pz and after it
has done this, it will send the Px,Py,Pz values to the receiving partition. The receiving partition will wait to
receive these values before creating its own 3d logical grid and will use the sender's Px,Py,Pz values as a
constraint. The nature of the constraint is determined by the cstyle argument.

For a cstyle of multiple, each dimension of the sender's processor grid is required to be an integer multiple of
the corresponding dimension in the receiver's processor grid. This is a requirement of the run_style verlet/split
command.

For example, assume the sending partition creates a 4x6x10 grid = 240 processor grid. If the receiving
partition is running on 80 processors, it could create a 4x2x10 grid, but it will not create a 2x4x10 grid, since
in the y-dimension, 6 is not an integer multiple of 4.

IMPORTANT NOTE: If you use the partition command to invoke different "processsors" commands on
different partitions, and you also use the part keyword, then you must insure that both the sending and
receiving partitions invoke the "processors" command that connects the 2 partitions via the part keyword.
LAMMPS cannot easily check for this, but your simulation will likely hang in its setup phase if this error has
been made.

The file keyword writes the mapping of the factorization of P processors and their mapping to the 3d grid to
the specified file outfile. This is useful to check that you assigned physical processors in the manner you
desired, which can be tricky to figure out, especially when running on multiple partitions or on, a multicore
machine or when the processor ranks were reordered by use of the -reorder command-line switch or due to use
of MPI-specific launch options such as a config file.

If you have multiple partitions you should insure that each one writes to a different file, e.g. using a
world-style variable for the filename. The file has a self-explanatory header, followed by one-line per
processor in this format:

world-ID universe-ID original-ID: I J K: name

The IDs are the processor's rank in this simulation (the world), the universe (of multiple simulations), and the
original MPI communicator used to instantiate LAMMPS, respectively. The world and universe IDs will only
be different if you are running on more than one partition; see the -partition command-line switch. The
universe and original IDs will only be different if you used the -reorder command-line switch to reorder the
processors differently than their rank in the original communicator LAMMPS was instantiated with.

I,J,K are the indices of the processor in the 3d logical grid, each from 1 to Nd, where Nd is the number of
processors in that dimension of the grid.

The name is what is returned by a call to MPI_Get_processor_name() and should represent an identifier
relevant to the physical processors in your machine. Note that depending on the MPI implementation, multiple
cores can have the same name.

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command. It
can be used before a restart file is read to change the 3d processor grid from what is specified in the restart

LIGGGHTS Users Manual

processors command 975

file.

The grid numa keyword only currently works with the map cart option.

The part keyword (for the receiving partition) only works with the grid onelevel or grid twolevel options.

Related commands:

partition, -reorder command-line switch

Default:

The option defaults are Px Py Pz = * * *, grid = onelevel, and map = cart.

LIGGGHTS Users Manual

processors command 976

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

quit command

Syntax:

quit

Examples:

quit
if "$n > 10000" then quit

Description:

This command causes LAMMPS to exit, after shutting down all output cleanly.

It can be used as a debug statement in an input script, to terminate the script at some intermediate point.

It can also be used as an invoked command inside the "then" or "else" portion of an if command.

Restrictions: none

Related commands:

if

Default: none

LIGGGHTS Users Manual

quit command 977

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

read_data command

Syntax:

read_data file keyword args ...

file = name of data file to read in•
zero or more keyword/arg pairs may be appended•
keyword = fix

fix args = fix-ID header-string section-string
 fix-ID = ID of fix to process header lines and sections of data file
 header-string = header lines containing this string will be passed to fix
 section-string = section names with this string will be passed to fix

•

Examples:

read_data data.lj
read_data ../run7/data.polymer.gz
read_data data.protein fix mycmap crossterm CMAP

Description:

Read in a data file containing information LAMMPS needs to run a simulation. The file can be ASCII text or
a gzipped text file (detected by a .gz suffix). This is one of 3 ways to specify initial atom coordinates; see the
read_restart and create_atoms commands for alternative methods.

The structure of the data file is important, though many settings and sections are optional or can come in any
order. See the examples directory for sample data files for different problems.

A data file has a header and a body. The header appears first. The first line of the header is always skipped; it
typically contains a description of the file. Then lines are read one at a time. Lines can have a trailing
comment starting with '#' that is ignored. If the line is blank (only whitespace after comment is deleted), it is
skipped. If the line contains a header keyword, the corresponding value(s) is read from the line. If it doesn't
contain a header keyword, the line begins the body of the file.

The body of the file contains zero or more sections. The first line of a section has only a keyword. The next
line is skipped. The remaining lines of the section contain values. The number of lines depends on the section
keyword as described below. Zero or more blank lines can be used between sections. Sections can appear in
any order, with a few exceptions as noted below.

The keyword fix can be used one or more times. Each usage specifies a fix that will be used to process a
specific portion of the data file. Any header line containing header-string and any section with a name
containing section-string will be passed to the specified fix. See the fix property/atom command for an
example of a fix that operates in this manner. The doc page for the fix defines the syntax of the header line(s)
and section(s) that it reads from the data file. Note that the header-string can be specified as NULL, in which
case no header lines are passed to the fix. This means that it can infer the length of its Section from standard
header settings, such as the number of atoms.

The formatting of individual lines in the data file (indentation, spacing between words and numbers) is not
important except that header and section keywords (e.g. atoms, xlo xhi, Masses, Bond Coeffs) must be
capitalized as shown and can't have extra white space between their words - e.g. two spaces or a tab between
the 2 words in "xlo xhi" or the 2 words in "Bond Coeffs", is not valid.

LIGGGHTS Users Manual

read_data command 978

http://lammps.sandia.gov

These are the recognized header keywords. Header lines can come in any order. The value(s) are read from
the beginning of the line. Thus the keyword atoms should be in a line like "1000 atoms"; the keyword ylo yhi
should be in a line like "-10.0 10.0 ylo yhi"; the keyword xy xz yz should be in a line like "0.0 5.0 6.0 xy xz
yz". All these settings have a default value of 0, except the lo/hi box size defaults are -0.5 and 0.5. A line need
only appear if the value is different than the default.

atoms = # of atoms in system•
bonds = # of bonds in system•
angles = # of angles in system•
dihedrals = # of dihedrals in system•
impropers = # of impropers in system•
atom types = # of atom types in system•
bond types = # of bond types in system•
angle types = # of angle types in system•
dihedral types = # of dihedral types in system•
improper types = # of improper types in system•
extra bond per atom = leave space for this many new bonds per atom•
ellipsoids = # of ellipsoids in system•
lines = # of line segments in system•
triangles = # of triangles in system•
bodies = # of bodies in system•
xlo xhi = simulation box boundaries in x dimension•
ylo yhi = simulation box boundaries in y dimension•
zlo zhi = simulation box boundaries in z dimension•
xy xz yz = simulation box tilt factors for triclinic system•

The initial simulation box size is determined by the lo/hi settings. In any dimension, the system may be
periodic or non-periodic; see the boundary command.

If the xy xz yz line does not appear, LAMMPS will set up an axis-aligned (orthogonal) simulation box. If the
line does appear, LAMMPS creates a non-orthogonal simulation domain shaped as a parallelepiped with
triclinic symmetry. The parallelepiped has its "origin" at (xlo,ylo,zlo) and is defined by 3 edge vectors starting
from the origin given by A = (xhi-xlo,0,0); B = (xy,yhi-ylo,0); C = (xz,yz,zhi-zlo). Xy,xz,yz can be 0.0 or
positive or negative values and are called "tilt factors" because they are the amount of displacement applied to
faces of an originally orthogonal box to transform it into the parallelepiped.

The tilt factors (xy,xz,yz) can not skew the box more than half the distance of the corresponding parallel box
length. For example, if xlo = 2 and xhi = 12, then the x box length is 10 and the xy tilt factor must be between
-5 and 5. Similarly, both xz and yz must be between -(xhi-xlo)/2 and +(yhi-ylo)/2. Note that this is not a
limitation, since if the maximum tilt factor is 5 (as in this example), then configurations with tilt = ..., -15, -5,
5, 15, 25, ... are all geometrically equivalent.

See Section_howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by
LAMMPS, and how to transform these parameters to and from other commonly used triclinic representations.

When a triclinic system is used, the simulation domain must be periodic in any dimensions with a non-zero tilt
factor, as defined by the boundary command. I.e. if the xy tilt factor is non-zero, then both the x and y
dimensions must be periodic. Similarly, x and z must be periodic if xz is non-zero and y and z must be
periodic if yz is non-zero. Also note that if your simulation will tilt the box, e.g. via the fix deform command,
the simulation box must be defined as triclinic, even if the tilt factors are initially 0.0.

For 2d simulations, the zlo zhi values should be set to bound the z coords for atoms that appear in the file; the
default of -0.5 0.5 is valid if all z coords are 0.0. For 2d triclinic simulations, the xz and yz tilt factors must be

LIGGGHTS Users Manual

read_data command 979

0.0.

If the system is periodic (in a dimension), then atom coordinates can be outside the bounds (in that
dimension); they will be remapped (in a periodic sense) back inside the box.

IMPORTANT NOTE: If the system is non-periodic (in a dimension), then all atoms in the data file must have
coordinates (in that dimension) that are "greater than or equal to" the lo value and "less than or equal to" the hi
value. If the non-periodic dimension is of style "fixed" (see the boundary command), then the atom coords
must be strictly "less than" the hi value, due to the way LAMMPS assign atoms to processors. Note that you
should not make the lo/hi values radically smaller/larger than the extent of the atoms. For example, if your
atoms extend from 0 to 50, you should not specify the box bounds as -10000 and 10000. This is because
LAMMPS uses the specified box size to layout the 3d grid of processors. A huge (mostly empty) box will be
sub-optimal for performance when using "fixed" boundary conditions (see the boundary command). When
using "shrink-wrap" boundary conditions (see the boundary command), a huge (mostly empty) box may cause
a parallel simulation to lose atoms the first time that LAMMPS shrink-wraps the box around the atoms.

The "extra bond per atom" setting should be used if new bonds will be added to the system when a simulation
runs, e.g. by using the fix bond/create command. This will pre-allocate space in LAMMPS data structures for
storing the new bonds.

The "ellipsoids" and "lines" and "triangles" and "bodies" settings are only used with atom_style ellipsoid or
line or tri or body and specify how many of the atoms are finite-size ellipsoids or lines or triangles or bodies;
the remainder are point particles. See the discussion of ellipsoidflag and the Ellipsoids section below. See the
discussion of lineflag and the Lines section below. See the discussion of triangleflag and the Triangles section
below. See the discussion of bodyflag and the Bodies section below.

These are the section keywords for the body of the file.

Atoms, Velocities, Masses, Ellipsoids, Lines, Triangles, Bodies = atom-property sections•
Bonds, Angles, Dihedrals, Impropers = molecular topology sections•
Pair Coeffs, PairIJ Coeffs, Bond Coeffs, Angle Coeffs, Dihedral Coeffs, Improper Coeffs = force field
sections

•

BondBond Coeffs, BondAngle Coeffs, MiddleBondTorsion Coeffs, EndBondTorsion Coeffs,
AngleTorsion Coeffs, AngleAngleTorsion Coeffs, BondBond13 Coeffs, AngleAngle Coeffs = class 2
force field sections

•

Each section is listed below in alphabetic order. The format of each section is described including the number
of lines it must contain and rules (if any) for where it can appear in the data file.

Any individual line in the various sections can have a trailing comment starting with "#" for annotation
purposes. E.g. in the Atoms section:

10 1 17 -1.0 10.0 5.0 6.0 # salt ion

Angle Coeffs section:

one line per angle type•
line syntax: ID coeffs

 ID = angle type (1-N)
 coeffs = list of coeffs

•

example:

 6 70 108.5 0 0

•

LIGGGHTS Users Manual

read_data command 980

The number and meaning of the coefficients are specific to the defined angle style. See the angle_style and
angle_coeff commands for details. Coefficients can also be set via the angle_coeff command in the input
script.

AngleAngle Coeffs section:

one line per improper type•
line syntax: ID coeffs

 ID = improper type (1-N)
 coeffs = list of coeffs (see improper_coeff)

•

AngleAngleTorsion Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1-N)
 coeffs = list of coeffs (see dihedral_coeff)

•

Angles section:

one line per angle•
line syntax: ID type atom1 atom2 atom3

 ID = number of angle (1-Nangles)
 type = angle type (1-Nangletype)
 atom1,atom2,atom3 = IDs of 1st,2nd,3rd atoms in angle

example:

 2 2 17 29 430

•

The 3 atoms are ordered linearly within the angle. Thus the central atom (around which the angle is
computed) is the atom2 in the list. E.g. H,O,H for a water molecule. The Angles section must appear after the
Atoms section. All values in this section must be integers (1, not 1.0).

AngleTorsion Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1-N)
 coeffs = list of coeffs (see dihedral_coeff)

•

Atoms section:

one line per atom•
line syntax: depends on atom style•

An Atoms section must appear in the data file if natoms > 0 in the header section. The atoms can be listed in
any order. These are the line formats for each atom style in LAMMPS. As discussed below, each line can
optionally have 3 flags (nx,ny,nz) appended to it, which indicate which image of a periodic simulation box the
atom is in. These may be important to include for some kinds of analysis.

LIGGGHTS Users Manual

read_data command 981

angle atom-ID molecule-ID atom-type x y z
atomic atom-ID atom-type x y z
body atom-ID atom-type bodyflag mass x y z
bond atom-ID molecule-ID atom-type x y z
charge atom-ID atom-type q x y z
dipole atom-ID atom-type q x y z mux muy muz
electron atom-ID atom-type q spin eradius x y z
ellipsoid atom-ID atom-type ellipsoidflag density x y z
full atom-ID molecule-ID atom-type q x y z
line atom-ID molecule-ID atom-type lineflag density x y z
meso atom-ID atom-type rho e cv x y z
molecular atom-ID molecule-ID atom-type x y z
peri atom-ID atom-type volume density x y z
sphere atom-ID atom-type diameter density x y z
tri atom-ID molecule-ID atom-type triangleflag density x y z
wavepacket atom-ID atom-type charge spin eradius etag cs_re cs_im x y z
hybrid atom-ID atom-type x y z sub-style1 sub-style2 ...

The keywords have these meanings:

atom-ID = integer ID of atom•
molecule-ID = integer ID of molecule the atom belongs to•
atom-type = type of atom (1-Ntype)•
q = charge on atom (charge units)•
diameter = diameter of spherical atom (distance units)•
ellipsoidflag = 1 for ellipsoidal particles, 0 for point particles•
lineflag = 1 for line segment particles, 0 for point particles•
triangleflag = 1 for triangular particles, 0 for point particles•
bodyflag = 1 for body particles, 0 for point particles•
density = density of particle (mass/distance^3 or mass/distance^2 or mass/distance units, depending
on dimensionality of particle)

•

mass = mass of particle (mass units)•
volume = volume of particle (distance^3 units)•
x,y,z = coordinates of atom•
mux,muy,muz = components of dipole moment of atom (dipole units)•
rho = density (need units) for SPH particles•
e = energy (need units) for SPH particles•
cv = heat capacity (need units) for SPH particles•
spin = electron spin (+1/-1), 0 = nuclei, 2 = fixed-core, 3 = pseudo-cores (i.e. ECP)•
eradius = electron radius (or fixed-core radius)•
etag = integer ID of electron that each wavepacket belongs to•
cs_re,cs_im = real/imaginary parts of wavepacket coefficients•

The units for these quantities depend on the unit style; see the units command for details.

For 2d simulations specify z as 0.0, or a value within the zlo zhi setting in the data file header.

The atom-ID is used to identify the atom throughout the simulation and in dump files. Normally, it is a unique
value from 1 to Natoms for each atom. Unique values larger than Natoms can be used, but they will cause
extra memory to be allocated on each processor, if an atom map array is used (see the atom_modify
command). If an atom map array is not used (e.g. an atomic system with no bonds), and velocities are not
assigned in the data file, and you don't care if unique atom IDs appear in dump files, then the atom-IDs can all

LIGGGHTS Users Manual

read_data command 982

be set to 0.

The molecule ID is a 2nd identifier attached to an atom. Normally, it is a number from 1 to N, identifying
which molecule the atom belongs to. It can be 0 if it is an unbonded atom or if you don't care to keep track of
molecule assignments.

The diameter specifies the size of a finite-size spherical particle. It can be set to 0.0, which means that atom is
a point particle.

The ellipsoidflag, lineflag, triangleflag, and bodyflag determine whether the particle is a finite-size ellipsoid
or line or triangle or body of finite size, or whether the particle is a point particle. Additional attributes must
be defined for each ellipsoid, line, triangle, or body in the corresponding Ellipsoids, Lines, Triangles, or
Bodies section.

Some pair styles and fixes and computes that operate on finite-size particles allow for a mixture of finite-size
and point particles. See the doc pages of individual commands for details.

For finite-size particles, the density is used in conjunction with the particle volume to set the mass of each
particle as mass = density * volume. In this context, volume can be a 3d quantity (for spheres or ellipsoids), a
2d quantity (for triangles), or a 1d quantity (for line segments). If the volume is 0.0, meaning a point particle,
then the density value is used as the mass. One exception is for the body atom style, in which case the mass of
each particle (body or point particle) is specified explicitly. This is because the volume of the body is
unknown.

For atom_style hybrid, following the 5 initial values (ID,type,x,y,z), specific values for each sub-style must be
listed. The order of the sub-styles is the same as they were listed in the atom_style command. The sub-style
specific values are those that are not the 5 standard ones (ID,type,x,y,z). For example, for the "charge"
sub-style, a "q" value would appear. For the "full" sub-style, a "molecule-ID" and "q" would appear. These are
listed in the same order they appear as listed above. Thus if

atom_style hybrid charge sphere

were used in the input script, each atom line would have these fields:

atom-ID atom-type x y z q diameter density

Note that if a non-standard value is defined by multiple sub-styles, it must appear mutliple times in the atom
line. E.g. the atom line for atom_style hybrid dipole full would list "q" twice:

atom-ID atom-type x y z q mux muy myz molecule-ID q

Atom lines (all lines or none of them) can optionally list 3 trailing integer values: nx,ny,nz. For periodic
dimensions, they specify which image of the simulation box the atom is considered to be in. An image of 0
means it is inside the box as defined. A value of 2 means add 2 box lengths to get the true value. A value of -1
means subtract 1 box length to get the true value. LAMMPS updates these flags as atoms cross periodic
boundaries during the simulation. The flags can be output with atom snapshots via the dump command.

If nx,ny,nz values are not set in the data file, LAMMPS initializes them to 0. If image information is needed
for later analysis and they are not all initially 0, it's important to set them correctly in the data file. Also, if you
plan to use the replicate command to generate a larger system, these flags must be listed correctly for bonded
atoms when the bond crosses a periodic boundary. I.e. the values of the image flags should be different by 1
(in the appropriate dimension) for the two atoms in such a bond.

Atom velocities and other atom quantities not defined above are set to 0.0 when the Atoms section is read.
Velocities can be set later by a Velocities section in the data file or by a velocity or set command in the input

LIGGGHTS Users Manual

read_data command 983

script.

Bodies section:

one or more lines per body•
first line syntax: atom-ID ninteger ndouble

 ninteger = # of integer quantities for this particle
 ndouble = # of floating-point quantities for this particle

•

0 or more integer lines: one line for every 10 integer quantities•
0 or more double lines: one line for every 10 double quantities•
example:

 12 3 6
 2 3 2
 1.0 2.0 3.0 1.0 2.0 4.0

•

example:

 12 0 14
 1.0 2.0 3.0 1.0 2.0 4.0 1.0 2.0 3.0 1.0
 2.0 4.0 4.0 2.0

•

The Bodies section must appear if atom_style body is used and any atoms listed in the Atoms section have a
bodyflag = 1. The number of bodies should be specified in the header section via the "bodies" keyword.

Each body can have a variable number of integer and/or floating-point values. The number and meaning of the
values is defined by the body style, as described in the body doc page. The body style is given as an argument
to the atom_style body command.

The ninteger and ndouble values determine how many integer and floating-point values are specified for this
particle. Ninteger and ndouble can be as large as needed and can be different for every body. Integer values
are then listed on subsequent lines, 10 values per line. Floating-point values follow on subsequent lines, again
10 per line. If the number of lines is not evenly divisible by 10, the last line in that group contains the
remaining values, e.g. 4 values out of 14 in the last example above, for floating-point values. If there are no
values of a particular type, no lines appear for that type, e.g. there are no integer lines in the last example
above.

The Bodies section must appear after the Atoms section.

Bond Coeffs section:

one line per bond type•
line syntax: ID coeffs

 ID = bond type (1-N)
 coeffs = list of coeffs

•

example:

 4 250 1.49

•

The number and meaning of the coefficients are specific to the defined bond style. See the bond_style and
bond_coeff commands for details. Coefficients can also be set via the bond_coeff command in the input
script.

BondAngle Coeffs section:

LIGGGHTS Users Manual

read_data command 984

one line per angle type•
line syntax: ID coeffs

 ID = angle type (1-N)
 coeffs = list of coeffs (see class 2 section of angle_coeff)

•

BondBond Coeffs section:

one line per angle type•
line syntax: ID coeffs

 ID = angle type (1-N)
 coeffs = list of coeffs (see class 2 section of angle_coeff)

•

BondBond13 Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1-N)
 coeffs = list of coeffs (see class 2 section of dihedral_coeff)

•

Bonds section:

one line per bond•
line syntax: ID type atom1 atom2

 ID = bond number (1-Nbonds)
 type = bond type (1-Nbondtype)
 atom1,atom2 = IDs of 1st,2nd atoms in bond

•

example:

 12 3 17 29

•

The Bonds section must appear after the Atoms section. All values in this section must be integers (1, not 1.0).

Dihedral Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1-N)
 coeffs = list of coeffs

•

example:

 3 0.6 1 0 1

•

The number and meaning of the coefficients are specific to the defined dihedral style. See the dihedral_style
and dihedral_coeff commands for details. Coefficients can also be set via the dihedral_coeff command in the
input script.

Dihedrals section:

one line per dihedral•
line syntax: ID type atom1 atom2 atom3 atom4•

LIGGGHTS Users Manual

read_data command 985

 ID = number of dihedral (1-Ndihedrals)
 type = dihedral type (1-Ndihedraltype)
 atom1,atom2,atom3,atom4 = IDs of 1st,2nd,3rd,4th atoms in dihedral

example:

 12 4 17 29 30 21

•

The 4 atoms are ordered linearly within the dihedral. The Dihedrals section must appear after the Atoms
section. All values in this section must be integers (1, not 1.0).

Ellipsoids section:

one line per ellipsoid•
line syntax: atom-ID shapex shapey shapez quatw quati quatj quatk

 atom-ID = ID of atom which is an ellipsoid
 shapex,shapey,shapez = 3 diameters of ellipsoid (distance units)
 quatw,quati,quatj,quatk = quaternion components for orientation of atom

•

example:

 12 1 2 1 1 0 0 0

•

The Ellipsoids section must appear if atom_style ellipsoid is used and any atoms are listed in the Atoms
section with an ellipsoidflag = 1. The number of ellipsoids should be specified in the header section via the
"ellipsoids" keyword.

The 3 shape values specify the 3 diameters or aspect ratios of a finite-size ellipsoidal particle, when it is
oriented along the 3 coordinate axes. They must all be non-zero values.

The values quatw, quati, quatj, and quatk set the orientation of the atom as a quaternion (4-vector). Note that
the shape attributes specify the aspect ratios of an ellipsoidal particle, which is oriented by default with its
x-axis along the simulation box's x-axis, and similarly for y and z. If this body is rotated (via the right-hand
rule) by an angle theta around a unit vector (a,b,c), then the quaternion that represents its new orientation is
given by (cos(theta/2), a*sin(theta/2), b*sin(theta/2), c*sin(theta/2)). These 4 components are quatw, quati,
quatj, and quatk as specified above. LAMMPS normalizes each atom's quaternion in case (a,b,c) is not
specified as a unit vector.

The Ellipsoids section must appear after the Atoms section.

EndBondTorsion Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1-N)
 coeffs = list of coeffs (see class 2 section of dihedral_coeff)

•

Improper Coeffs section:

one line per improper type•
line syntax: ID coeffs

 ID = improper type (1-N)
 coeffs = list of coeffs

•

example:

 2 20 0.0548311

•

LIGGGHTS Users Manual

read_data command 986

The number and meaning of the coefficients are specific to the defined improper style. See the improper_style
and improper_coeff commands for details. Coefficients can also be set via the improper_coeff command in
the input script.

Impropers section:

one line per improper•
line syntax: ID type atom1 atom2 atom3 atom4

 ID = number of improper (1-Nimpropers)
 type = improper type (1-Nimpropertype)
 atom1,atom2,atom3,atom4 = IDs of 1st,2nd,3rd,4th atoms in improper

•

example:

 12 3 17 29 13 100

•

The ordering of the 4 atoms determines the definition of the improper angle used in the formula for each
improper style. See the doc pages for individual styles for details.

The Impropers section must appear after the Atoms section. All values in this section must be integers (1, not
1.0).

Lines section:

one line per line segment•
line syntax: atom-ID x1 y1 x2 y2

 atom-ID = ID of atom which is a line segment
 x1,y1 = 1st end point
 x2,y2 = 2nd end point

•

example:

 12 1.0 0.0 2.0 0.0

•

The Lines section must appear if atom_style line is used and any atoms are listed in the Atoms section with a
lineflag = 1. The number of lines should be specified in the header section via the "lines" keyword.

The 2 end points are the end points of the line segment. The ordering of the 2 points should be such that using
a right-hand rule to cross the line segment with a unit vector in the +z direction, gives an "outward" normal
vector perpendicular to the line segment. I.e. normal = (c2-c1) x (0,0,1). This orientation may be important for
defining some interactions.

The Lines section must appear after the Atoms section.

Masses section:

one line per atom type•
line syntax: ID mass

 ID = atom type (1-N)
 mass = mass value

•

example:

 3 1.01

•

LIGGGHTS Users Manual

read_data command 987

This defines the mass of each atom type. This can also be set via the mass command in the input script. This
section cannot be used for atom styles that define a mass for individual atoms - e.g. atom_style sphere.

MiddleBondTorsion Coeffs section:

one line per dihedral type•
line syntax: ID coeffs

 ID = dihedral type (1-N)
 coeffs = list of coeffs (see class 2 section of dihedral_coeff)

•

Pair Coeffs section:

one line per atom type•
line syntax: ID coeffs

 ID = atom type (1-N)
 coeffs = list of coeffs

•

example:

 3 0.022 2.35197 0.022 2.35197

•

The number and meaning of the coefficients are specific to the defined pair style. See the pair_style and
pair_coeff commands for details. Since pair coefficients for types I != J are not specified, these will be
generated automatically by the pair style's mixing rule. See the individual pair_style doc pages and the
pair_modify mix command for details. Pair coefficients can also be set via the pair_coeff command in the
input script.

PairIJ Coeffs section:

one line per pair of atom types for all I,J with I <= J•
line syntax: ID1 ID2 coeffs

 ID1 = atom type I = 1-N
 ID2 = atom type J = I-N, with I <= J
 coeffs = list of coeffs

•

examples:

 3 3 0.022 2.35197 0.022 2.35197
 3 5 0.022 2.35197 0.022 2.35197

•

This section must have N*(N+1)/2 lines where N = # of atom types. The number and meaning of the
coefficients are specific to the defined pair style. See the pair_style and pair_coeff commands for details.
Since pair coefficients for types I != J are all specified, these values will turn off the default mixing rule
defined by the pair style. See the individual pair_style doc pages and the pair_modify mix command for
details. Pair coefficients can also be set via the pair_coeff command in the input script.

Triangles section:

one line per triangle•
line syntax: atom-ID x1 y1 x2 y2

 atom-ID = ID of atom which is a line segment
 x1,y1,z1 = 1st corner point
 x2,y2,z2 = 2nd corner point
 x3,y3,z3 = 3rd corner point

•

LIGGGHTS Users Manual

read_data command 988

example:

 12 0.0 0.0 0.0 2.0 0.0 1.0 0.0 2.0 1.0

•

The Triangles section must appear if atom_style tri is used and any atoms are listed in the Atoms section with
a triangleflag = 1. The number of lines should be specified in the header section via the "triangles" keyword.

The 3 corner points are the corner points of the triangle. The ordering of the 3 points should be such that using
a right-hand rule to go from point1 to point2 to point3 gives an "outward" normal vector to the face of the
triangle. I.e. normal = (c2-c1) x (c3-c1). This orientation may be important for defining some interactions.

The Triangles section must appear after the Atoms section.

Velocities section:

one line per atom•
line syntax: depends on atom style•

all styles except those listed atom-ID vx vy vz
electron atom-ID vx vy vz ervel
ellipsoid atom-ID vx vy vz lx ly lz
sphere atom-ID vx vy vz wx wy wz
hybrid atom-ID vx vy vz sub-style1 sub-style2 ...

where the keywords have these meanings:

vx,vy,vz = translational velocity of atom lx,ly,lz = angular momentum of aspherical atom wx,wy,wz = angular
velocity of spherical atom ervel = electron radial velocity (0 for fixed-core):ul

The velocity lines can appear in any order. This section can only be used after an Atoms section. This is
because the Atoms section must have assigned a unique atom ID to each atom so that velocities can be
assigned to them.

Vx, vy, vz, and ervel are in units of velocity. Lx, ly, lz are in units of angular momentum
(distance-velocity-mass). Wx, Wy, Wz are in units of angular velocity (radians/time).

For atom_style hybrid, following the 4 initial values (ID,vx,vy,vz), specific values for each sub-style must be
listed. The order of the sub-styles is the same as they were listed in the atom_style command. The sub-style
specific values are those that are not the 5 standard ones (ID,vx,vy,vz). For example, for the "sphere"
sub-style, "wx", "wy", "wz" values would appear. These are listed in the same order they appear as listed
above. Thus if

atom_style hybrid electron sphere

were used in the input script, each velocity line would have these fields:

atom-ID vx vy vz ervel wx wy wz

Translational velocities can also be set by the velocity command in the input script.

Restrictions:

To read gzipped data files, you must compile LAMMPS with the -DLAMMPS_GZIP option - see the Making
LAMMPS section of the documentation.

LIGGGHTS Users Manual

read_data command 989

Related commands:

read_dump, read_restart, create_atoms, write_data

Default: none

LIGGGHTS Users Manual

read_data command 990

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

read_dump command

Syntax:

read_dump file Nstep field1 field2 ... keyword values ...

file = name of dump file to read•
Nstep = snapshot timestep to read from file•
one or more fields may be appended

field = x or y or z or vx or vy or vz or q or ix or iy or iz
x,y,z = atom coordinates
vx,vy,vz = velocity components
q = charge
ix,iy,iz = image flags in each dimension

•

zero or more keyword/value pairs may be appended•
keyword = box or replace or purge or trim or add or label or scaled or wrapped or format

box value = yes or no = replace simulation box with dump box
replace value = yes or no = overwrite atoms with dump atoms
purge value = yes or no = delete all atoms before adding dump atoms
trim value = yes or no = trim atoms not in dump snapshot
add value = yes or no = add new dump atoms to system
label value = field column

 field = one of the listed fields or id or type
 column = label on corresponding column in dump file

scaled value = yes or no = coords in dump file are scaled/unscaled
wrapped value = yes or no = coords in dump file are wrapped/unwrapped
format values = format of dump file, must be last keyword if used

native = native LAMMPS dump file
xyz = XYZ file
molfile style path = VMD molfile plugin interface

 style = dcd or xyz or others supported my mofile
 path = optional path for location of molfile plugins

•

Examples:

read_dump dump.file 5000 x y z
read_dump dump.xyz 5 x y z format xyz box no
read_dump dump.xyz 10 x y z format molfile box no reader xyz "../plugins"
read_dump dump.dcd 0 x y z format molfile box yes reader dcd
read_dump dump.file 1000 x y z vx vy vz format molfile box yes reader lammpstrj /usr/local/lib/vmd/plugins/LINUXAMD64/plugins/molfile
read_dump dump.file 5000 x y vx vy trim yes
read_dump ../run7/dump.file.gz 10000 x y z box yes
read_dump dump.xyz 5 x y z box no format xyz
read_dump dump.xyz 10 x y z box no format molfile xyz ../plugins
read_dump dump.dcd 0 x y z format molfile dcd
read_dump dump.file 1000 x y z vx vy vz format molfile lammpstrj /usr/local/lib/vmd/plugins/LINUXAMD64/plugins/molfile

Description:

Read atom information from a dump file to overwrite the current atom coordinates, and optionally the atom
velocities and image flags and the simluation box dimensions. This is useful for restarting a run from a
particular snapshot in a dump file. See the read_restart and read_data commands for alternative methods to do
this. Also see the rerun command for a means of reading multiple snapshots from a dump file.

Note that a simulation box must already be defined before using the read_dump command. This can be done
by the create_box, read_data, or read_restart commands. The read_dump command can reset the simulation

LIGGGHTS Users Manual

read_dump command 991

http://lammps.sandia.gov

box dimensions, as explained below.

Also note that reading per-atom information from a dump snapshot is limited to the atom coordinates,
velocities and image flags, as explained below. Other atom properties, which may be necessary to run a valid
simulation, such as atom charge, or bond topology information for a molecular system, are not read from (or
even contained in) dump files. Thus this auxiliary information should be defined in the usual way, e.g. in a
data file read in by a read_data command, before using the read_dump command, or by the set command,
after the dump snapshot is read.

If the dump filename specified as file ends with ".gz", the dump file is read in gzipped format. You cannot
(yet) read a dump file that was written in binary format with a ".bin" suffix, or to multiple files via the "%"
option in the dump file name. See the dump command for details.

The format of the dump file is selected through the format keyword. If specified, it must be the last keyword
used, since all remaining arguments are passed on to the dump reader. The native format is for native
LAMMPS dump files, written with a "dump atom".html or dump custom command. The xyz format is for
generic XYZ formatted dump files,

The molfile format supports reading data through using the VMD molfile plugin interface. This dump reader
format is only available, if the USER-MOLFILE package has been installed when compiling LAMMPS.

The molfile format takes one or two additional values. The style value determines the file format to be used
and can be any format that the molfile plugins support, such as DCD or XYZ. Note that DCD dump files can
be written by LAMMPS via the dump dcd command. The path value specifies a list of directories which
LAMMPS will search for the molfile plugins appropriate to the specified style. The syntax of the path value is
like other search paths: it can contain multiple directories separated by a colon (or semi-colon on windows).
The path keyword is optional and defaults to ".", i.e. the current directory.

Support for other dump format readers may be added in the future.

Global information is first read from the dump file, namely timestep and box information.

The dump file is scanned for a snapshot with a time stamp that matches the specified Nstep. This means the
LAMMPS timestep the dump file snapshot was written on for the native format. However, the xyz and molfile
formats do not store the timestep. For these formats, timesteps are numbered logically, in a sequential manner,
starting from 0. Thus to access the 10th snapshot in an xyz or mofile formatted dump file, use Nstep = 9.

The dimensions of the simulation box for the selected snapshot are also read; see the box keyword discussion
below. For the native format, an error is generated if the snapshot is for a triclinic box and the current
simulation box is orthogonal or vice versa. A warning will be generated if the snapshot box boundary
conditions (periodic, shrink-wrapped, etc) do not match the current simulation boundary conditions, but the
boundary condition information in the snapshot is otherwise ignored. See the "boundary" command for more
details.

For the xyz format, no information about the box is available, so you must set the box flag to no. See details
below.

For the molfile format, reading simulation box information is typically supported, but the location of the
simulation box origin is lost and no explicit information about periodicity or orthogonal/triclinic box shape is
available. The USER-MOLFILE package makes a best effort to guess based on heuristics, but this may not
always work perfectly.

Per-atom information from the dump file snapshot is then read from the dump file snapshot. This corresponds
to the specified fields listed in the read_dump command. It is an error to specify a z-dimension field, namely z,

LIGGGHTS Users Manual

read_dump command 992

vz, or iz, for a 2d simulation.

For dump files in native format, each column of per-atom data has a text label listed in the file. A matching
label for each field must appear, e.g. the label "vy" for the field vy. For the x, y, z fields any of the following
labels are considered a match:

x, xs, xu, xsu for field x
y, ys, yu, ysu for field y
z, zs, zu, zsu for field z

The meaning of xs (scaled), xu (unwrapped), and xsu (scaled and unwrapped) is explained on the dump
command doc page. These labels are searched for in the list of column labels in the dump file, in order, until a
match is found.

The dump file must also contain atom IDs, with a column label of "id".

If the add keyword is specified with a value of yes, as discussed below, the dump file must contain atom
types, with a column label of "type".

If a column label you want to read from the dump file is not a match to a specified field, the label keyword
can be used to specify the specific column label from the dump file to associate with that field. An example is
if a time-averaged coordinate is written to the dump file via the fix ave/atom command. The column will then
have a label corresponding to the fix-ID rather than "x" or "xs". The label keyword can also be used to specify
new column labels for fields id and type.

For dump files in xyz format, only the x, y, and z fields are supported. The dump file does not store atom IDs,
so these are assigned consecutively to the atoms as they appear in the dump file, starting from 1. Thus you
should insure that order of atoms is consistent from snapshot to snapshot in the the XYZ dump file. See the
dump_modify sort command if the XYZ dump file was written by LAMMPS.

For dump files in molfile format, the x, y, z, vx, vy, and vz fields can be specified. However, not all molfile
formats store velocities, or their respective plugins may not support reading of velocities. The molfile dump
files do not store atom IDs, so these are assigned consecutively to the atoms as they appear in the dump file,
starting from 1. Thus you should insure that order of atoms are consistent from snapshot to snapshot in the the
molfile dump file. See the dump_modify sort command if the dump file was written by LAMMPS.

Information from the dump file snapshot is used to overwrite or replace properties of the current system.
There are various options for how this is done, determined by the specified fields and optional keywords.

The timestep of the snapshot becomes the current timestep for the simulation. See the reset_timestep
command if you wish to change this after the dump snapshot is read.

If the box keyword is specified with a yes value, then the current simulation box dimensions are replaced by
the dump snapshot box dimensions. If the box keyword is specified with a no value, the current simulatoin
box is unchanged.

If the purge keyword is specified with a yes value, then all current atoms in the system are deleted before any
of the operations invoked by the replace, trim, or add keywords take place.

If the replace keyword is specified with a yes value, then atoms with IDs that are in both the current system
and the dump snapshot have their properties overwritten by field values. If the replace keyword is specified
with a no value, atoms with IDs that are in both the current system and the dump snapshot are not modified.

If the trim keyword is specified with a yes value, then atoms with IDs that are in the current system but not in
the dump snapshot are deleted. These atoms are unaffected if the trim keyword is specified with a no value.

LIGGGHTS Users Manual

read_dump command 993

If the add keyword is specified with a yes value, then atoms with IDs that are in the dump snapshot, but not in
the current system are added to the system. These dump atoms are ignored if the add keyword is specified
with a no value.

Note that atoms added via the add keyword will have only the attributes read from the dump file due to the
field arguments. If x or y or z is not specified as a field, a value of 0.0 is used for added atoms. Added atoms
must have an atom type, so this value must appear in the dump file.

Any other attributes (e.g. charge or particle diameter for spherical particles) will be set to default values, the
same as if the create_atoms command were used.

Note that atom IDs are not preserved for new dump snapshot atoms added via the add keyword. The
procedure for assigning new atom IDS to added atoms is the same as is described for the create_atoms
command.

Atom coordinates read from the dump file are first converted into unscaled coordinates, relative to the box
dimensions of the snapshot. These coordinates are then be assigned to an existing or new atom in the current
simulation. The coordinates will then be remapped to the simulation box, whether it is the original box or the
dump snapshot box. If periodic boundary conditions apply, this means the atom will be remapped back into
the simulation box if necessary. If shrink-wrap boundary conditions apply, the new coordinates may change
the simulation box dimensions. If fixed boundary conditions apply, the atom will be lost if it is outside the
simulation box.

For native format dump files, the 3 xyz image flags for an atom in the dump file are set to the corresponding
values appearing in the dump file if the ix, iy, iz fields are specified. If not specified, the image flags for
replaced atoms are not changed and image flags for new atoms are set to default values. If coordinates read
from the dump file are in unwrapped format (e.g. xu) then the image flags for read-in atoms are also set to
default values. The remapping procedure described in the previous paragraph will then change images flags
for all atoms (old and new) if periodic boundary conditions are applied to remap an atom back into the
simulation box.

IMPORTANT NOTE: If you get a warning about inconsistent image flags after reading in a dump snapshot, it
means one or more pairs of bonded atoms now have inconsistent image flags. As discussed in Section errors
this may or may not cause problems for subsequent simulations, One way this can happen is if you read image
flag fields from the dump file but do not also use the dump file box parameters.

LAMMPS knows how to compute unscaled and remapped coordinates for the snapshot column labels
discussed above, e.g. x, xs, xu, xsu. If another column label is assigned to the x or y or z field via the label
keyword, e.g. for coordinates output by the fix ave/atom command, then LAMMPS needs to know whether
the coordinate information in the dump file is scaled and/or wrapped. This can be set via the scaled and
wrapped keywords. Note that the value of the scaled and wrapped keywords is ignored for fields x or y or z if
the label keyword is not used to assign a column label to that field.

The scaled/unscaled and wrapped/unwrapped setting must be identical for any of the x, y, z fields that are
specified. Thus you cannot read xs and yu from the dump file. Also, if the dump file coordinates are scaled
and the simulation box is triclinic, then all 3 of the x, y, z fields must be specified, since they are all needed to
generate absolute, unscaled coordinates.

Restrictions:

To read gzipped dump files, you must compile LAMMPS with the -DLAMMPS_GZIP option - see the
Making LAMMPS section of the documentation.

LIGGGHTS Users Manual

read_dump command 994

The molfile dump file formats are part of the USER-MOLFILE package. They are only enabled if LAMMPS
was built with that packages. See the Making LAMMPS section for more info.

Related commands:

dump, dump molfile, read_data, read_restart, rerun

Default:

The option defaults are box = yes, replace = yes, purge = no, trim = no, add = no, scaled = no, wrapped = yes,
and format = native.

LIGGGHTS Users Manual

read_dump command 995

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

read_restart command

Syntax:

read_restart file

file = name of binary restart file to read in•

Examples:

read_restart save.10000
read_restart restart.*
read_restart poly.*.%

Description:

Read in a previously saved simulation from a restart file. This allows continuation of a previous run.
Information about what is stored in a restart file is given below.

Restart files are saved in binary format to enable exact restarts, meaning that the trajectories of a restarted run
will precisely match those produced by the original run had it continued on.

Several things can prevent exact restarts due to round-off effects, in which case the trajectories in the 2 runs
will slowly diverge. These include running on a different number of processors or changing certain settings
such as those set by the newton or processors commands. LAMMPS will issue a warning in these cases.

Certain fixes will not restart exactly, though they should provide statistically similar results. These include fix
shake and fix langevin.

Certain pair styles will not restart exactly, though they should provide statistically similar results. This is
because the forces they compute depend on atom velocities, which are used at half-step values every timestep
when forces are computed. When a run restarts, forces are initially evaluated with a full-step velocity, which
is different than if the run had continued. These pair styles include granular pair styles, pair dpd, and pair
lubricate.

If a restarted run is immediately different than the run which produced the restart file, it could be a LAMMPS
bug, so consider reporting it if you think the behavior is wrong.

Because restart files are binary, they may not be portable to other machines. In this case, you can use the -r
command-line switch to convert a restart file to a data file.

Similar to how restart files are written (see the write_restart and restart commands), the restart filename can
contain two wild-card characters. If a "*" appears in the filename, the directory is searched for all filenames
that match the pattern where "*" is replaced with a timestep value. The file with the largest timestep value is
read in. Thus, this effectively means, read the latest restart file. It's useful if you want your script to continue a
run from where it left off. See the run command and its "upto" option for how to specify the run command so
it doesn't need to be changed either.

If a "%" character appears in the restart filename, LAMMPS expects a set of multiple files to exist. The restart
and write_restart commands explain how such sets are created. Read_restart will first read a filename where
"%" is replaced by "base". This file tells LAMMPS how many processors created the set and how many files
are in it. Read_restart then reads the additional files. For example, if the restart file was specified as save.%

LIGGGHTS Users Manual

read_restart command 996

http://lammps.sandia.gov

when it was written, then read_restart reads the files save.base, save.0, save.1, ... save.P-1, where P is the
number of processors that created the restart file. The processors in the current LAMMPS simulation share the
work of reading these files; each reads a roughly equal subset of the files. The number of processors which
created the set can be different the number of processors in the current LAMMPS simulation. This can be a
fast mode of input on parallel machines that support parallel I/O.

A restart file stores the following information about a simulation: units and atom style, simulation box size
and shape and boundary settings, group definitions, per-type atom settings such as mass, per-atom attributes
including their group assignments and molecular topology attributes, force field styles and coefficients, and
special_bonds settings. This means that commands for these quantities do not need to be re-specified in the
input script that reads the restart file, though you can redefine settings after the restart file is read.

One exception is that some pair styles do not store their info in restart files. The doc pages for individual pair
styles note if this is the case. This is also true of bond_style hybrid (and angle_style, dihedral_style,
improper_style hybrid).

All settings made by the pair_modify command, such as the shift and tail settings, are stored in the restart file
with the pair style. The one exception is the pair_modify compute setting is not stored.

Information about kspace_style settings are not stored in the restart file. Hence if you wish to use an Ewald or
PPPM solver, these commands must be re-issued after the restart file is read.

The list of fixes used for a simulation is not stored in the restart file. This means the new input script should
specify all fixes it will use. Note that some fixes store an internal "state" which is written to the restart file.
This allows the fix to continue on with its calculations in a restarted simulation. To re-enable such a fix, the
fix command in the new input script must use the same fix-ID and group-ID as was used in the input script
that wrote the restart file. If a match is found, LAMMPS prints a message indicating that the fix is being
re-enabled. If no match is found before the first run or minimization is performed by the new script, the
"state" information for the saved fix is discarded. See the doc pages for individual fixes for info on which ones
can be restarted in this manner.

Bond interactions (angle, etc) that have been turned off by the fix shake or delete_bonds command will be
written to a restart file as if they are turned on. This means they will need to be turned off again in a new run
after the restart file is read.

Bonds that are broken (e.g. by a bond-breaking potential) are written to the restart file as broken bonds with a
type of 0. Thus these bonds will still be broken when the restart file is read.

IMPORTANT NOTE: No other information is stored in the restart file. This means that an input script that
reads a restart file should specify settings for quantities like timestep size, thermodynamic, neighbor list
criteria including settings made via the neigh_modify comand, dump file output, geometric regions, etc.

Restrictions: none

Related commands:

read_data, read_dump, write_restart, restart

Default: none

LIGGGHTS Users Manual

read_restart command 997

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

region command

Syntax:

region ID style args keyword arg ...

ID = user-assigned name for the region•
style = delete or block or cone or cylinder or plane or prism or sphere or mesh/tet or union or intersect
or wedge

delete = no args
block args = xlo xhi ylo yhi zlo zhi

 xlo,xhi,ylo,yhi,zlo,zhi = bounds of block in all dimensions (distance units)
cone args = dim c1 c2 radlo radhi lo hi

 dim = x or y or z = axis of cone
 c1,c2 = coords of cone axis in other 2 dimensions (distance units)
 radlo,radhi = cone radii at lo and hi end (distance units)
 lo,hi = bounds of cone in dim (distance units)

cylinder args = dim c1 c2 radius lo hi
 dim = x or y or z = axis of cylinder
 c1,c2 = coords of cylinder axis in other 2 dimensions (distance units)
 radius = cylinder radius (distance units)
 radius can be a variable (see below)
 lo,hi = bounds of cylinder in dim (distance units)

plane args = px py pz nx ny nz
 px,py,pz = point on the plane (distance units)
 nx,ny,nz = direction normal to plane (distance units)

prism args = xlo xhi ylo yhi zlo zhi xy xz yz
 xlo,xhi,ylo,yhi,zlo,zhi = bounds of untilted prism (distance units)
 xy = distance to tilt y in x direction (distance units)
 xz = distance to tilt z in x direction (distance units)
 yz = distance to tilt z in y direction (distance units)

sphere args = x y z radius
 x,y,z = center of sphere (distance units)
 radius = radius of sphere (distance units)

mesh/tet args = file filename scale s move offx offy offz rotate phix phiy phiz
 file = obligatory keyword
 filename = name of ASCII VTK file containing the VTK tet-mesh data
 scale = obligatory keyword
 s = scaling factor for the mesh (dimensionless)
 move = obligatory keyword
 offx,offy,offz = offset for the mesh (distance units)
 rotate = obligatory keyword
 phix,phiy,phiz = angle of mesh rotation around x-, y-, and z-axis (in grad)

wedge args = axis dim center c1 c2 radius r bounds lo hi angle0 alpha0 angle alpha
 axis = obligatory keyword
 dim = x or y or z ... wedge is aligned to this dimension
 center = obligatory keyword
 c1 = first center-coordinate
 if dim == x then y-coord
 if dim == y then z-coord
 if dim == z then x-coord
 c2 = second center-coordinate
 if dim == x then z-coord
 if dim == y then x-coord
 if dim == z then y-coord
 radius = obligatory keyword
 r = radius of cylinder
 bounds = obligatory keyword
 lo = dim-coord of lower flat face of cylinder of wedge
 hi = dim-coord of higher flat face of cylinder of wedge
 angle0 = obligatory keyword

•

LIGGGHTS Users Manual

region command 998

http://lammps.sandia.gov

 alpha0 = mathematically positive angle of the wedge's starting face
 if axis == x then starting from y-axis
 if axis == y then starting from z-axis
 if axis == z then starting from x=axis
 angle = obligatory keyword
 alpha = mathematically positive angle between the wedge's starting and ending face in degrees

union args = N reg-ID1 reg-ID2 ...
 N = # of regions to follow, must be 2 or greater
 reg-ID1,reg-ID2, ... = IDs of regions to join together

intersect args = N reg-ID1 reg-ID2 ...
 N = # of regions to follow, must be 2 or greater
 reg-ID1,reg-ID2, ... = IDs of regions to intersect

zero or more keyword/arg pairs may be appended•
keyword = side or units or move or rotate

side value = in or out
in = the region is inside the specified geometry
out = the region is outside the specified geometry

units value = lattice or box
lattice = the geometry is defined in lattice units
box = the geometry is defined in simulation box units

move args = v_x v_y v_z
 v_x,v_y,v_z = equal-style variables for x,y,z displacement of region over time

rotate args = v_theta Px Py Pz Rx Ry Rz
 v_theta = equal-style variable for rotaton of region over time (in radians)
 Px,Py,Pz = origin for axis of rotation (distance units)
 Rx,Ry,Rz = axis of rotation vector

•

Examples:

region 1 block -3.0 5.0 INF 10.0 INF INF
region 2 sphere 0.0 0.0 0.0 5 side out
region void cylinder y 2 3 5 -5.0 EDGE units box
region 1 prism 0 10 0 10 0 10 2 0 0
region outside union 4 side1 side2 side3 side4
region 2 sphere 0.0 0.0 0.0 5 side out move v_left v_up NULL
region 1 wedge axis y center 0 0 radius 10 bounds 0 10 angle0 -22.5 angle 45 units box side in

Description:

This command defines a geometric region of space. Various other commands use regions. For example, the
region can be filled with atoms via the create_atoms command. Or a bounding box around the region, can be
used to define the simulation box via the create_box command. Or the atoms in the region can be identified as
a group via the group command, or deleted via the delete_atoms command. Or the surface of the region can be
used as a boundary wall via the fix wall/region command.

Commands which use regions typically test whether an atom's position is contained in the region or not. For
this purpose, coordinates exactly on the region boundary are considered to be interior to the region. This
means, for example, for a spherical region, an atom on the sphere surface would be part of the region if the
sphere were defined with the side in keyword, but would not be part of the region if it were defined using the
side out keyword. See more details on the side keyword below.

Normally, regions in LAMMPS are "static", meaning their geometric extent does not change with time. If the
move or rotate keyword is used, as described below, the region becomes "dynamic", meaning it's location or
orientation changes with time. This may be useful, for example, when thermostatting a region, via the
compute temp/region command, or when the fix wall/region command uses a region surface as a bounding
wall on particle motion, i.e. a rotating container.

The delete style removes the named region. Since there is little overhead to defining extra regions, there is
normally no need to do this, unless you are defining and discarding large numbers of regions in your input

LIGGGHTS Users Manual

region command 999

script.

The lo/hi values for block or cone or cylinder or prism styles can be specified as EDGE or INF. EDGE means
they extend all the way to the global simulation box boundary. Note that this is the current box boundary; if
the box changes size during a simulation, the region does not. INF means a large negative or positive number
(1.0e20), so it should encompass the simulation box even if it changes size. If a region is defined before the
simulation box has been created (via create_box or read_data or read_restart commands), then an EDGE or
INF parameter cannot be used. For a prism region, a non-zero tilt factor in any pair of dimensions cannot be
used if both the lo/hi values in either of those dimensions are INF. E.g. if the xy tilt is non-zero, then xlo and
xhi cannot both be INF, nor can ylo and yhi.

IMPORTANT NOTE: Regions in LAMMPS do not get wrapped across periodic boundaries, as specified by
the boundary command. For example, a spherical region that is defined so that it overlaps a periodic boundary
is not treated as 2 half-spheres, one on either side of the simulation box.

IMPORTANT NOTE: Regions in LAMMPS are always 3d geometric objects, regardless of whether the
dimension of a simulation is 2d or 3d. Thus when using regions in a 2d simulation, you should be careful to
define the region so that its intersection with the 2d x-y plane of the simulation has the 2d geometric extent
you want.

For style cone, an axis-aligned cone is defined which is like a cylinder except that two different radii (one at
each end) can be defined. Either of the radii (but not both) can be 0.0.

For style cone and cylinder, the c1,c2 params are coordinates in the 2 other dimensions besides the cylinder
axis dimension. For dim = x, c1/c2 = y/z; for dim = y, c1/c2 = x/z; for dim = z, c1/c2 = x/y. Thus the third
example above specifies a cylinder with its axis in the y-direction located at x = 2.0 and z = 3.0, with a radius
of 5.0, and extending in the y-direction from -5.0 to the upper box boundary.

For style plane, a plane is defined which contain the point (px,py,pz) and has a normal vector (nx,ny,nz). The
normal vector does not have to be of unit length. The "inside" of the plane is the half-space in the direction of
the normal vector; see the discussion of the side option below.

For style prism, a parallelepiped is defined (it's too hard to spell parallelepiped in an input script!). The
parallelepiped has its "origin" at (xlo,ylo,zlo) and is defined by 3 edge vectors starting from the origin given
by A = (xhi-xlo,0,0); B = (xy,yhi-ylo,0); C = (xz,yz,zhi-zlo). Xy,xz,yz can be 0.0 or positive or negative values
and are called "tilt factors" because they are the amount of displacement applied to faces of an originally
orthogonal box to transform it into the parallelepiped.

A prism region that will be used with the create_box command to define a triclinic simulation box must have
tilt factors (xy,xz,yz) that do not skew the box more than half the distance of corresponding the parallel box
length. For example, if xlo = 2 and xhi = 12, then the x box length is 10 and the xy tilt factor must be between
-5 and 5. Similarly, both xz and yz must be between -(xhi-xlo)/2 and +(yhi-ylo)/2. Note that this is not a
limitation, since if the maximum tilt factor is 5 (as in this example), then configurations with tilt = ..., -15, -5,
5, 15, 25, ... are all geometrically equivalent.

The radius value for style sphere and cylinder can be specified as an equal-style variable. If the value is a
variable, it should be specified as v_name, where name is the variable name. In this case, the variable will be
evaluated each timestep, and its value used to determine the radius of the region.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent radius.

See Section_howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by

LIGGGHTS Users Manual

region command 1000

LAMMPS, and how to transform these parameters to and from other commonly used triclinic representations.

For style mesh/tet, a tetrahedral mesh can be read from an ASCII VTK file. You can apply offset, scaling and
rotation to the imported mesh via dedicated keywords. If applying more then one of these operations, the
offset is applied first and then the geometry is scaled. Then the geometry is rotated around the x-axis first,
then around the y-axis, then around the z-axis.

IMPORTANT NOTE: Currently only ASCII VTK containing tetrahedra are supported. For periodic
boundaries, the mesh is NOT mapped. Instead, a warning is generated if a vertex lies outside the simulation
box.

The union style creates a region consisting of the volume of all the listed regions combined. The intersect
style creates a region consisting of the volume that is common to all the listed regions.

IMPORTANT NOTE: The union and intersect regions operate by invoking methods from their list of
sub-regions. Thus you cannot delete the sub-regions after defining the union or intersection region.

The side keyword determines whether the region is considered to be inside or outside of the specified
geometry. Using this keyword in conjunction with union and intersect regions, complex geometries can be
built up. For example, if the interior of two spheres were each defined as regions, and a union style with side
= out was constructed listing the region-IDs of the 2 spheres, the resulting region would be all the volume in
the simulation box that was outside both of the spheres.

The units keyword determines the meaning of the distance units used to define the region for any argument
above listed as having distance units. It also affects the scaling of the velocity vector specfied with the vel
keyword, the amplitude vector specified with the wiggle keyword, and the rotation point specified with the
rotate keyword, since they each involve a distance metric.

A box value selects standard distance units as defined by the units command, e.g. Angstroms for units = real
or metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacings which are used as follows:

For style block, the lattice spacing in dimension x is applied to xlo and xhi, similarly the spacings in
dimensions y,z are applied to ylo/yhi and zlo/zhi.

•

For style cone, the lattice spacing in argument dim is applied to lo and hi. The spacings in the two
radial dimensions are applied to c1 and c2. The two cone radii are scaled by the lattice spacing in the
dimension corresponding to c1.

•

For style cylinder, the lattice spacing in argument dim is applied to lo and hi. The spacings in the two
radial dimensions are applied to c1 and c2. The cylinder radius is scaled by the lattice spacing in the
dimension corresponding to c1.

•

For style plane, the lattice spacing in dimension x is applied to px and nx, similarly the spacings in
dimensions y,z are applied to py/ny and pz/nz.

•

For style prism, the lattice spacing in dimension x is applied to xlo and xhi, similarly for ylo/yhi and
zlo/zhi. The lattice spacing in dimension x is applied to xy and xz, and the spacing in dimension y to
yz.

•

For style sphere, the lattice spacing in dimensions x,y,z are applied to the sphere center x,y,z. The
spacing in dimension x is applied to the sphere radius.

•

If the move or rotate keywords are used, the region is "dynamic", meaning its location or orientation changes
with time. These keywords cannot be used with a union or intersect style region. Instead, the keywords should
be used to make the individual sub-regions of the union or intersect region dynamic. Normally, each
sub-region should be "dynamic" in the same manner (e.g. rotate around the same point), though this is not a
requirement.

LIGGGHTS Users Manual

region command 1001

The move keyword allows one or more equal-style variables to be used to specify the x,y,z displacement of
the region, typically as a function of time. A variable is specified as v_name, where name is the variable
name. Any of the three variables can be specified as NULL, in which case no displacement is calculated in
that dimension.

Note that equal-style variables can specify formulas with various mathematical functions, and include
thermo_style command keywords for the simulation box parameters and timestep and elapsed time. Thus it is
easy to specify a region displacement that change as a function of time or spans consecutive runs in a
continuous fashion. For the latter, see the start and stop keywords of the run command and the elaplong
keyword of thermo_style custom for details.

For example, these commands would displace a region from its initial position, in the positive x direction,
effectively at a constant velocity:

variable dx equal ramp(0,10)
region 2 sphere 10.0 10.0 0.0 5 move v_dx NULL NULL

Note that the initial displacemet is 0.0, though that is not required.

Either of these varaibles would "wiggle" the region back and forth in the y direction:

variable dy equal swiggle(0,5,100)
variable dysame equal 5*sin(2*PI*elaplong*dt/100)
region 2 sphere 10.0 10.0 0.0 5 move NULL v_dy NULL

The rotate keyword rotates the region around a rotation axis R = (Rx,Ry,Rz) that goes thru a point P =
(Px,Py,Pz). The rotation angle is calculated, presumably as a function of time, by a variable specified as
v_theta, where theta is the variable name. The variable should generate its result in radians. The direction of
rotation for the region around the rotation axis is consistent with the right-hand rule: if your right-hand thumb
points along R, then your fingers wrap around the axis in the direction of rotation.

The move and rotate keywords can be used together. In this case, the displacement specified by the move
keyword is applied to the P point of the rotate keyword.

Restrictions:

A prism cannot be of 0.0 thickness in any dimension; use a small z thickness for 2d simulations. For 2d
simulations, the xz and yz parameters must be 0.0.

Related commands:

lattice, create_atoms, delete_atoms, group

Default:

The option defaults are side = in, units = lattice, and no move or rotation.

LIGGGHTS Users Manual

region command 1002

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

replicate command

Syntax:

replicate nx ny nz

nx,ny,nz = replication factors in each dimension•

Examples:

replicate 2 3 2

Description:

Replicate the current simulation one or more times in each dimension. For example, replication factors of
2,2,2 will create a simulation with 8x as many atoms by doubling the simulation domain in each dimension. A
replication factor of 1 in a dimension leaves the simulation domain unchanged.

All properties of the atoms are replicated, including their velocities, which may or may not be desirable. New
atom IDs are assigned to new atoms, as are molecule IDs. Bonds and other topology interactions are created
between pairs of new atoms as well as between old and new atoms. This is done by using the image flag for
each atom to "unwrap" it out of the periodic box before replicating it.

This means that any molecular bond you specify in the original data file that crosses a periodic boundary
should be between two atoms with image flags that differ by 1. This will allow the bond to be unwrapped
appropriately.

Restrictions:

A 2d simulation cannot be replicated in the z dimension.

If a simulation is non-periodic in a dimension, care should be used when replicating it in that dimension, as it
may put atoms nearly on top of each other.

IMPORTANT NOTE: You cannot use the replicate command on a system which has a molecule that spans
the box and is bonded to itself across a periodic boundary, so that the molecule is efffectively a loop. A simple
example would be a linear polymer chain that spans the simulation box and bonds back to itself across the
periodic boundary. More realistic examples would be a CNT (meant to be an infinitely long CNT) or a
graphene sheet or a bulk periodic crystal where there are explicit bonds specified between near neighbors.
(Note that this only applies to systems that have permanent bonds as specified in the data file. A CNT that is
just atoms modeled with the AIREBO potential has no such permanent bonds, so it can be replicated.) The
reason replication does not work with those systems is that the image flag settings described above cannot be
made consistent. I.e. it is not possible to define images flags so that when every pair of bonded atoms is
unwrapped (using the image flags), they will be close to each other. The only way the replicate command
could work in this scenario is for it to break a bond, insert more atoms, and re-connect the loop for the larger
simulation box. But it is not clever enough to do this. So you will have to construct a larger version of your
molecule as a pre-processing step and input a new data file to LAMMPS.

If the current simulation was read in from a restart file (before a run is performed), there can have been no fix
information stored in the file for individual atoms. Similarly, no fixes can be defined at the time the replicate
command is used that require vectors of atom information to be stored. This is because the replicate command
does not know how to replicate that information for new atoms it creates.

LIGGGHTS Users Manual

replicate command 1003

http://lammps.sandia.gov

Replicating a system that has rigid bodies (defined via the fix rigid command), either currently defined or that
created the restart file which was read in before replicating, can cause problems if there is a bond between a
pair of rigid bodies that straddle a periodic boundary. This is because the periodic image information for
particles in the rigid bodies are set differently than for a non-rigid system and can result in a new bond being
created that spans the periodic box. Thus you cannot use the replicate command in this scenario.

Related commands: none

Default: none

LIGGGHTS Users Manual

replicate command 1004

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

rerun command

Syntax:

rerun file1 file2 ... keyword args ...

file1,file2,... = dump file(s) to read•
one or more keywords may be appended, keyword dump must appear and be last

keyword = first or last or every or skip or start or stop or dump
first args = Nfirts

 Nfirst = dump timestep to start on
last args = Nlast

 Nlast = dumptimestep to stop on
every args = Nevery

 Nevery = read snapshots matching every this many timesteps
skip args = Nskip

 Nskip = read one out of every Nskip snapshots
start args = Nstart

 Nstart = timestep on which pseudo run will start
stop args = Nstop

 Nstop = timestep to which pseudo run will end
dump args = same as read_dump command starting with its field arguments

•

Examples:

rerun dump.file dump x y z vx vy vz
rerun dump1.txt dump2.txt first 10000 every 1000 dump x y z
rerun dump.vels dump x y z vx vy vz box yes format molfile lammpstrj
rerun dump.dcd dump x y z box no format molfile dcd
rerun ../run7/dump.file.gz skip 2 dump x y z box yes

Description:

Perform a psuedo simulation run where atom information is read one snapshot at a time from a dump file(s),
and energies and forces are computed on the shapshot to produce thermodynamic or other output.

This can be useful in the following kinds of scenarios, after an initial simulation produced the dump file:

Compute the energy and forces of snaphots using a different potential.•
Calculate one or more diagnostic quantities on the snapshots that weren't computed in the initial run.
These can also be computed with settings not used in the initial run, e.g. computing an RDF via the
compute rdf command with a longer cutoff than was used initially.

•

Calculate the portion of per-atom forces resulting from a subset of the potential. E.g. compute only
Coulombic forces. This can be done by only defining only a Coulombic pair style in the rerun script.
Doing this in the original script would result in different (bad) dynamics.

•

Conceptually, using the rerun command is like running an input script that has a loop in it (see the next and
jump commands). Each iteration of the loop reads one snapshot from the dump file via the read_dump
command, sets the timestep to the appropriate value, and then invokes a run command for zero timesteps to
simply compute energy and forces, and any other thermodynamic output or diagnostic info you have defined.
This computation also invokes any fixes you have defined that apply constraints to the system, such as fix
shake or fix indent.

Note that a simulation box must already be defined before using the rerun command. This can be done by the
create_box, read_data, or read_restart commands.

LIGGGHTS Users Manual

rerun command 1005

http://lammps.sandia.gov

Also note that reading per-atom information from dump snapshots is limited to the atom coordinates,
velocities and image flags as explained in the read_dump command. Other atom properties, which may be
necessary to compute energies and forces, such as atom charge, or bond topology information for a molecular
system, are not read from (or even contained in) dump files. Thus this auxiliary information should be defined
in the usual way, e.g. in a data file read in by a read_data command, before using the rerun command.

If more than one dump file is specified, the dump files are read one after the other. It is assumed that snapshot
timesteps will be in ascending order. If a snapshot is encountered that is not in ascending order, it will cause
the rerun command to complete.

The first, last, every, skip keywords determine which snapshots are read from the dump file(s). Snapshots are
skipped until they have a timestamp >= Nfirst. When a snapshot with a timestamp > Nlast is encountered, the
rerun command finishes. Note below that the defaults for first and last are to read all snapshots. If the every
keyword is set to a value > 0, then only snapshots with timestamps that are a multiple of Nevery are read (the
first snapshot is always read). If Nevery = 0, then this criterion is ignored, i.e. every snapshot is read that
meets the other criteria. If the skip keyword is used, then after the first snapshot is read, every Nth snapshot is
read, where N = Nskip. E.g. if Nskip = 3, then only 1 out of every 3 snapshots is read, assuming the snapshot
timestamp is also consistent with the other criteria.

The start and stop keywords have the same meaning that they do for the run command. They only need to be
defined if (a) you are using a fix command that changes some value over time, and (b) you want the reference
point for elapsed time (from start to stop) to be different than the first and last settings. See the doc page for
individual fixes to see which ones can be used with the start/stop keywords. Note that if you define neither of
the start/stop or first/last keywords, then LAMMPS treats the pseudo run as going from 0 to a huge value
(effectively infinity). This means that any quantity that a fix scales as a fraction of elapsed time in the run, will
essentially remain at its intiial value.

The dump keyword is required and must be the last keyword specified. Its arguments are passed internally to
the read_dump command. The first argument following the dump keyword should be the field1 argument of
the read_dump command. See the read_dump doc page for details on the various options it allows for
extracting information from the dump file snapshots, and for using that information to alter the LAMMPS
simulation.

In general, a LAMMPS input script that uses a rerun command can include and perform all the usual
operations of an input script that uses the run command. There are a few exceptions and points to consider, as
discussed here.

Fixes that perform time integration, such as fix nve or fix npt are not invoked, since no time integration is
performed. Fixes that perturb or constrain the forces on atoms will be invoked, just as they would during a
normal run. Examples are fix indent and fix langevin. So you should think carefully as to whether that makes
sense for the manner in which you are reprocessing the dump snapshots.

If you only want the rerun script to perform analyses that do not involve pair interactions, such as use compute
msd to calculated displacements over time, you do not need to define a pair style, which may also mean
neighbor lists will not need to be calculated which saves time. The communicate cutoff command can also be
used to insure ghost atoms are acquired from far enough away for operations like bond and angle evaluations,
if no pair style is being used.

Every time a snapshot is read, the timestep for the simulation is reset, as if the >reset_timestep command were
used. This command has some restrictions as to what fixes can be defined. See its doc page for details. For
example, the fix deposit and fix dt/reset fixes are in this category. They also make no sense to use with a rerun
command.

LIGGGHTS Users Manual

rerun command 1006

If time-averaging fixes like fix ave/time are used, they are invoked on timesteps that are a function of their
Nevery, Nrepeat, and Nfreq settings. As an example, see the fix ave/time doc page for details. You must
insure those settings are consistent with the snapshot timestamps that are read from the dump file(s). If an
averaging fix is not invoked on a timestep it expects to be, LAMMPS will flag an error.

The various forms of LAMMPS output, as defined by the thermo_style, thermo, dump, and restart commands
occur on specific timesteps. If successvive dump snapshots skip those timesteps, then no output will be
produced. E.g. if you request thermodynamic output every 100 steps, but the dump file snapshots are every
1000 steps, then you will only see thermodynamic output every 1000 steps.

Restrictions:

To read gzipped dump files, you must compile LAMMPS with the -DLAMMPS_GZIP option - see the
Making LAMMPS section of the documentation.

Related commands:

read_dump

Default:

The option defaults are first = 0, last = a huge value (effectively infinity), start = same as first, stop = same as
last, every = 0, skip = 1;

LIGGGHTS Users Manual

rerun command 1007

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

reset_timestep command

Syntax:

reset_timestep N

N = timestep number•

Examples:

reset_timestep 0
reset_timestep 4000000

Description:

Set the timestep counter to the specified value. This command normally comes after the timestep has been set
by reading a restart file via the read_restart command, or a previous simulation advanced the timestep.

The read_data and create_box commands set the timestep to 0; the read_restart command sets the timestep to
the value it had when the restart file was written.

Restrictions: none

This command cannot be used when any fixes are defined that keep track of elapsed time to perform certain
kinds of time-dependent operations. Examples are the fix deposit and fix dt/reset commands. The former adds
atoms on specific timesteps. The latter keeps track of accumulated time.

Various fixes use the current timestep to calculate related quantities. If the timestep is reset, this may produce
unexpected behavior, but LAMMPS allows the fixes to be defined even if the timestep is reset. For example,
commands which thermostat the system, e.g. fix nvt, allow you to specify a target temperature which ramps
from Tstart to Tstop which may persist over several runs. If you change the timestep, you may induce an
instantaneous change in the target temperature.

Resetting the timestep clears flags for computes that may have calculated some quantity from a previous run.
This means these quantity cannot be accessed by a variable in between runs until a new run is performed. See
the variable command for more details.

Related commands:

rerun

Default: none

LIGGGHTS Users Manual

reset_timestep command 1008

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

restart command

Syntax:

restart 0
restart N root keyword value ...
restart N file1 file2 keyword value ...

N = write a restart file every this many timesteps•
N can be a variable (see below)•
root = filename to which timestep # is appended•
file1,file2 = two full filenames, toggle between them when writing file•
zero or more keyword/value pairs may be appended•
keyword = fileper or nfile

fileper arg = Np
 Np = write one file for every this many processors

nfile arg = Nf
 Nf = write this many files, one from each of Nf processors

•

Examples:

restart 0
restart 1000 poly.restart
restart 1000 restart.*.equil
restart 10000 poly.%.1 poly.%.2
restart v_mystep poly.restart

Description:

Write out a binary restart file every so many timesteps, in either or both of two modes, as a run proceeds. A
value of 0 means do not write out any restart files. The two modes are as follows. If one filename is specified,
a series of filenames will be created which include the timestep in the filename. If two filenames are specified,
only 2 restart files will be created, with those names. LAMMPS will toggle between the 2 names as it writes
successive restart files.

Note that you can specify the restart command twice, once with a single filename and once with two
filenames. This would allow you, for example, to write out archival restart files every 100000 steps using a
single filenname, and more frequent temporary restart files every 1000 steps, using two filenames. Using
restart 0 will turn off both modes of output.

Similar to dump files, the restart filename(s) can contain two wild-card characters.

If a "*" appears in the single filename, it is replaced with the current timestep value. This is only recognized
when a single filename is used (not when toggling back and forth). Thus, the 3rd example above creates
restart files as follows: restart.1000.equil, restart.2000.equil, etc. If a single filename is used with no "*", then
the timestep value is appended. E.g. the 2nd example above creates restart files as follows: poly.restart.1000,
poly.restart.2000, etc.

If a "%" character appears in the restart filename(s), then one file is written for each processor and the "%"
character is replaced with the processor ID from 0 to P-1. An additional file with the "%" replaced by "base"
is also written, which contains global information. For example, the files written on step 1000 for filename
restart.% would be restart.base.1000, restart.0.1000, restart.1.1000, ..., restart.P-1.1000. This creates smaller
files and can be a fast mode of output and subsequent input on parallel machines that support parallel I/O. The

LIGGGHTS Users Manual

restart command 1009

http://lammps.sandia.gov

optional fileper and nfile keywords discussed below can alter the number of files written.

Restart files are written on timesteps that are a multiple of N but not on the first timestep of a run or
minimization. You can use the write_restart command to write a restart file before a run begins. A restart file
is not written on the last timestep of a run unless it is a multiple of N. A restart file is written on the last
timestep of a minimization if N > 0 and the minimization converges.

Instead of a numeric value, N can be specifed as an equal-style variable, which should be specified as
v_name, where name is the variable name. In this case, the variable is evaluated at the beginning of a run to
determine the next timestep at which a restart file will be written out. On that timestep, the variable will be
evaluated again to determine the next timestep, etc. Thus the variable should return timestep values. See the
stagger() and logfreq() and stride() math functions for equal-style variables, as examples of useful functions to
use in this context. Other similar math functions could easily be added as options for equal-style variables.

For example, the following commands will write restart files every step from 1100 to 1200, and could be
useful for debugging a simulation where something goes wrong at step 1163:

variable s equal stride(1100,1200,1)
restart v_s tmp.restart

See the read_restart command for information about what is stored in a restart file.

Restart files can be read by a read_restart command to restart a simulation from a particular state. Because the
file is binary (to enable exact restarts), it may not be readable on another machine. In this case, you can use
the -r command-line switch to convert a restart file to a data file.

The optional nfile or fileper keywords can be used in conjunction with the "%" wildcard character in the
specified restart file name(s). As explained above, the "%" character causes the restart file to be written in
pieces, one piece for each of P processors. By default P = the number of processors the simulation is running
on. The nfile or fileper keyword can be used to set P to a smaller value, which can be more efficient when
running on a large number of processors.

The nfile keyword sets P to the specified Nf value. For example, if Nf = 4, and the simulation is running on
100 processors, 4 files will be written, by processors 0,25,50,75. Each will collect information from itself and
the next 24 processors and write it to a restart file.

For the fileper keyword, the specified value of Np means write one file for every Np processors. For example,
if Np = 4, every 4th processor (0,4,8,12,etc) will collect information from itself and the next 3 processors and
write it to a restart file.

Restrictions: none

Related commands:

write_restart, read_restart

Default:

restart 0

LIGGGHTS Users Manual

restart command 1010

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

run command

Syntax:

run N keyword values ...

N = # of timesteps•
zero or more keyword/value pairs may be appended•
keyword = upto or start or stop or pre or post or every

upto value = none
start value = N1

 N1 = timestep at which 1st run started
stop value = N2

 N2 = timestep at which last run will end
pre value = no or yes
post value = no or yes
every values = M c1 c2 ...

 M = break the run into M-timestep segments and invoke one or more commands between each segment
 c1,c2,...,cN = one or more LAMMPS commands, each enclosed in quotes
 c1 = NULL means no command will be invoked

•

Examples:

run 10000
run 1000000 upto
run 100 start 0 stop 1000
run 1000 pre no post yes
run 100000 start 0 stop 1000000 every 1000 "print 'Protein Rg = $r'"
run 100000 every 1000 NULL

Description:

Run or continue dynamics for a specified number of timesteps.

When the run style is respa, N refers to outer loop (largest) timesteps.

A value of N = 0 is acceptable; only the thermodynamics of the system are computed and printed without
taking a timestep.

The upto keyword means to perform a run starting at the current timestep up to the specified timestep. E.g. if
the current timestep is 10,000 and "run 100000 upto" is used, then an additional 90,000 timesteps will be run.
This can be useful for very long runs on a machine that allocates chunks of time and terminate your job when
time is exceeded. If you need to restart your script multiple times (reading in the last restart file), you can keep
restarting your script with the same run command until the simulation finally completes.

The start or stop keywords can be used if multiple runs are being performed and you want a fix command that
changes some value over time (e.g. temperature) to make the change across the entire set of runs and not just a
single run. See the doc page for individual fixes to see which ones can be used with the start/stop keywords.

For example, consider this fix followed by 10 run commands:

fix 1 all nvt 200.0 300.0 1.0
run 1000 start 0 stop 10000
run 1000 start 0 stop 10000
...

LIGGGHTS Users Manual

run command 1011

http://lammps.sandia.gov

run 1000 start 0 stop 10000

The NVT fix ramps the target temperature from 200.0 to 300.0 during a run. If the run commands did not
have the start/stop keywords (just "run 1000"), then the temperature would ramp from 200.0 to 300.0 during
the 1000 steps of each run. With the start/stop keywords, the ramping takes place over the 10000 steps of all
runs together.

The pre and post keywords can be used to streamline the setup, clean-up, and associated output to the screen
that happens before and after a run. This can be useful if you wish to do many short runs in succession (e.g.
LAMMPS is being called as a library which is doing other computations between successive short LAMMPS
runs).

By default (pre and post = yes), LAMMPS creates neighbor lists, computes forces, and imposes fix constraints
before every run. And after every run it gathers and prints timings statistics. If a run is just a continuation of a
previous run (i.e. no settings are changed), the initial computation is not necessary; the old neighbor list is still
valid as are the forces. So if pre is specified as "no" then the initial setup is skipped, except for printing
thermodynamic info. Note that if pre is set to "no" for the very 1st run LAMMPS performs, then it is
overridden, since the initial setup computations must be done.

IMPORTANT NOTE: If your input script changes settings between 2 runs (e.g. adds a fix or dump or
compute or changes a neighbor list parameter), then the initial setup must be performed. LAMMPS does not
check for this, but it would be an error to use the pre no option in this case.

If post is specified as "no", the full timing summary is skipped; only a one-line summary timing is printed.

The every keyword provides a means of breaking a LAMMPS run into a series of shorter runs. Optionally,
one or more LAMMPS commands (c1, c2, ..., cN) will be executed in between the short runs. If used, the
every keyword must be the last keyword, since it has a variable number of arguments. Each of the trailing
arguments is a single LAMMPS command, and each command should be enclosed in quotes, so that the entire
command will be treated as a single argument. This will also prevent any variables in the command from
being evaluated until it is executed multiple times during the run. Note that if a command itself needs one of
its arguments quoted (e.g. the print command), then you can use a combination of single and double quotes, as
in the example above or below.

The every keyword is a means to avoid listing a long series of runs and interleaving commands in your input
script. For example, a print command could be invoked or a fix could be redefined, e.g. to reset a thermostat
temperature. Or this could be useful for invoking a command you have added to LAMMPS that wraps some
other code (e.g. as a library) to perform a computation periodically during a long LAMMPS run. See this
section of the documentation for info about how to add new commands to LAMMPS. See this section of the
documentation for ideas about how to couple LAMMPS to other codes.

With the every option, N total steps are simulated, in shorter runs of M steps each. After each M-length run,
the specified commands are invoked. If only a single command is specified as NULL, then no command is
invoked. Thus these lines:

variable q equal x[100]
run 6000 every 2000 "print Coord = $q"

are the equivalent of:

variable q equal x[100]
run 2000
print Coord = $q
run 2000
print Coord = $q
run 2000

LIGGGHTS Users Manual

run command 1012

print Coord = $q

which does 3 runs of 2000 steps and prints the x-coordinate of a particular atom between runs. Note that the
variable "$q" will be evaluated afresh each time the print command is executed.

Note that by using the line continuation character "&", the run every command can be spread across many
lines, though it is still a single command:

run 100000 every 1000 &
 "print 'Minimum value = $a'" &
 "print 'Maximum value = $b'" &
 "print 'Temp = $c'" &
 "print 'Press = $d'"

If the pre and post options are set to "no" when used with the every keyword, then the 1st run will do the full
setup and the last run will print the full timing summary, but these operations will be skipped for intermediate
runs.

IMPORTANT NOTE: You might hope to specify a command that exits the run by jumping out of the loop,
e.g.

variable t equal temp
run 10000 every 100 "if '$t <300.0' then 'jump SELF afterrun'"

Unfortunately this will not currently work. The run command simply executes each command one at a time
each time it pauses, then continues the run. You can replace the jump command with a simple quit command
and cause LAMMPS to exit during the middle of a run when the condition is met.

Restrictions:

The number of specified timesteps N must fit in a signed 32-bit integer, so you are limited to slightly more
than 2 billion steps (2^31) in a single run. However, you can perform successive runs to run a simulation for
any number of steps (ok, up to 2^63 steps).

Related commands:

minimize, run_style, temper

Default:

The option defaults are start = the current timestep, stop = current timestep + N, pre = yes, and post = yes.

LIGGGHTS Users Manual

run command 1013

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

run_style command

Syntax:

run_style style args

style = verlet or verlet/split or respa or respa/omp

verlet args = none
verlet/split args = none
respa args = N n1 n2 ... keyword values ...

 N = # of levels of rRESPA
 n1, n2, ... = loop factor between rRESPA levels (N-1 values)
 zero or more keyword/value pairings may be appended to the loop factors
 keyword = bond or angle or dihedral or improper or

pair or inner or middle or outer or kspace
bond value = M

 M = which level (1-N) to compute bond forces in
angle value = M

 M = which level (1-N) to compute angle forces in
dihedral value = M

 M = which level (1-N) to compute dihedral forces in
improper value = M

 M = which level (1-N) to compute improper forces in
pair value = M

 M = which level (1-N) to compute pair forces in
inner values = M cut1 cut2

 M = which level (1-N) to compute pair inner forces in
 cut1 = inner cutoff between pair inner and
 pair middle or outer (distance units)
 cut2 = outer cutoff between pair inner and
 pair middle or outer (distance units)

middle values = M cut1 cut2
 M = which level (1-N) to compute pair middle forces in
 cut1 = inner cutoff between pair middle and pair outer (distance units)
 cut2 = outer cutoff between pair middle and pair outer (distance units)

outer value = M
 M = which level (1-N) to compute pair outer forces in

kspace value = M
 M = which level (1-N) to compute kspace forces in

•

Examples:

run_style verlet
run_style respa 4 2 2 2 bond 1 dihedral 2 pair 3 kspace 4
run_style respa 4 2 2 2 bond 1 dihedral 2 inner 3 5.0 6.0 outer 4 kspace 4

Description:

Choose the style of time integrator used for molecular dynamics simulations performed by LAMMPS.

The verlet style is a standard velocity-Verlet integrator.

The verlet/split style is also a velocity-Verlet integrator, but it splits the force calculation within each timestep
over 2 partitions of processors. See Section_start 6 for an explanation of the -partition command-line switch.

Specifically, this style performs all computation except the kspace_style portion of the force field on the 1st
partition. This include the pair style, bond style, neighbor list building, fixes including time intergration, and

LIGGGHTS Users Manual

run_style command 1014

http://lammps.sandia.gov

output. The kspace_style portion of the calculation is performed on the 2nd partition.

This is most useful for the PPPM kspace_style when its performance on a large number of processors
degrades due to the cost of communication in its 3d FFTs. In this scenario, splitting your P total processors
into 2 subsets of processors, P1 in the 1st partition and P2 in the 2nd partition, can enable your simulation to
run faster. This is because the long-range forces in PPPM can be calculated at the same time as pair-wise and
bonded forces are being calculated, and the FFTs can actually speed up when running on fewer processors.

To use this style, you must define 2 partitions where P1 is a multiple of P2. Typically having P1 be 3x larger
than P2 is a good choice. The 3d processor layouts in each partition must overlay in the following sense. If P1
is a Px1 by Py1 by Pz1 grid, and P2 = Px2 by Py2 by Pz2, then Px1 must be an integer multiple of Px2, and
similarly for Py1 a multiple of Py2, and Pz1 a multiple of Pz2.

Typically the best way to do this is to let the 1st partition choose its onn optimal layout, then require the 2nd
partition's layout to match the integer multiple constraint. See the processors command with its part keyword
for a way to control this, e.g.

procssors * * * part 1 2 multiple

You can also use the partition command to explicitly specity the processor layout on each partition. E.g. for 2
partitions of 60 and 15 processors each:

partition yes 1 processors 3 4 5
partition yes 2 processors 3 1 5

When you run in 2-partition mode with the verlet/split style, the thermodyanmic data for the entire simulation
will be output to the log and screen file of the 1st partition, which are log.lammps.0 and screen.0 by default;
see the "-plog and -pscreen command-line switches"Section_start.html#start_7 to change this. The log and
screen file for the 2nd partition will not contain thermodynamic output beyone the 1st timestep of the run.

See Section_accelerate of the manual for performance details of the speed-up offered by the verlet/split style.
One important performance consideration is the assignemnt of logical processors in the 2 partitions to the
physical cores of a parallel machine. The processors command has options to support this, and strategies are
discussed in Section_accelerate of the manual.

The respa style implements the rRESPA multi-timescale integrator (Tuckerman) with N hierarchical levels,
where level 1 is the innermost loop (shortest timestep) and level N is the outermost loop (largest timestep).
The loop factor arguments specify what the looping factor is between levels. N1 specifies the number of
iterations of level 1 for a single iteration of level 2, N2 is the iterations of level 2 per iteration of level 3, etc.
N-1 looping parameters must be specified.

The timestep command sets the timestep for the outermost rRESPA level. Thus if the example command
above for a 4-level rRESPA had an outer timestep of 4.0 fmsec, the inner timestep would be 8x smaller or 0.5
fmsec. All other LAMMPS commands that specify number of timesteps (e.g. neigh_modify parameters, dump
every N timesteps, etc) refer to the outermost timesteps.

The rRESPA keywords enable you to specify at what level of the hierarchy various forces will be computed.
If not specified, the defaults are that bond forces are computed at level 1 (innermost loop), angle forces are
computed where bond forces are, dihedral forces are computed where angle forces are, improper forces are
computed where dihedral forces are, pair forces are computed at the outermost level, and kspace forces are
computed where pair forces are. The inner, middle, outer forces have no defaults.

The inner and middle keywords take additional arguments for cutoffs that are used by the pairwise force
computations. If the 2 cutoffs for inner are 5.0 and 6.0, this means that all pairs up to 6.0 apart are computed
by the inner force. Those between 5.0 and 6.0 have their force go ramped to 0.0 so the overlap with the next

LIGGGHTS Users Manual

run_style command 1015

regime (middle or outer) is smooth. The next regime (middle or outer) will compute forces for all pairs from
5.0 outward, with those from 5.0 to 6.0 having their value ramped in an inverse manner.

Only some pair potentials support the use of the inner and middle and outer keywords. If not, only the pair
keyword can be used with that pair style, meaning all pairwise forces are computed at the same rRESPA level.
See the doc pages for individual pair styles for details.

When using rRESPA (or for any MD simulation) care must be taken to choose a timestep size(s) that insures
the Hamiltonian for the chosen ensemble is conserved. For the constant NVE ensemble, total energy must be
conserved. Unfortunately, it is difficult to know a priori how well energy will be conserved, and a fairly long
test simulation (~10 ps) is usually necessary in order to verify that no long-term drift in energy occurs with the
trial set of parameters.

With that caveat, a few rules-of-thumb may be useful in selecting respa settings. The following applies mostly
to biomolecular simulations using the CHARMM or a similar all-atom force field, but the concepts are
adaptable to other problems. Without SHAKE, bonds involving hydrogen atoms exhibit high-frequency
vibrations and require a timestep on the order of 0.5 fmsec in order to conserve energy. The relatively
inexpensive force computations for the bonds, angles, impropers, and dihedrals can be computed on this
innermost 0.5 fmsec step. The outermost timestep cannot be greater than 4.0 fmsec without risking energy
drift. Smooth switching of forces between the levels of the rRESPA hierarchy is also necessary to avoid drift,
and a 1-2 angstrom "healing distance" (the distance between the outer and inner cutoffs) works reasonably
well. We thus recommend the following settings for use of the respa style without SHAKE in biomolecular
simulations:

timestep 4.0
run_style respa 4 2 2 2 inner 2 4.5 6.0 middle 3 8.0 10.0 outer 4

With these settings, users can expect good energy conservation and roughly a 2.5 fold speedup over the verlet
style with a 0.5 fmsec timestep.

If SHAKE is used with the respa style, time reversibility is lost, but substantially longer time steps can be
achieved. For biomolecular simulations using the CHARMM or similar all-atom force field, bonds involving
hydrogen atoms exhibit high frequency vibrations and require a time step on the order of 0.5 fmsec in order to
conserve energy. These high frequency modes also limit the outer time step sizes since the modes are coupled.
It is therefore desirable to use SHAKE with respa in order to freeze out these high frequency motions and
increase the size of the time steps in the respa hierarchy. The following settings can be used for biomolecular
simulations with SHAKE and rRESPA:

fix 2 all shake 0.000001 500 0 m 1.0 a 1
timestep 4.0
run_style respa 2 2 inner 1 4.0 5.0 outer 2

With these settings, users can expect good energy conservation and roughly a 1.5 fold speedup over the verlet
style with SHAKE and a 2.0 fmsec timestep.

For non-biomolecular simulations, the respa style can be advantageous if there is a clear separation of time
scales - fast and slow modes in the simulation. Even a LJ system can benefit from rRESPA if the interactions
are divided by the inner, middle and outer keywords. A 2-fold or more speedup can be obtained while
maintaining good energy conservation. In real units, for a pure LJ fluid at liquid density, with a sigma of 3.0
angstroms, and epsilon of 0.1 Kcal/mol, the following settings seem to work well:

timestep 36.0
run_style respa 3 3 4 inner 1 3.0 4.0 middle 2 6.0 7.0 outer 3

The respa/omp styles is a variant of respa adapted for use with pair, bond, angle, dihedral, improper, or
kspace styles with an omp suffix. It is functionally to respa but performs additional required operations. For

LIGGGHTS Users Manual

run_style command 1016

more on omp styles see the Section_accelerate of the manual. Accelerated styles take the same arguments and
should produce the same results, except for round-off and precision issues.

The respa/omp style is part of the USER-OMP packages. It is only enabled if LAMMPS was built with this
package included. See the Making LAMMPS section for more info.

You can specify respa/omp explicitly in your input script, or you can use the -suffix command-line switch
when you invoke LAMMPS, or you can use the suffix command in your input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

The verlet/split style can only be used if LAMMPS was built with the REPLICA package. See the Making
LAMMPS section for more info on packages.

Whenever using rRESPA, the user should experiment with trade-offs in speed and accuracy for their system,
and verify that they are conserving energy to adequate precision.

Related commands:

timestep, run

Default:

run_style verlet

(Tuckerman) Tuckerman, Berne and Martyna, J Chem Phys, 97, p 1990 (1992).

LIGGGHTS Users Manual

run_style command 1017

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

5. Accelerating LAMMPS performance

This section describes various methods for improving LAMMPS performance for different classes of
problems running on different kinds of machines.

5.1 Measuring performance
5.2 General strategies
5.3 Packages with optimized styles
5.4 OPT package
5.5 USER-OMP package
5.6 GPU package
5.7 USER-CUDA package
5.8 Comparison of GPU and USER-CUDA packages

5.1 Measuring performance

Before trying to make your simulation run faster, you should understand how it currently performs and where
the bottlenecks are.

The best way to do this is run the your system (actual number of atoms) for a modest number of timesteps
(say 100, or a few 100 at most) on several different processor counts, including a single processor if possible.
Do this for an equilibrium version of your system, so that the 100-step timings are representative of a much
longer run. There is typically no need to run for 1000s or timesteps to get accurate timings; you can simply
extrapolate from short runs.

For the set of runs, look at the timing data printed to the screen and log file at the end of each LAMMPS run.
This section of the manual has an overview.

Running on one (or a few processors) should give a good estimate of the serial performance and what portions
of the timestep are taking the most time. Running the same problem on a few different processor counts
should give an estimate of parallel scalability. I.e. if the simulation runs 16x faster on 16 processors, its 100%
parallel efficient; if it runs 8x faster on 16 processors, it's 50% efficient.

The most important data to look at in the timing info is the timing breakdown and relative percentages. For
example, trying different options for speeding up the long-range solvers will have little impact if they only
consume 10% of the run time. If the pairwise time is dominating, you may want to look at GPU or OMP
versions of the pair style, as discussed below. Comparing how the percentages change as you increase the
processor count gives you a sense of how different operations within the timestep are scaling. Note that if you
are running with a Kspace solver, there is additional output on the breakdown of the Kspace time. For PPPM,
this includes the fraction spent on FFTs, which can be communication intensive.

Another important detail in the timing info are the histograms of atoms counts and neighbor counts. If these
vary widely across processors, you have a load-imbalance issue. This often results in inaccurate relative
timing data, because processors have to wait when communication occurs for other processors to catch up.
Thus the reported times for "Communication" or "Other" may be higher than they really are, due to
load-imbalance. If this is an issue, you can uncomment the MPI_Barrier() lines in src/timer.cpp, and
recompile LAMMPS, to obtain synchronized timings.

LIGGGHTS Users Manual

5. Accelerating LAMMPS performance 1018

http://lammps.sandia.gov

5.2 General strategies

NOTE: this sub-section is still a work in progress

Here is a list of general ideas for improving simulation performance. Most of them are only applicable to
certain models and certain bottlenecks in the current performance, so let the timing data you intially generate
be your guide. It is hard, if not impossible, to predict how much difference these options will make, since it is
a function of your problem and your machine. There is no substitute for simply trying them out.

rRESPA•
2-FFT PPPM•
Staggered PPPM•
single vs double PPPM•
partial charge PPPM•
verlet/split•
processor mapping via processors numa command•
load-balancing: balance and fix balance•
processor command for layout•
OMP when lots of cores•

2-FFT PPPM, also called analytic differentiation or ad PPPM, uses 2 FFTs instead of the 4 FFTs used by the
default ik differentiation PPPM. However, 2-FFT PPPM also requires a slightly larger mesh size to achieve
the same accuracy as 4-FFT PPPM. For problems where the FFT cost is the performance bottleneck (typically
large problems running on many processors), 2-FFT PPPM may be faster than 4-FFT PPPM.

Staggered PPPM performs calculations using two different meshes, one shifted slightly with respect to the
other. This can reduce force aliasing errors and increase the accuracy of the method, but also doubles the
amount of work required. For high relative accuracy, using staggered PPPM allows one to half the mesh size
in each dimension as compared to regular PPPM, which can give around a 4x speedup in the kspace time.
However, for low relative accuracy, using staggered PPPM gives little benefit and can be up to 2x slower in
the kspace time. For example, the rhodopsin benchmark was run on a single processor, and results for kspace
time vs. relative accuracy for the different methods are shown in the figure below. For this system, staggered
PPPM (using ik differentiation) becomes useful when using a relative accuracy of slightly greater than 1e-5
and above.

LIGGGHTS Users Manual

5.2 General strategies 1019

IMPORTANT NOTE: Using staggered PPPM may not give the same increase in accuracy of energy and
pressure as it does in forces, so some caution must be used if energy and/or pressure are quantities of interest,
such as when using a barostat.

5.3 Packages with optimized styles

Accelerated versions of various pair_style, fixes, computes, and other commands have been added to
LAMMPS, which will typically run faster than the standard non-accelerated versions, if you have the
appropriate hardware on your system.

The accelerated styles have the same name as the standard styles, except that a suffix is appended. Otherwise,
the syntax for the command is identical, their functionality is the same, and the numerical results it produces
should also be identical, except for precision and round-off issues.

For example, all of these variants of the basic Lennard-Jones pair style exist in LAMMPS:

pair_style lj/cut•
pair_style lj/cut/opt•
pair_style lj/cut/omp•
pair_style lj/cut/gpu•
pair_style lj/cut/cuda•

Assuming you have built LAMMPS with the appropriate package, these styles can be invoked by specifying
them explicitly in your input script. Or you can use the -suffix command-line switch to invoke the accelerated
versions automatically, without changing your input script. The suffix command allows you to set a suffix
explicitly and to turn off/on the comand-line switch setting, both from within your input script.

Styles with an "opt" suffix are part of the OPT package and typically speed-up the pairwise calculations of
your simulation by 5-25%.

Styles with an "omp" suffix are part of the USER-OMP package and allow a pair-style to be run in
multi-threaded mode using OpenMP. This can be useful on nodes with high-core counts when using less MPI
processes than cores is advantageous, e.g. when running with PPPM so that FFTs are run on fewer MPI

LIGGGHTS Users Manual

5.3 Packages with optimized styles 1020

processors or when the many MPI tasks would overload the available bandwidth for communication.

Styles with a "gpu" or "cuda" suffix are part of the GPU or USER-CUDA packages, and can be run on
NVIDIA GPUs associated with your CPUs. The speed-up due to GPU usage depends on a variety of factors,
as discussed below.

To see what styles are currently available in each of the accelerated packages, see Section_commands 5 of the
manual. A list of accelerated styles is included in the pair, fix, compute, and kspace sections.

The following sections explain:

what hardware and software the accelerated styles require•
how to build LAMMPS with the accelerated packages in place•
what changes (if any) are needed in your input scripts•
guidelines for best performance•
speed-ups you can expect•

The final section compares and contrasts the GPU and USER-CUDA packages, since they are both designed
to use NVIDIA GPU hardware.

5.4 OPT package

The OPT package was developed by James Fischer (High Performance Technologies), David Richie, and
Vincent Natoli (Stone Ridge Technologies). It contains a handful of pair styles whose compute() methods
were rewritten in C++ templated form to reduce the overhead due to if tests and other conditional code.

The procedure for building LAMMPS with the OPT package is simple. It is the same as for any other package
which has no additional library dependencies:

make yes-opt
make machine

If your input script uses one of the OPT pair styles, you can run it as follows:

lmp_machine -sf opt <in.script
mpirun -np 4 lmp_machine -sf opt <in.script

You should see a reduction in the "Pair time" printed out at the end of the run. On most machines and
problems, this will typically be a 5 to 20% savings.

5.5 USER-OMP package

The USER-OMP package was developed by Axel Kohlmeyer at Temple University. It provides
multi-threaded versions of most pair styles, all dihedral styles and a few fixes in LAMMPS. The package
currently uses the OpenMP interface which requires using a specific compiler flag in the makefile to enable
multiple threads; without this flag the corresponding pair styles will still be compiled and work, but do not
support multi-threading.

Building LAMMPS with the USER-OMP package:

The procedure for building LAMMPS with the USER-OMP package is simple. You have to edit your
machine specific makefile to add the flag to enable OpenMP support to the CCFLAGS and LINKFLAGS
variables. For the GNU compilers for example this flag is called -fopenmp. Check your compiler
documentation to find out which flag you need to add. The rest of the compilation is the same as for any other
package which has no additional library dependencies:

LIGGGHTS Users Manual

5.4 OPT package 1021

make yes-user-omp
make machine

Please note that this will only install accelerated versions of styles that are already installed, so you want to
install this package as the last package, or else you may be missing some accelerated styles. If you plan to
uninstall some package, you should first uninstall the USER-OMP package then the other package and then
re-install USER-OMP, to make sure that there are no orphaned omp style files present, which would lead to
compilation errors.

If your input script uses one of regular styles that are also exist as an OpenMP version in the USER-OMP
package you can run it as follows:

env OMP_NUM_THREADS=4 lmp_serial -sf omp -in in.script
env OMP_NUM_THREADS=2 mpirun -np 2 lmp_machine -sf omp -in in.script
mpirun -x OMP_NUM_THREADS=2 -np 2 lmp_machine -sf omp -in in.script

The value of the environment variable OMP_NUM_THREADS determines how many threads per MPI task
are launched. All three examples above use a total of 4 CPU cores. For different MPI implementations the
method to pass the OMP_NUM_THREADS environment variable to all processes is different. Two different
variants, one for MPICH and OpenMPI, respectively are shown above. Please check the documentation of
your MPI installation for additional details. Alternatively, the value provided by OMP_NUM_THREADS can
be overridded with the package omp command. Depending on which styles are accelerated in your input, you
should see a reduction in the "Pair time" and/or "Bond time" and "Loop time" printed out at the end of the run.
The optimal ratio of MPI to OpenMP can vary a lot and should always be confirmed through some benchmark
runs for the current system and on the current machine.

Restrictions:

None of the pair styles in the USER-OMP package support the "inner", "middle", "outer" options for
r-RESPA integration, only the "pair" option is supported.

Parallel efficiency and performance tips:

In most simple cases the MPI parallelization in LAMMPS is more efficient than multi-threading implemented
in the USER-OMP package. Also the parallel efficiency varies between individual styles. On the other hand,
in many cases you still want to use the omp version - even when compiling or running without OpenMP
support - since they all contain optimizations similar to those in the OPT package, which can result in serial
speedup.

Using multi-threading is most effective under the following circumstances:

Individual compute nodes have a significant number of CPU cores but the CPU itself has limited
memory bandwidth, e.g. Intel Xeon 53xx (Clovertown) and 54xx (Harpertown) quad core processors.
Running one MPI task per CPU core will result in significant performance degradation, so that
running with 4 or even only 2 MPI tasks per nodes is faster. Running in hybrid MPI+OpenMP mode
will reduce the inter-node communication bandwidth contention in the same way, but offers and
additional speedup from utilizing the otherwise idle CPU cores.

•

The interconnect used for MPI communication is not able to provide sufficient bandwidth for a large
number of MPI tasks per node. This applies for example to running over gigabit ethernet or on Cray
XT4 or XT5 series supercomputers. Same as in the aforementioned case this effect worsens with
using an increasing number of nodes.

•

The input is a system that has an inhomogeneous particle density which cannot be mapped well to the
domain decomposition scheme that LAMMPS employs. While this can be to some degree alleviated
through using the processors keyword, multi-threading provides a parallelism that parallelizes over
the number of particles not their distribution in space.

•

LIGGGHTS Users Manual

5.5 USER-OMP package 1022

Finally, multi-threaded styles can improve performance when running LAMMPS in "capability
mode", i.e. near the point where the MPI parallelism scales out. This can happen in particular when
using as kspace style for long-range electrostatics. Here the scaling of the kspace style is the
performance limiting factor and using multi-threaded styles allows to operate the kspace style at the
limit of scaling and then increase performance parallelizing the real space calculations with hybrid
MPI+OpenMP. Sometimes additional speedup can be achived by increasing the real-space coulomb
cutoff and thus reducing the work in the kspace part.

•

The best parallel efficiency from omp styles is typically achieved when there is at least one MPI task per
physical processor, i.e. socket or die.

Using threads on hyper-threading enabled cores is usually counterproductive, as the cost in additional memory
bandwidth requirements is not offset by the gain in CPU utilization through hyper-threading.

A description of the multi-threading strategy and some performance examples are presented here

5.6 GPU package

The GPU package was developed by Mike Brown at ORNL. It provides GPU versions of several pair styles
and for long-range Coulombics via the PPPM command. It has the following features:

The package is designed to exploit common GPU hardware configurations where one or more GPUs
are coupled with many cores of a multi-core CPUs, e.g. within a node of a parallel machine.

•

Atom-based data (e.g. coordinates, forces) moves back-and-forth between the CPU(s) and GPU every
timestep.

•

Neighbor lists can be constructed on the CPU or on the GPU•
The charge assignement and force interpolation portions of PPPM can be run on the GPU. The FFT
portion, which requires MPI communication between processors, runs on the CPU.

•

Asynchronous force computations can be performed simultaneously on the CPU(s) and GPU.•
LAMMPS-specific code is in the GPU package. It makes calls to a generic GPU library in the lib/gpu
directory. This library provides NVIDIA support as well as more general OpenCL support, so that the
same functionality can eventually be supported on a variety of GPU hardware.

•

NOTE: discuss 3 precisions if change, also have to re-link with LAMMPS always use newton off expt with
differing numbers of CPUs vs GPU - can't tell what is fastest give command line switches in examples

I am not very clear to the meaning of "Max Mem / Proc" in the "GPU Time Info (average)". Is it the maximal
of GPU memory used by one CPU core?

It is the maximum memory used at one time on the GPU for data storage by a single MPI process. - Mike

Hardware and software requirements:

To use this package, you currently need to have specific NVIDIA hardware and install specific NVIDIA
CUDA software on your system:

Check if you have an NVIDIA card: cat /proc/driver/nvidia/cards/0•
Go to http://www.nvidia.com/object/cuda_get.html•
Install a driver and toolkit appropriate for your system (SDK is not necessary)•
Follow the instructions in lammps/lib/gpu/README to build the library (see below)•
Run lammps/lib/gpu/nvc_get_devices to list supported devices and properties•

Building LAMMPS with the GPU package:

LIGGGHTS Users Manual

5.6 GPU package 1023

http://sites.google.com/site/akohlmey/software/lammps-icms/lammps-icms-tms2011-talk.pdf?attredirects=0&d=1

As with other packages that include a separately compiled library, you need to first build the GPU library,
before building LAMMPS itself. General instructions for doing this are in this section of the manual. For this
package, do the following, using a Makefile in lib/gpu appropriate for your system:

cd lammps/lib/gpu
make -f Makefile.linux
(see further instructions in lammps/lib/gpu/README)

If you are successful, you will produce the file lib/libgpu.a.

Now you are ready to build LAMMPS with the GPU package installed:

cd lammps/src
make yes-gpu
make machine

Note that the lo-level Makefile (e.g. src/MAKE/Makefile.linux) has these settings: gpu_SYSINC,
gpu_SYSLIB, gpu_SYSPATH. These need to be set appropriately to include the paths and settings for the
CUDA system software on your machine. See src/MAKE/Makefile.g++ for an example.

GPU configuration

When using GPUs, you are restricted to one physical GPU per LAMMPS process, which is an MPI process
running on a single core or processor. Multiple MPI processes (CPU cores) can share a single GPU, and in
many cases it will be more efficient to run this way.

Input script requirements:

Additional input script requirements to run pair or PPPM styles with a gpu suffix are as follows:

To invoke specific styles from the GPU package, you can either append "gpu" to the style name (e.g.
pair_style lj/cut/gpu), or use the -suffix command-line switch, or use the suffix command.

•

The newton pair setting must be off.•
The package gpu command must be used near the beginning of your script to control the GPU
selection and initialization settings. It also has an option to enable asynchronous splitting of force
computations between the CPUs and GPUs.

•

As an example, if you have two GPUs per node and 8 CPU cores per node, and would like to run on 4 nodes
(32 cores) with dynamic balancing of force calculation across CPU and GPU cores, you could specify

package gpu force/neigh 0 1 -1

In this case, all CPU cores and GPU devices on the nodes would be utilized. Each GPU device would be
shared by 4 CPU cores. The CPU cores would perform force calculations for some fraction of the particles at
the same time the GPUs performed force calculation for the other particles.

Timing output:

As described by the package gpu command, GPU accelerated pair styles can perform computations
asynchronously with CPU computations. The "Pair" time reported by LAMMPS will be the maximum of the
time required to complete the CPU pair style computations and the time required to complete the GPU pair
style computations. Any time spent for GPU-enabled pair styles for computations that run simultaneously
with bond, angle, dihedral, improper, and long-range calculations will not be included in the "Pair" time.

When the mode setting for the package gpu command is force/neigh, the time for neighbor list calculations on
the GPU will be added into the "Pair" time, not the "Neigh" time. An additional breakdown of the times

LIGGGHTS Users Manual

5.6 GPU package 1024

required for various tasks on the GPU (data copy, neighbor calculations, force computations, etc) are output
only with the LAMMPS screen output (not in the log file) at the end of each run. These timings represent total
time spent on the GPU for each routine, regardless of asynchronous CPU calculations.

Performance tips:

Generally speaking, for best performance, you should use multiple CPUs per GPU, as provided my most
multi-core CPU/GPU configurations.

Because of the large number of cores within each GPU device, it may be more efficient to run on fewer
processes per GPU when the number of particles per MPI process is small (100's of particles); this can be
necessary to keep the GPU cores busy.

See the lammps/lib/gpu/README file for instructions on how to build the GPU library for single, mixed, or
double precision. The latter requires that your GPU card support double precision.

5.7 USER-CUDA package

The USER-CUDA package was developed by Christian Trott at U Technology Ilmenau in Germany. It
provides NVIDIA GPU versions of many pair styles, many fixes, a few computes, and for long-range
Coulombics via the PPPM command. It has the following features:

The package is designed to allow an entire LAMMPS calculation, for many timesteps, to run entirely
on the GPU (except for inter-processor MPI communication), so that atom-based data (e.g.
coordinates, forces) do not have to move back-and-forth between the CPU and GPU.

•

The speed-up advantage of this approach is typically better when the number of atoms per GPU is
large

•

Data will stay on the GPU until a timestep where a non-GPU-ized fix or compute is invoked.
Whenever a non-GPU operation occurs (fix, compute, output), data automatically moves back to the
CPU as needed. This may incur a performance penalty, but should otherwise work transparently.

•

Neighbor lists for GPU-ized pair styles are constructed on the GPU.•
The package only supports use of a single CPU (core) with each GPU.•

Hardware and software requirements:

To use this package, you need to have specific NVIDIA hardware and install specific NVIDIA CUDA
software on your system.

Your NVIDIA GPU needs to support Compute Capability 1.3. This list may help you to find out the Compute
Capability of your card:

http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units

Install the Nvidia Cuda Toolkit in version 3.2 or higher and the corresponding GPU drivers. The Nvidia Cuda
SDK is not required for LAMMPSCUDA but we recommend it be installed. You can then make sure that its
sample projects can be compiled without problems.

Building LAMMPS with the USER-CUDA package:

As with other packages that include a separately compiled library, you need to first build the USER-CUDA
library, before building LAMMPS itself. General instructions for doing this are in this section of the manual.
For this package, do the following, using settings in the lib/cuda Makefiles appropriate for your system:

Go to the lammps/lib/cuda directory•

LIGGGHTS Users Manual

5.7 USER-CUDA package 1025

If your CUDA toolkit is not installed in the default system directoy /usr/local/cuda edit the file
lib/cuda/Makefile.common accordingly.

•

Type "make OPTIONS", where OPTIONS are one or more of the following options. The settings will
be written to the lib/cuda/Makefile.defaults and used in the next step.

precision=N to set the precision level
 N = 1 for single precision (default)
 N = 2 for double precision
 N = 3 for positions in double precision
 N = 4 for positions and velocities in double precision
arch=M to set GPU compute capability
 M = 20 for CC2.0 (GF100/110, e.g. C2050,GTX580,GTX470) (default)
 M = 21 for CC2.1 (GF104/114, e.g. GTX560, GTX460, GTX450)
 M = 13 for CC1.3 (GF200, e.g. C1060, GTX285)
prec_timer=0/1 to use hi-precision timers
 0 = do not use them (default)
 1 = use these timers
 this is usually only useful for Mac machines
dbg=0/1 to activate debug mode
 0 = no debug mode (default)
 1 = yes debug mode
 this is only useful for developers
cufft=1 to determine usage of CUDA FFT library
 0 = no CUFFT support (default)
 in the future other CUDA-enabled FFT libraries might be supported

•

Type "make" to build the library. If you are successful, you will produce the file lib/libcuda.a.•

Now you are ready to build LAMMPS with the USER-CUDA package installed:

cd lammps/src
make yes-user-cuda
make machine

Note that the LAMMPS build references the lib/cuda/Makefile.common file to extract setting specific CUDA
settings. So it is important that you have first built the cuda library (in lib/cuda) using settings appropriate to
your system.

Input script requirements:

Additional input script requirements to run styles with a cuda suffix are as follows:

To invoke specific styles from the USER-CUDA package, you can either append "cuda" to the style
name (e.g. pair_style lj/cut/cuda), or use the -suffix command-line switch, or use the suffix command.
One exception is that the kspace_style pppm/cuda command has to be requested explicitly.

•

To use the USER-CUDA package with its default settings, no additional command is needed in your
input script. This is because when LAMMPS starts up, it detects if it has been built with the
USER-CUDA package. See the -cuda command-line switch for more details.

•

To change settings for the USER-CUDA package at run-time, the package cuda command can be
used near the beginning of your input script. See the package command doc page for details.

•

Performance tips:

The USER-CUDA package offers more speed-up relative to CPU performance when the number of atoms per
GPU is large, e.g. on the order of tens or hundreds of 1000s.

As noted above, this package will continue to run a simulation entirely on the GPU(s) (except for
inter-processor MPI communication), for multiple timesteps, until a CPU calculation is required, either by a
fix or compute that is non-GPU-ized, or until output is performed (thermo or dump snapshot or restart file).
The less often this occurs, the faster your simulation will run.

LIGGGHTS Users Manual

5.7 USER-CUDA package 1026

5.8 Comparison of GPU and USER-CUDA packages

Both the GPU and USER-CUDA packages accelerate a LAMMPS calculation using NVIDIA hardware, but
they do it in different ways.

As a consequence, for a particular simulation on specific hardware, one package may be faster than the other.
We give guidelines below, but the best way to determine which package is faster for your input script is to try
both of them on your machine. See the benchmarking section below for examples where this has been done.

Guidelines for using each package optimally:

The GPU package allows you to assign multiple CPUs (cores) to a single GPU (a common
configuration for "hybrid" nodes that contain multicore CPU(s) and GPU(s)) and works effectively in
this mode. The USER-CUDA package does not allow this; you can only use one CPU per GPU.

•

The GPU package moves per-atom data (coordinates, forces) back-and-forth between the CPU and
GPU every timestep. The USER-CUDA package only does this on timesteps when a CPU calculation
is required (e.g. to invoke a fix or compute that is non-GPU-ized). Hence, if you can formulate your
input script to only use GPU-ized fixes and computes, and avoid doing I/O too often (thermo output,
dump file snapshots, restart files), then the data transfer cost of the USER-CUDA package can be very
low, causing it to run faster than the GPU package.

•

The GPU package is often faster than the USER-CUDA package, if the number of atoms per GPU is
"small". The crossover point, in terms of atoms/GPU at which the USER-CUDA package becomes
faster depends strongly on the pair style. For example, for a simple Lennard Jones system the
crossover (in single precision) is often about 50K-100K atoms per GPU. When performing double
precision calculations the crossover point can be significantly smaller.

•

Both packages compute bonded interactions (bonds, angles, etc) on the CPU. This means a model
with bonds will force the USER-CUDA package to transfer per-atom data back-and-forth between the
CPU and GPU every timestep. If the GPU package is running with several MPI processes assigned to
one GPU, the cost of computing the bonded interactions is spread across more CPUs and hence the
GPU package can run faster.

•

When using the GPU package with multiple CPUs assigned to one GPU, its performance depends to
some extent on high bandwidth between the CPUs and the GPU. Hence its performance is affected if
full 16 PCIe lanes are not available for each GPU. In HPC environments this can be the case if
S2050/70 servers are used, where two devices generally share one PCIe 2.0 16x slot. Also many
multi-GPU mainboards do not provide full 16 lanes to each of the PCIe 2.0 16x slots.

•

Differences between the two packages:

The GPU package accelerates only pair force, neighbor list, and PPPM calculations. The
USER-CUDA package currently supports a wider range of pair styles and can also accelerate many
fix styles and some compute styles, as well as neighbor list and PPPM calculations.

•

The USER-CUDA package does not support acceleration for minimization.•
The USER-CUDA package does not support hybrid pair styles.•
The USER-CUDA package can order atoms in the neighbor list differently from run to run resulting
in a different order for force accumulation.

•

The USER-CUDA package has a limit on the number of atom types that can be used in a simulation.•
The GPU package requires neighbor lists to be built on the CPU when using exclusion lists or a
triclinic simulation box.

•

The GPU package uses more GPU memory than the USER-CUDA package. This is generally not a
problem since typical runs are computation-limited rather than memory-limited.

•

Examples:

LIGGGHTS Users Manual

5.8 Comparison of GPU and USER-CUDA packages 1027

The LAMMPS distribution has two directories with sample input scripts for the GPU and USER-CUDA
packages.

lammps/examples/gpu = GPU package files•
lammps/examples/USER/cuda = USER-CUDA package files•

These contain input scripts for identical systems, so they can be used to benchmark the performance of both
packages on your system.

LIGGGHTS Users Manual

5.8 Comparison of GPU and USER-CUDA packages 1028

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

3. Commands

This section describes how a LAMMPS input script is formatted and the input script commands used to define
a LAMMPS simulation.

3.1 LAMMPS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 LAMMPS input script

LAMMPS executes by reading commands from a input script (text file), one line at a time. When the input
script ends, LAMMPS exits. Each command causes LAMMPS to take some action. It may set an internal
variable, read in a file, or run a simulation. Most commands have default settings, which means you only need
to use the command if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules
apply:

(1) LAMMPS does not read your entire input script and then perform a simulation with all the settings.
Rather, the input script is read one line at a time and each command takes effect when it is read. Thus this
sequence of commands:

timestep 0.5
run 100
run 100

does something different than this sequence:

run 100
timestep 0.5
run 100

In the first case, the specified timestep (0.5 fmsec) is used for two simulations of 100 timesteps each. In the
2nd case, the default timestep (1.0 fmsec) is used for the 1st 100 step simulation and a 0.5 fmsec timestep is
used for the 2nd one.

(2) Some commands are only valid when they follow other commands. For example you cannot set the
temperature of a group of atoms until atoms have been defined and a group command is used to define which
atoms belong to the group.

(3) Sometimes command B will use values that can be set by command A. This means command A must
precede command B in the input script if it is to have the desired effect. For example, the read_data command
initializes the system by setting up the simulation box and assigning atoms to processors. If default values are
not desired, the processors and boundary commands need to be used before read_data to tell LAMMPS how
to map processors to the simulation box.

Many input script errors are detected by LAMMPS and an ERROR or WARNING message is printed. This
section gives more information on what errors mean. The documentation for each command lists restrictions

LIGGGHTS Users Manual

3. Commands 1029

http://lammps.sandia.gov

on how the command can be used.

3.2 Parsing rules

Each non-blank line in the input script is treated as a command. LAMMPS commands are case sensitive.
Command names are lower-case, as are specified command arguments. Upper case letters may be used in file
names or user-chosen ID strings.

Here is how each line in the input script is parsed by LAMMPS:

(1) If the last printable character on the line is a "&" character (with no surrounding quotes), the command is
assumed to continue on the next line. The next line is concatenated to the previous line by removing the "&"
character and newline. This allows long commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded. See an exception
in (6). Note that a comment after a trailing "&" character will prevent the command from continuing on the
next line. Also note that for multi-line commands a single leading "#" will comment out the entire command.

(3) The line is searched repeatedly for $ characters, which indicate variables that are replaced with a text
string. See an exception in (6).

If the $ is followed by curly brackets, then the variable name is the text inside the curly brackets. If no curly
brackets follow the $, then the variable name is the single character immediately following the $. Thus
${myTemp} and $x refer to variable names "myTemp" and "x".

If the $ is followed by parenthesis, then the text inside the parenthesis is treated as an "immediate" variable
and evaluated as an equal-style variable. This is a way to use numeric formulas in an input script without
having to assign them to variable names. For example, these 3 input script lines:

variable X equal (xlo+xhi)/2+sqrt(v_area)
region 1 block $X 2 INF INF EDGE EDGE
variable X delete

can be replaced by

region 1 block $((xlo+xhi)/2+sqrt(v_area)) 2 INF INF EDGE EDGE

so that you do not have to define (or discard) a temporary variable X.

Note that neither the curly-bracket or immediate form of variables can contain nested $ characters for other
variables to substitute for. Thus you cannot do this:

variable a equal 2
variable b2 equal 4
print "B2 = ${b$a}"

Nor can you specify this $($x-1.0) for an immediate variable, but you could use $(v_x-1.0), since the latter is
valid syntax for an equal-style variable.

See the variable command for more details of how strings are assigned to variables and evaluated, and how
they can be used in input script commands.

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain
letters, digits, underscores, or punctuation characters.

LIGGGHTS Users Manual

3.1 LAMMPS input script 1030

(5) The first word is the command name. All successive words in the line are arguments.

(6) If you want text with spaces to be treated as a single argument, it can be enclosed in either double or single
quotes. E.g.

print "Volume = $v"
print 'Volume = $v'
if "$steps > 1000" then quit

The quotes are removed when the single argument is stored internally. See the dump modify format or print or
if commands for examples. A "#" or "$" character that is between quotes will not be treated as a comment
indicator in (2) or substituted for as a variable in (3).

IMPORTANT NOTE: If the argument is itself a command that requires a quoted argument (e.g. using a print
command as part of an if or run every command), then the double and single quotes can be nested in the usual
manner. See the doc pages for those commands for examples. Only one of level of nesting is allowed, but that
should be sufficient for most use cases.

3.3 Input script structure

This section describes the structure of a typical LAMMPS input script. The "examples" directory in the
LAMMPS distribution contains many sample input scripts; the corresponding problems are discussed in
Section_example, and animated on the LAMMPS WWW Site.

A LAMMPS input script typically has 4 parts:

Initialization1.
Atom definition2.
Settings3.
Run a simulation4.

The last 2 parts can be repeated as many times as desired. I.e. run a simulation, change some settings, run
some more, etc. Each of the 4 parts is now described in more detail. Remember that almost all the commands
need only be used if a non-default value is desired.

(1) Initialization

Set parameters that need to be defined before atoms are created or read-in from a file.

The relevant commands are units, dimension, newton, processors, boundary, atom_style, atom_modify.

If force-field parameters appear in the files that will be read, these commands tell LAMMPS what kinds of
force fields are being used: pair_style, bond_style, angle_style, dihedral_style, improper_style.

(2) Atom definition

There are 3 ways to define atoms in LAMMPS. Read them in from a data or restart file via the read_data or
read_restart commands. These files can contain molecular topology information. Or create atoms on a lattice
(with no molecular topology), using these commands: lattice, region, create_box, create_atoms. The entire set
of atoms can be duplicated to make a larger simulation using the replicate command.

(3) Settings

Once atoms and molecular topology are defined, a variety of settings can be specified: force field coefficients,
simulation parameters, output options, etc.

LIGGGHTS Users Manual

3.2 Parsing rules 1031

http://lammps.sandia.gov

Force field coefficients are set by these commands (they can also be set in the read-in files): pair_coeff,
bond_coeff, angle_coeff, dihedral_coeff, improper_coeff, kspace_style, dielectric, special_bonds.

Various simulation parameters are set by these commands: neighbor, neigh_modify, group, timestep,
reset_timestep, run_style, min_style, min_modify.

Fixes impose a variety of boundary conditions, time integration, and diagnostic options. The fix command
comes in many flavors.

Various computations can be specified for execution during a simulation using the compute, compute_modify,
and variable commands.

Output options are set by the thermo, dump, and restart commands.

(4) Run a simulation

A molecular dynamics simulation is run using the run command. Energy minimization (molecular statics) is
performed using the minimize command. A parallel tempering (replica-exchange) simulation can be run using
the temper command.

3.4 Commands listed by category

This section lists all LAMMPS commands, grouped by category. The next section lists the same commands
alphabetically. Note that some style options for some commands are part of specific LAMMPS packages,
which means they cannot be used unless the package was included when LAMMPS was built. Not all
packages are included in a default LAMMPS build. These dependencies are listed as Restrictions in the
command's documentation.

Initialization:

atom_modify, atom_style, boundary, dimension, newton, processors, units

Atom definition:

create_atoms, create_box, lattice, read_data, read_dump, read_restart, region, replicate

Force fields:

angle_coeff, angle_style, bond_coeff, bond_style, dielectric, dihedral_coeff, dihedral_style, improper_coeff,
improper_style, kspace_modify, kspace_style, pair_coeff, pair_modify, pair_style, pair_write, special_bonds

Settings:

communicate, group, mass, min_modify, min_style, neigh_modify, neighbor, reset_timestep, run_style, set,
timestep, velocity

Fixes:

fix, fix_modify, unfix

Computes:

compute, compute_modify, uncompute

LIGGGHTS Users Manual

3.3 Input script structure 1032

Output:

dump, dump image, dump_modify, dump movie, restart, thermo, thermo_modify, thermo_style, undump,
write_data, write_dump, write_restart

Actions:

delete_atoms, delete_bonds, displace_atoms, change_box, minimize, neb prd, rerun, run, temper

Miscellaneous:

clear, echo, if, include, jump, label, log, next, print, shell, variable

3.5 Individual commands

This section lists all LAMMPS and LIGGGHTS commands alphabetically, with a separate listing below of
styles within certain commands. Note that some style options for some commands are part of specific
LAMMPS packages, which means they cannot be used unless the package was included when LAMMPS was
built. Not all packages are included in a default LAMMPS build. These dependencies are listed as Restrictions
in the command's documentation.

angle_coeff angle_style atom_modify atom_style bond_coeff bond_style
boundary box change_box clear communicate compute

compute_modify create_atoms create_box delete_atoms delete_bonds dielectric
dihedral_coeff dihedral_style dimension displace_atoms dump dump_modify

echo fix fix_modify group group2ndx if
improper_coeff improper_style include jump kspace_modify kspace_style

label lattice log mass min_modify min_style
minimize neb neigh_modify neighbor newton next
package pair_coeff pair_modify pair_style pair_write partition
prd print processors quit read_data read_dump

read_restart region replicate rerun reset_timestep restart
run run_style set shell special_bonds suffix
tad temper thermo thermo_modify thermo_style timestep

uncompute undump unfix units variable velocity
write_data write_dump write_restart

angle_style potentials

See the angle_style command for an overview of angle potentials. Click on the style itself for a full
description:

charmm class2 cosine cosine/delta
cosine/periodic cosine/shift cosine/shift/exp cosine/squared

dipole fourier fourier/simple harmonic
hybrid none quartic sdk
table

These are accelerated angle styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

LIGGGHTS Users Manual

3.4 Commands listed by category 1033

charmm/omp class2/omp cosine/delta/omp cosine/omp
cosine/periodic/omp cosine/shift/exp/omp cosine/shift/omp cosine/squared/omp

dipole/omp fourier/omp fourier/simple/omp harmonic/omp
quartic/omp table/omp

bond_style potentials

See the bond_style command for an overview of bond potentials. Click on the style itself for a full
description:

class2 fene fene/expand harmonic
harmonic/shift harmonic/shift/cut hybrid morse

none nonlinear quartic table
These are accelerated bond styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

class2/omp fene/expand/omp fene/omp harmonic/omp
harmonic/shift/cut/omp harmonic/shift/omp morse/omp nonlinear/omp

quartic/omp table/omp

compute syles

See the compute command for one-line descriptions of each style or click on the style itself for a full
description:

ackland/atom angle/local atom/molecule basal/atom
body/local bond/local centro/atom cluster/atom
cna/atom com com/molecule contact/atom
coord/atom damage/atom dihedral/local displace/atom

erotate/asphere erotate/sphere erotate/sphere/atom event/displace
group/group gyration gyration/molecule heat/flux
improper/local inertia/molecule ke ke/atom
ke/atom/eff ke/eff meso_e/atom meso_rho/atom
meso_t/atom msd msd/molecule msd/nongauss

nparticles/tracer/region pair pair/gran/local pair/local
pe pe/atom pressure property/atom

property/local property/molecule rdf reduce
reduce/region slice stress/atom temp
temp/asphere temp/com temp/deform temp/deform/eff
temp/eff temp/partial temp/profile temp/ramp

temp/region temp/region/eff temp/rotate temp/sphere
ti voronoi/atom wall/gran/local

These are accelerated compute styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

pe/cuda pressure/cuda temp/cuda temp/partial/cuda

LIGGGHTS Users Manual

angle_style potentials 1034

dihedral_style potentials

See the dihedral_style command for an overview of dihedral potentials. Click on the style itself for a full
description:

charmm class2 cosine/shift/exp fourier
harmonic helix hybrid multi/harmonic
nharmonic none opls quadratic
table

These are accelerated dihedral styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

charmm/omp class2/omp cosine/shift/exp/omp fourier/omp
harmonic/omp helix/omp multi/harmonic/omp nharmonic/omp
opls/omp quadratic/omp table/omp

dump syles

Click on the style itself for a full description:

image molfile movie
These are accelerated styles, which can be used if LAMMPS is built with the appropriate accelerated package.

fix syles

See the fix command for one-line descriptions of each style or click on the style itself for a full description:

adapt addforce addtorque append/atoms
atc ave/atom ave/correlate ave/euler

ave/histo ave/spatial ave/time aveforce
bond/break bond/create bond/swap box/relax

check/timestep/gran colvars deform deposit
drag dt/reset efield enforce2d

evaporate external freeze gcmc
gld gravity heat heat/gran

heat/gran/conduction imd indent insert/pack
insert/rate/region insert/stream langevin langevin/eff

lb/fluid lb/momentum lb/pc lb/rigid/pc/sphere
lb/viscous lineforce massflow/mesh mesh/surface

mesh/surface/planar mesh/surface/stress mesh/surface/stress/servo meso
meso/stationary momentum move move/mesh

msst neb nph nph/asphere
nph/eff nph/sphere nphug npt

npt/asphere npt/eff npt/sphere nve
nve/asphere nve/asphere/noforce nve/body nve/eff
nve/limit nve/line nve/noforce nve/sphere
nve/tri nvt nvt/asphere nvt/eff
nvt/sllod nvt/sllod/eff nvt/sphere orient/fcc

LIGGGHTS Users Manual

dihedral_style potentials 1035

particledistribution/discrete particletemplate/sphere phonon planeforce
pour/legacy press/berendsen print property/atom

property/atom/tracer property/atom/tracer/stream property/global qeq/comb
qeq/reax reax/bonds reax/c/bonds reax/c/species
recenter restrain rigid rigid/nph
rigid/npt rigid/nve rigid/nvt rigid/small
setforce shake smd sph/density/continuity

sph/density/corr sph/density/summation sph/pressure spring
spring/rg spring/self srd store/force
store/state temp/berendsen temp/rescale temp/rescale/eff

thermal/conductivity ti/rs ti/spring tmd
ttm tune/kspace viscosity viscous

wall/colloid wall/gran wall/harmonic wall/lj1043
wall/lj126 wall/lj93 wall/piston wall/reflect
wall/region wall/region/sph wall/srd

These are accelerated fix styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

addforce/cuda aveforce/cuda enforce2d/cuda freeze/cuda
gravity/cuda gravity/omp nph/asphere/omp nph/omp

nph/sphere/omp nphug/omp npt/asphere/omp npt/cuda
npt/omp npt/sphere/omp nve/cuda nve/omp

nve/sphere/omp nvt/asphere/omp nvt/cuda nvt/omp
nvt/sllod/omp nvt/sphere/omp qeq/comb/omp setforce/cuda
shake/cuda temp/berendsen/cuda temp/rescale/cuda temp/rescale/limit/cuda
viscous/cuda

improper_style potentials

See the improper_style command for an overview of improper potentials. Click on the style itself for a full
description:

class2 cossq cvff fourier
harmonic hybrid none ring
umbrella

These are accelerated improper styles, which can be used if LAMMPS is built with the appropriate
accelerated package.

class2/omp cossq/omp cvff/omp fourier/omp
harmonic/omp ring/omp umbrella/omp

pair_style potentials

See the pair_style command for an overview of pair potentials. Click on the style itself for a full description:

adp airebo awpmd/cut beck
body bop born born/coul/long

LIGGGHTS Users Manual

fix syles 1036

born/coul/msm born/coul/wolf brownian brownian/poly
buck buck/coul/cut buck/coul/long buck/coul/msm

buck/long/coul/long colloid comb comb3
coul/cut coul/debye coul/diel coul/dsf
coul/long coul/msm coul/wolf dpd
dpd/tstat dsmc eam eam/alloy
eam/cd eam/fs edip eff/cut
eim gauss gauss/cut gayberne
gran hbond/dreiding/lj hbond/dreiding/morse hybrid

hybrid/overlay kim lcbop line/lj
list lj/charmm/coul/charmm lj/charmm/coul/charmm/implicit lj/charmm/coul/long

lj/charmm/coul/msm lj/class2 lj/class2/coul/cut lj/class2/coul/long
lj/cubic lj/cut lj/cut/coul/cut lj/cut/coul/debye

lj/cut/coul/dsf lj/cut/coul/long lj/cut/coul/msm lj/cut/dipole/cut
lj/cut/dipole/long lj/cut/tip4p/cut lj/cut/tip4p/long lj/expand

lj/gromacs lj/gromacs/coul/gromacs lj/long/coul/long lj/long/dipole/long
lj/long/tip4p/long lj/sdk lj/sdk/coul/long lj/sf
lj/sf/dipole/sf lj/smooth lj/smooth/linear lj96/cut
lubricate lubricate/poly lubricateU lubricateU/poly
meam mie/cut morse nb3b/harmonic
nm/cut nm/cut/coul/cut nm/cut/coul/long none
peri/lps peri/pmb peri/ves reax
reax/c rebo resquared soft
sph sph/artVisc/tensCorr sph/heatconduction sph/idealgas
sph/lj sph/rhosum sph/taitwater sph/taitwater/morris
sw table tersoff tersoff/mod

tersoff/table tersoff/zbl tip4p/cut tip4p/long
tri/lj yukawa yukawa/colloid zbl

These are accelerated pair styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

adp/omp airebo/omp beck/gpu beck/omp
born/coul/long/cuda born/coul/long/gpu born/coul/long/omp born/coul/msm/omp
born/coul/wolf/gpu born/coul/wolf/omp born/gpu born/omp
brownian/omp brownian/poly/omp buck/coul/cut/cuda buck/coul/cut/gpu

buck/coul/cut/omp buck/coul/long/cuda buck/coul/long/gpu buck/coul/long/omp
buck/coul/msm/omp buck/cuda buck/gpu buck/long/coul/long/omp

buck/omp colloid/gpu colloid/omp comb/omp
coul/cut/omp coul/debye/omp coul/dsf/gpu coul/dsf/omp
coul/long/gpu coul/long/omp coul/msm/omp coul/wolf/omp
dpd/omp dpd/tstat/omp eam/alloy/cuda eam/alloy/gpu

eam/alloy/omp eam/alloy/opt eam/cd/omp eam/cuda
eam/fs/cuda eam/fs/gpu eam/fs/omp eam/fs/opt
eam/gpu eam/omp eam/opt eim/omp

gauss/cut/omp gauss/gpu gauss/omp gayberne/gpu

LIGGGHTS Users Manual

pair_style potentials 1037

gayberne/omp hbond/dreiding/lj/omp hbond/dreiding/morse/omp hybrid/omp
hybrid/overlay/omp line/lj/omp lj/charmm/coul/charmm/cuda lj/charmm/coul/charmm/implicit/cuda

lj/charmm/coul/charmm/implicit/omp lj/charmm/coul/charmm/omp lj/charmm/coul/long/cuda lj/charmm/coul/long/gpu
lj/charmm/coul/long/omp lj/charmm/coul/long/opt lj/charmm/coul/msm/omp lj/class2/coul/cut/cuda
lj/class2/coul/cut/omp lj/class2/coul/long/cuda lj/class2/coul/long/gpu lj/class2/coul/long/omp

lj/class2/cuda lj/class2/gpu lj/class2/omp lj/cubic/omp
lj/cut/coul/cut/cuda lj/cut/coul/cut/gpu lj/cut/coul/cut/omp lj/cut/coul/debye/cuda
lj/cut/coul/debye/gpu lj/cut/coul/debye/omp lj/cut/coul/dsf/gpu lj/cut/coul/dsf/omp
lj/cut/coul/long/cuda lj/cut/coul/long/gpu lj/cut/coul/long/omp lj/cut/coul/long/opt
lj/cut/coul/msm/gpu lj/cut/coul/msm/omp lj/cut/cuda lj/cut/dipole/cut/gpu
lj/cut/dipole/cut/omp lj/cut/experimental/cuda lj/cut/gpu lj/cut/omp

lj/cut/opt lj/cut/tip4p/cut/omp lj/cut/tip4p/long/omp lj/cut/tip4p/long/opt
lj/expand/cuda lj/expand/gpu lj/expand/omp lj/gromacs/coul/gromacs/cuda

lj/gromacs/coul/gromacs/omp lj/gromacs/cuda lj/gromacs/omp lj/long/coul/long/omp
lj/long/coul/long/opt lj/sdk/coul/long/gpu lj/sdk/coul/long/omp lj/sdk/gpu

lj/sdk/omp lj/sf/dipole/sf/gpu lj/sf/dipole/sf/omp lj/sf/omp
lj/smooth/cuda lj/smooth/linear/omp lj/smooth/omp lj96/cut/cuda
lj96/cut/gpu lj96/cut/omp lubricate/omp lubricate/poly/omp
mie/cut/gpu morse/cuda morse/gpu morse/omp
morse/opt nb3b/harmonic/omp nm/cut/coul/cut/omp nm/cut/coul/long/omp
nm/cut/omp peri/lps/omp peri/pmb/omp rebo/omp
resquared/gpu resquared/omp soft/gpu soft/omp
sw/cuda sw/gpu sw/omp table/gpu
table/omp tersoff/mod/omp tersoff/table/omp tersoff/zbl/omp

tip4p/cut/omp tip4p/long/omp tri/lj/omp yukawa/colloid/gpu
yukawa/colloid/omp yukawa/gpu yukawa/omp zbl/omp

LIGGGHTS Users Manual

pair_style potentials 1038

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

12. Errors

This section describes the errors you can encounter when using LAMMPS, either conceptually, or as printed
out by the program.

12.1 Common problems
12.2 Reporting bugs
12.3 Error & warning messages

12.1 Common problems

If two LAMMPS runs do not produce the same answer on different machines or different numbers of
processors, this is typically not a bug. In theory you should get identical answers on any number of processors
and on any machine. In practice, numerical round-off can cause slight differences and eventual divergence of
molecular dynamics phase space trajectories within a few 100s or few 1000s of timesteps. However, the
statistical properties of the two runs (e.g. average energy or temperature) should still be the same.

If the velocity command is used to set initial atom velocities, a particular atom can be assigned a different
velocity when the problem is run on a different number of processors or on different machines. If this
happens, the phase space trajectories of the two simulations will rapidly diverge. See the discussion of the
loop option in the velocity command for details and options that avoid this issue.

Similarly, the create_atoms command generates a lattice of atoms. For the same physical system, the ordering
and numbering of atoms by atom ID may be different depending on the number of processors.

Some commands use random number generators which may be setup to produce different random number
streams on each processor and hence will produce different effects when run on different numbers of
processors. A commonly-used example is the fix langevin command for thermostatting.

A LAMMPS simulation typically has two stages, setup and run. Most LAMMPS errors are detected at setup
time; others like a bond stretching too far may not occur until the middle of a run.

LAMMPS tries to flag errors and print informative error messages so you can fix the problem. Of course,
LAMMPS cannot figure out your physics or numerical mistakes, like choosing too big a timestep, specifying
erroneous force field coefficients, or putting 2 atoms on top of each other! If you run into errors that
LAMMPS doesn't catch that you think it should flag, please send an email to the developers.

If you get an error message about an invalid command in your input script, you can determine what command
is causing the problem by looking in the log.lammps file or using the echo command to see it on the screen.
For a given command, LAMMPS expects certain arguments in a specified order. If you mess this up,
LAMMPS will often flag the error, but it may read a bogus argument and assign a value that is valid, but not
what you wanted. E.g. trying to read the string "abc" as an integer value and assigning the associated variable
a value of 0.

Generally, LAMMPS will print a message to the screen and logfile and exit gracefully when it encounters a
fatal error. Sometimes it will print a WARNING to the screen and logfile and continue on; you can decide if
the WARNING is important or not. A WARNING message that is generated in the middle of a run is only
printed to the screen, not to the logfile, to avoid cluttering up thermodynamic output. If LAMMPS crashes or
hangs without spitting out an error message first then it could be a bug (see this section) or one of the
following cases:

LIGGGHTS Users Manual

12. Errors 1039

http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html

LAMMPS runs in the available memory a processor allows to be allocated. Most reasonable MD runs are
compute limited, not memory limited, so this shouldn't be a bottleneck on most platforms. Almost all large
memory allocations in the code are done via C-style malloc's which will generate an error message if you run
out of memory. Smaller chunks of memory are allocated via C++ "new" statements. If you are unlucky you
could run out of memory just when one of these small requests is made, in which case the code will crash or
hang (in parallel), since LAMMPS doesn't trap on those errors.

Illegal arithmetic can cause LAMMPS to run slow or crash. This is typically due to invalid physics and
numerics that your simulation is computing. If you see wild thermodynamic values or NaN values in your
LAMMPS output, something is wrong with your simulation. If you suspect this is happening, it is a good idea
to print out thermodynamic info frequently (e.g. every timestep) via the thermo so you can monitor what is
happening. Visualizing the atom movement is also a good idea to insure your model is behaving as you
expect.

In parallel, one way LAMMPS can hang is due to how different MPI implementations handle buffering of
messages. If the code hangs without an error message, it may be that you need to specify an MPI setting or
two (usually via an environment variable) to enable buffering or boost the sizes of messages that can be
buffered.

12.2 Reporting bugs

If you are confident that you have found a bug in LAMMPS, follow these steps.

Check the New features and bug fixes section of the LAMMPS WWW site to see if the bug has already been
reported or fixed or the Unfixed bug to see if a fix is pending.

Check the mailing list to see if it has been discussed before.

If not, send an email to the mailing list describing the problem with any ideas you have as to what is causing it
or where in the code the problem might be. The developers will ask for more info if needed, such as an input
script or data files.

The most useful thing you can do to help us fix the bug is to isolate the problem. Run it on the smallest
number of atoms and fewest number of processors and with the simplest input script that reproduces the bug
and try to identify what command or combination of commands is causing the problem.

As a last resort, you can send an email directly to the developers.

12.3 Error & warning messages

These are two alphabetic lists of the ERROR and WARNING messages LAMMPS prints out and the reason
why. If the explanation here is not sufficient, the documentation for the offending command may help. Error
and warning messages also list the source file and line number where the error was generated. For example,
this message

ERROR: Illegal velocity command (velocity.cpp:78)

means that line #78 in the file src/velocity.cpp generated the error. Looking in the source code may help you
figure out what went wrong.

Note that error messages from user-contributed packages are not listed here. If such an error occurs and is not
self-explanatory, you'll need to look in the source code or contact the author of the package.

LIGGGHTS Users Manual

12.1 Common problems 1040

http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov
http://lammps.sandia.gov/unbug.html
http://lammps.sandia.gov/mail.html
http://lammps.sandia.gov/authors.html

Errors:

1-3 bond count is inconsistent
An inconsistency was detected when computing the number of 1-3 neighbors for each atom. This
likely means something is wrong with the bond topologies you have defined.

1-4 bond count is inconsistent
An inconsistency was detected when computing the number of 1-4 neighbors for each atom. This
likely means something is wrong with the bond topologies you have defined.

Accelerator sharing is not currently supported on system
Multiple MPI processes cannot share the accelerator on your system. For NVIDIA GPUs, see the
nvidia-smi command to change this setting.

All angle coeffs are not set
All angle coefficients must be set in the data file or by the angle_coeff command before running a
simulation.

All bond coeffs are not set
All bond coefficients must be set in the data file or by the bond_coeff command before running a
simulation.

All dihedral coeffs are not set
All dihedral coefficients must be set in the data file or by the dihedral_coeff command before running
a simulation.

All improper coeffs are not set
All improper coefficients must be set in the data file or by the improper_coeff command before
running a simulation.

All masses are not set
For atom styles that define masses for each atom type, all masses must be set in the data file or by the
mass command before running a simulation. They must also be set before using the velocity
command.

All mol IDs should be set for fix gcmc group atoms
The molecule flag is on, yet not all molecule ids in the fix group have been set to non-zero positive
values by the user. This is an error since all atoms in the fix gcmc group are eligible for deletion,
rotation, and translation and therefore must have valid molecule ids.

All pair coeffs are not set
All pair coefficients must be set in the data file or by the pair_coeff command before running a
simulation.

All read_dump x,y,z fields must be specified for scaled, triclinic coords
For triclinic boxes and scaled coordinates you must specify all 3 of the x,y,z fields, else LAMMPS
cannot reconstruct the unscaled coordinates.

All universe/uloop variables must have same # of values
Self-explanatory.

All variables in next command must be same style
Self-explanatory.

Angle atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular angle on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid angle.

Angle atom missing in set command
The set command cannot find one or more atoms in a particular angle on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid angle.

Angle atoms %d %d %d missing on proc %d at step %ld
One or more of 3 atoms needed to compute a particular angle are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the angle has blown apart and an atom is too far
away.

Angle coeff for hybrid has invalid style
Angle style hybrid uses another angle style as one of its coefficients. The angle style used in the
angle_coeff command or read from a restart file is not recognized.

LIGGGHTS Users Manual

Errors: 1041

Angle coeffs are not set
No angle coefficients have been assigned in the data file or via the angle_coeff command.

Angle extent > half of periodic box length
This error was detected by the neigh_modify check yes setting. It is an error because the angle atoms
are so far apart it is ambiguous how it should be defined.

Angle potential must be defined for SHAKE
When shaking angles, an angle_style potential must be used.

Angle style hybrid cannot have hybrid as an argument
Self-explanatory.

Angle style hybrid cannot have none as an argument
Self-explanatory.

Angle style hybrid cannot use same angle style twice
Self-explanatory.

Angle table must range from 0 to 180 degrees
Self-explanatory.

Angle table parameters did not set N
List of angle table parameters must include N setting.

Angle_coeff command before angle_style is defined
Coefficients cannot be set in the data file or via the angle_coeff command until an angle_style has
been assigned.

Angle_coeff command before simulation box is defined
The angle_coeff command cannot be used before a read_data, read_restart, or create_box command.

Angle_coeff command when no angles allowed
The chosen atom style does not allow for angles to be defined.

Angle_style command when no angles allowed
The chosen atom style does not allow for angles to be defined.

Angles assigned incorrectly
Angles read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.

Angles defined but no angle types
The data file header lists angles but no angle types.

Another input script is already being processed
Cannot attempt to open a 2nd input script, when the original file is still being processed.

Append boundary must be shrink/minimum
The boundary style of the face where atoms are added must be of type m (shrink/minimum).

Arccos of invalid value in variable formula
Argument of arccos() must be between -1 and 1.

Arcsin of invalid value in variable formula
Argument of arcsin() must be between -1 and 1.

Assigning body parameters to non-body atom
Self-explanatory.

Assigning ellipsoid parameters to non-ellipsoid atom
Self-explanatory.

Assigning line parameters to non-line atom
Self-explanatory.

Assigning tri parameters to non-tri atom
Self-explanatory.

Atom IDs must be consecutive for velocity create loop all
Self-explanatory.

Atom count changed in fix neb
This is not allowed in a NEB calculation.

Atom count is inconsistent, cannot write restart file
Sum of atoms across processors does not equal initial total count. This is probably because you have
lost some atoms.

LIGGGHTS Users Manual

Errors: 1042

Atom in too many rigid bodies - boost MAXBODY
Fix poems has a parameter MAXBODY (in fix_poems.cpp) which determines the maximum number
of rigid bodies a single atom can belong to (i.e. a multibody joint). The bodies you have defined
exceed this limit.

Atom sort did not operate correctly
This is an internal LAMMPS error. Please report it to the developers.

Atom sorting has bin size = 0.0
The neighbor cutoff is being used as the bin size, but it is zero. Thus you must explicitly list a bin size
in the atom_modify sort command or turn off sorting.

Atom style hybrid cannot have hybrid as an argument
Self-explanatory.

Atom style hybrid cannot use same atom style twice
Self-explanatory.

Atom vector in equal-style variable formula
Atom vectors generate one value per atom which is not allowed in an equal-style variable.

Atom-style variable in equal-style variable formula
Atom-style variables generate one value per atom which is not allowed in an equal-style variable.

Atom_modify map command after simulation box is defined
The atom_modify map command cannot be used after a read_data, read_restart, or create_box
command.

Atom_modify sort and first options cannot be used together
Self-explanatory.

Atom_style command after simulation box is defined
The atom_style command cannot be used after a read_data, read_restart, or create_box command.

Atom_style line can only be used in 2d simulations
Self-explanatory.

Atom_style tri can only be used in 3d simulations
Self-explanatory.

Attempt to pop empty stack in fix box/relax
Internal LAMMPS error. Please report it to the developers.

Attempt to push beyond stack limit in fix box/relax
Internal LAMMPS error. Please report it to the developers.

Attempting to rescale a 0.0 temperature
Cannot rescale a temperature that is already 0.0.

Bad FENE bond
Two atoms in a FENE bond have become so far apart that the bond cannot be computed.

Bad TIP4P angle type for PPPM/TIP4P
Specified angle type is not valid.

Bad TIP4P angle type for PPPMDisp/TIP4P
Specified angle type is not valid.

Bad TIP4P bond type for PPPM/TIP4P
Specified bond type is not valid.

Bad TIP4P bond type for PPPMDisp/TIP4P
Specified bond type is not valid.

Bad fix ID in fix append/atoms command
The value of the fix_id for keyword spatial must start with the suffix f_.

Bad grid of processors
The 3d grid of processors defined by the processors command does not match the number of
processors LAMMPS is being run on.

Bad kspace_modify slab parameter
Kspace_modify value for the slab/volume keyword must be >= 2.0.

Bad matrix inversion in mldivide3
This error should not occur unless the matrix is badly formed.

Bad principal moments

LIGGGHTS Users Manual

Errors: 1043

Fix rigid did not compute the principal moments of inertia of a rigid group of atoms correctly.
Bad quadratic solve for particle/line collision

This is an internal error. It should nornally not occur.
Bad quadratic solve for particle/tri collision

This is an internal error. It should nornally not occur.
Balance command before simulation box is defined

The balance command cannot be used before a read_data, read_restart, or create_box command.
Balance dynamic string is invalid

The string can only contain the characters "x", "y", or "z".
Balance produced bad splits

This should not occur. It means two or more cutting plane locations are on top of each other or out of
order. Report the problem to the developers.

Bias compute does not calculate a velocity bias
The specified compute must compute a bias for temperature.

Bias compute does not calculate temperature
The specified compute must compute temperature.

Bias compute group does not match compute group
The specified compute must operate on the same group as the parent compute.

Big particle in fix srd cannot be point particle
Big particles must be extended spheriods or ellipsoids.

Bigint setting in lmptype.h is invalid
Size of bigint is less than size of tagint.

Bigint setting in lmptype.h is not compatible
Bigint stored in restart file is not consistent with LAMMPS version you are running.

Bitmapped lookup tables require int/float be same size
Cannot use pair tables on this machine, because of word sizes. Use the pair_modify command with
table 0 instead.

Bitmapped table in file does not match requested table
Setting for bitmapped table in pair_coeff command must match table in file exactly.

Bitmapped table is incorrect length in table file
Number of table entries is not a correct power of 2.

Bond and angle potentials must be defined for TIP4P
Cannot use TIP4P pair potential unless bond and angle potentials are defined.

Bond atom missing in box size check
The 2nd atoms needed to compute a particular bond is missing on this processor. Typically this is
because the pairwise cutoff is set too short or the bond has blown apart and an atom is too far away.

Bond atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular bond on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid bond.

Bond atom missing in image check
The 2nd atom in a particular bond is missing on this processor. Typically this is because the pairwise
cutoff is set too short or the bond has blown apart and an atom is too far away.

Bond atom missing in set command
The set command cannot find one or more atoms in a particular bond on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid bond.

Bond atoms %d %d missing on proc %d at step %ld
The 2nd atom needed to compute a particular bond is missing on this processor. Typically this is
because the pairwise cutoff is set too short or the bond has blown apart and an atom is too far away.

Bond coeff for hybrid has invalid style
Bond style hybrid uses another bond style as one of its coefficients. The bond style used in the
bond_coeff command or read from a restart file is not recognized.

Bond coeffs are not set
No bond coefficients have been assigned in the data file or via the bond_coeff command.

Bond extent > half of periodic box length

LIGGGHTS Users Manual

Errors: 1044

This error was detected by the neigh_modify check yes setting. It is an error because the bond atoms
are so far apart it is ambiguous how it should be defined.

Bond potential must be defined for SHAKE
Cannot use fix shake unless bond potential is defined.

Bond style hybrid cannot have hybrid as an argument
Self-explanatory.

Bond style hybrid cannot have none as an argument
Self-explanatory.

Bond style hybrid cannot use same bond style twice
Self-explanatory.

Bond style quartic cannot be used with 3,4-body interactions
No angle, dihedral, or improper styles can be defined when using bond style quartic.

Bond style quartic requires special_bonds = 1,1,1
This is a restriction of the current bond quartic implementation.

Bond table parameters did not set N
List of bond table parameters must include N setting.

Bond table values are not increasing
The values in the tabulated file must be monotonically increasing.

Bond_coeff command before bond_style is defined
Coefficients cannot be set in the data file or via the bond_coeff command until an bond_style has
been assigned.

Bond_coeff command before simulation box is defined
The bond_coeff command cannot be used before a read_data, read_restart, or create_box command.

Bond_coeff command when no bonds allowed
The chosen atom style does not allow for bonds to be defined.

Bond_style command when no bonds allowed
The chosen atom style does not allow for bonds to be defined.

Bonds assigned incorrectly
Bonds read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.

Bonds defined but no bond types
The data file header lists bonds but no bond types.

Both sides of boundary must be periodic
Cannot specify a boundary as periodic only on the lo or hi side. Must be periodic on both sides.

Boundary command after simulation box is defined
The boundary command cannot be used after a read_data, read_restart, or create_box command.

Box bounds are invalid
The box boundaries specified in the read_data file are invalid. The lo value must be less than the hi
value for all 3 dimensions.

Box command after simulation box is defined
The box command cannot be used after a read_data, read_restart, or create_box command.

CPU neighbor lists must be used for ellipsoid/sphere mix
When using Gay-Berne or RE-squared pair styles with both ellipsoidal and spherical particles, the
neighbor list must be built on the CPU

Can not specify Pxy/Pxz/Pyz in fix box/relax with non-triclinic box
Only triclinic boxes can be used with off-diagonal pressure components. See the region prism
command for details.

Can not specify Pxy/Pxz/Pyz in fix nvt/npt/nph with non-triclinic box
Only triclinic boxes can be used with off-diagonal pressure components. See the region prism
command for details.

Can only use -plog with multiple partitions
Self-explanatory. See doc page discussion of command-line switches.

Can only use -pscreen with multiple partitions
Self-explanatory. See doc page discussion of command-line switches.

LIGGGHTS Users Manual

Errors: 1045

Can only use NEB with 1-processor replicas
This is current restriction for NEB as implemented in LAMMPS.

Can only use TAD with 1-processor replicas for NEB
This is current restriction for NEB as implemented in LAMMPS.

Cannot (yet) do analytic differentiation with pppm/gpu
This is a current restriction of this command.

Cannot (yet) use K-space slab correction with compute group/group
This option is not yet supported.

Cannot (yet) use Kspace slab correction with compute group/group
This option is not yet supported.

Cannot (yet) use MSM with 2d simulation
This feature is not yet supported.

Cannot (yet) use MSM with triclinic box
This feature is not yet supported.

Cannot (yet) use PPPM with triclinic box
This feature is not yet supported.

Cannot (yet) use PPPMDisp with triclinic box
This feature is not yet supported.

Cannot (yet) use single precision with MSM (remove -DFFT_SINGLE from Makefile and recompile)
Single precision cannot be used with MSM.

Cannot add atoms to fix move variable
Atoms can not be added afterwards to this fix option.

Cannot append atoms to a triclinic box
The simulation box must be defined with edges alligned with the Cartesian axes.

Cannot balance in z dimension for 2d simulation
Self-explanatory.

Cannot change box ortho/triclinic with certain fixes defined
This is because those fixes store the shape of the box. You need to use unfix to discard the fix, change
the box, then redefine a new fix.

Cannot change box ortho/triclinic with dumps defined
This is because some dumps store the shape of the box. You need to use undump to discard the dump,
change the box, then redefine a new dump.

Cannot change box tilt factors for orthogonal box
Cannot use tilt factors unless the simulation box is non-orthogonal.

Cannot change box to orthogonal when tilt is non-zero
Self-explanatory.

Cannot change box z boundary to nonperiodic for a 2d simulation
Self-explanatory.

Cannot change dump_modify every for dump dcd
The frequency of writing dump dcd snapshots cannot be changed.

Cannot change dump_modify every for dump xtc
The frequency of writing dump xtc snapshots cannot be changed.

Cannot change timestep once fix srd is setup
This is because various SRD properties depend on the timestep size.

Cannot change timestep with fix pour
This fix pre-computes some values based on the timestep, so it cannot be changed during a simulation
run.

Cannot change_box after reading restart file with per-atom info
This is because the restart file info cannot be migrated with the atoms. You can get around this by
performing a 0-timestep run which will assign the restart file info to actual atoms.

Cannot change_box in xz or yz for 2d simulation
Self-explanatory.

Cannot change_box in z dimension for 2d simulation
Self-explanatory.

LIGGGHTS Users Manual

Errors: 1046

Cannot compute initial g_ewald_disp
LAMMPS failed to compute an initial guess for the PPPM_disp g_ewald_6 factor that partitions the
computation between real space and k-space for Disptersion interactions.

Cannot create an atom map unless atoms have IDs
The simulation requires a mapping from global atom IDs to local atoms, but the atoms that have been
defined have no IDs.

Cannot create atoms with undefined lattice
Must use the lattice command before using the create_atoms command.

Cannot create/grow a vector/array of pointers for %s
LAMMPS code is making an illegal call to the templated memory allocaters, to create a vector or
array of pointers.

Cannot create_atoms after reading restart file with per-atom info
The per-atom info was stored to be used when by a fix that you may re-define. If you add atoms
before re-defining the fix, then there will not be a correct amount of per-atom info.

Cannot create_box after simulation box is defined
The create_box command cannot be used after a read_data, read_restart, or create_box command.

Cannot currently use pair reax with pair hybrid
This is not yet supported.

Cannot currently use pppm/gpu with fix balance.
Self-explanatory.

Cannot delete group all
Self-explanatory.

Cannot delete group currently used by a compute
Self-explanatory.

Cannot delete group currently used by a dump
Self-explanatory.

Cannot delete group currently used by a fix
Self-explanatory.

Cannot delete group currently used by atom_modify first
Self-explanatory.

Cannot displace_atoms after reading restart file with per-atom info
This is because the restart file info cannot be migrated with the atoms. You can get around this by
performing a 0-timestep run which will assign the restart file info to actual atoms.

Cannot do GCMC on atoms in atom_modify first group
This is a restriction due to the way atoms are organized in a list to enable the atom_modify first
command.

Cannot dump JPG file
LAMMPS was not built with the -DLAMMPS_JPEG switch in the Makefile.

Cannot dump sort on atom IDs with no atom IDs defined
Self-explanatory.

Cannot evaporate atoms in atom_modify first group
This is a restriction due to the way atoms are organized in a list to enable the atom_modify first
command.

Cannot find delete_bonds group ID
Group ID used in the delete_bonds command does not exist.

Cannot have both pair_modify shift and tail set to yes
These 2 options are contradictory.

Cannot open -reorder file
Self-explanatory.

Cannot open ADP potential file %s
The specified ADP potential file cannot be opened. Check that the path and name are correct.

Cannot open AIREBO potential file %s
The specified AIREBO potential file cannot be opened. Check that the path and name are correct.

Cannot open BOP potential file %s

LIGGGHTS Users Manual

Errors: 1047

The specified BOP potential file cannot be opened. Check that the path and name are correct.
Cannot open COMB potential file %s

The specified COMB potential file cannot be opened. Check that the path and name are correct.
Cannot open EAM potential file %s

The specified EAM potential file cannot be opened. Check that the path and name are correct.
Cannot open EIM potential file %s

The specified EIM potential file cannot be opened. Check that the path and name are correct.
Cannot open LCBOP potential file %s

The specified LCBOP potential file cannot be opened. Check that the path and name are correct.
Cannot open MEAM potential file %s

The specified MEAM potential file cannot be opened. Check that the path and name are correct.
Cannot open Stillinger-Weber potential file %s

The specified SW potential file cannot be opened. Check that the path and name are correct.
Cannot open Tersoff potential file %s

The specified Tersoff potential file cannot be opened. Check that the path and name are correct.
Cannot open balance output file

Self-explanatory.
Cannot open custom file

Self-explanatory.
Cannot open dir to search for restart file

Using a "*" in the name of the restart file will open the current directory to search for matching file
names.

Cannot open dump file
The output file for the dump command cannot be opened. Check that the path and name are correct.

Cannot open file %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open file variable file %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open fix ave/correlate file %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open fix ave/histo file %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open fix ave/spatial file %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open fix ave/time file %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open fix balance output file
Self-explanatory.

Cannot open fix poems file %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open fix print file %s
The output file generated by the fix print command cannot be opened

Cannot open fix qeq/comb file %s
The output file for the fix qeq/combs command cannot be opened. Check that the path and name are
correct.

Cannot open fix reax/bonds file %s
The output file for the fix reax/bonds command cannot be opened. Check that the path and name are
correct.

Cannot open fix rigid infile %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open fix tmd file %s
The output file for the fix tmd command cannot be opened. Check that the path and name are correct.

Cannot open fix ttm file %s
The output file for the fix ttm command cannot be opened. Check that the path and name are correct.

LIGGGHTS Users Manual

Errors: 1048

Cannot open gzipped file
LAMMPS is attempting to open a gzipped version of the specified file but was unsuccessful. Check
that the path and name are correct.

Cannot open input script %s
Self-explanatory.

Cannot open log.lammps
The default LAMMPS log file cannot be opened. Check that the directory you are running in allows
for files to be created.

Cannot open logfile
The LAMMPS log file named in a command-line argument cannot be opened. Check that the path
and name are correct.

Cannot open logfile %s
The LAMMPS log file specified in the input script cannot be opened. Check that the path and name
are correct.

Cannot open pair_write file
The specified output file for pair energies and forces cannot be opened. Check that the path and name
are correct.

Cannot open processors output file
Self-explanatory.

Cannot open restart file %s
Self-explanatory.

Cannot open screen file
The screen file specified as a command-line argument cannot be opened. Check that the directory you
are running in allows for files to be created.

Cannot open universe log file
For a multi-partition run, the master log file cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot open universe screen file
For a multi-partition run, the master screen file cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot read_data after simulation box is defined
The read_data command cannot be used after a read_data, read_restart, or create_box command.

Cannot read_restart after simulation box is defined
The read_restart command cannot be used after a read_data, read_restart, or create_box command.

Cannot redefine variable as a different style
An equal-style variable can be re-defined but only if it was originally an equal-style variable.

Cannot replicate 2d simulation in z dimension
The replicate command cannot replicate a 2d simulation in the z dimension.

Cannot replicate with fixes that store atom quantities
Either fixes are defined that create and store atom-based vectors or a restart file was read which
included atom-based vectors for fixes. The replicate command cannot duplicate that information for
new atoms. You should use the replicate command before fixes are applied to the system.

Cannot reset timestep with a dynamic region defined
Dynamic regions (see the region command) have a time dependence. Thus you cannot change the
timestep when one or more of these are defined.

Cannot reset timestep with a time-dependent fix defined
You cannot reset the timestep when a fix that keeps track of elapsed time is in place.

Cannot run 2d simulation with nonperiodic Z dimension
Use the boundary command to make the z dimension periodic in order to run a 2d simulation.

Cannot set both respa pair and inner/middle/outer
In the rRESPA integrator, you must compute pairwise potentials either all together (pair), or in pieces
(inner/middle/outer). You can't do both.

Cannot set dump_modify flush for dump xtc
Self-explanatory.

LIGGGHTS Users Manual

Errors: 1049

Cannot set mass for this atom style
This atom style does not support mass settings for each atom type. Instead they are defined on a
per-atom basis in the data file.

Cannot set meso_rho for this atom style
Self-explanatory.

Cannot set non-zero image flag for non-periodic dimension
Self-explanatory.

Cannot set non-zero z velocity for 2d simulation
Self-explanatory.

Cannot set quaternion for atom that has none
Self-explanatory.

Cannot set respa middle without inner/outer
In the rRESPA integrator, you must define both a inner and outer setting in order to use a middle
setting.

Cannot set temperature for fix rigid/nph
The temp keyword cannot be specified.

Cannot set theta for atom that is not a line
Self-explanatory.

Cannot set this attribute for this atom style
The attribute being set does not exist for the defined atom style.

Cannot set variable z velocity for 2d simulation
Self-explanatory.

Cannot skew triclinic box in z for 2d simulation
Self-explanatory.

Cannot use -cuda on without USER-CUDA installed
The USER-CUDA package must be installed via "make yes-user-cuda" before LAMMPS is built.

Cannot use -reorder after -partition
Self-explanatory. See doc page discussion of command-line switches.

Cannot use Ewald with 2d simulation
The kspace style ewald cannot be used in 2d simulations. You can use 2d Ewald in a 3d simulation;
see the kspace_modify command.

Cannot use Ewald with triclinic box
This feature is not yet supported.

Cannot use Ewald/disp solver on system with no charge or LJ particles
No atoms in system have a non-zero charge or are LJ particles. Change charges or change options of
the kspace solver/pair style.

Cannot use EwaldDisp with 2d simulation
This is a current restriction of this command.

Cannot use NEB unless atom map exists
Use the atom_modify command to create an atom map.

Cannot use NEB with a single replica
Self-explanatory.

Cannot use NEB with atom_modify sort enabled
This is current restriction for NEB implemented in LAMMPS.

Cannot use PPPM with 2d simulation
The kspace style pppm cannot be used in 2d simulations. You can use 2d PPPM in a 3d simulation;
see the kspace_modify command.

Cannot use PPPMDisp with 2d simulation
The kspace style pppm/disp cannot be used in 2d simulations. You can use 2d PPPM in a 3d
simulation; see the kspace_modify command.

Cannot use PRD with a time-dependent fix defined
PRD alters the timestep in ways that will mess up these fixes.

Cannot use PRD with a time-dependent region defined
PRD alters the timestep in ways that will mess up these regions.

LIGGGHTS Users Manual

Errors: 1050

Cannot use PRD with atom_modify sort enabled
This is a current restriction of PRD. You must turn off sorting, which is enabled by default, via the
atom_modify command.

Cannot use PRD with multi-processor replicas unless atom map exists
Use the atom_modify command to create an atom map.

Cannot use TAD unless atom map exists for NEB
See atom_modify map command to set this.

Cannot use TAD with a single replica for NEB
NEB requires multiple replicas.

Cannot use TAD with atom_modify sort enabled for NEB
This is a current restriction of NEB.

Cannot use a damped dynamics min style with fix box/relax
This is a current restriction in LAMMPS. Use another minimizer style.

Cannot use a damped dynamics min style with per-atom DOF
This is a current restriction in LAMMPS. Use another minimizer style.

Cannot use append/atoms in periodic dimension
The boundary style of the face where atoms are added can not be of type p (periodic).

Cannot use compute cluster/atom unless atoms have IDs
Atom IDs are used to identify clusters.

Cannot use cwiggle in variable formula between runs
This is a function of elapsed time.

Cannot use delete_atoms unless atoms have IDs
Your atoms do not have IDs, so the delete_atoms command cannot be used.

Cannot use delete_bonds with non-molecular system
Your choice of atom style does not have bonds.

Cannot use fix GPU with USER-CUDA mode enabled
You cannot use both the GPU and USER-CUDA packages together. Use one or the other.

Cannot use fix TMD unless atom map exists
Using this fix requires the ability to lookup an atom index, which is provided by an atom map. An
atom map does not exist (by default) for non-molecular problems. Using the atom_modify map
command will force an atom map to be created.

Cannot use fix ave/spatial z for 2 dimensional model
Self-explanatory.

Cannot use fix bond/break with non-molecular systems
Self-explanatory.

Cannot use fix bond/create with non-molecular systems
Self-explanatory.

Cannot use fix box/relax on a 2nd non-periodic dimension
When specifying an off-diagonal pressure component, the 2nd of the two dimensions must be
periodic. E.g. if the xy component is specified, then the y dimension must be periodic.

Cannot use fix box/relax on a non-periodic dimension
When specifying a diagonal pressure component, the dimension must be periodic.

Cannot use fix box/relax with both relaxation and scaling on a tilt factor
When specifying scaling on a tilt factor component, that component can not also be controlled by the
barostat. E.g. if scalexy yes is specified and also keyword tri or xy, this is wrong.

Cannot use fix box/relax with tilt factor scaling on a 2nd non-periodic dimension
When specifying scaling on a tilt factor component, the 2nd of the two dimensions must be periodic.
E.g. if the xy component is specified, then the y dimension must be periodic.

Cannot use fix deform on a shrink-wrapped boundary
The x, y, z options cannot be applied to shrink-wrapped dimensions.

Cannot use fix deform tilt on a shrink-wrapped 2nd dim
This is because the shrink-wrapping will change the value of the strain implied by the tilt factor.

Cannot use fix deform trate on a box with zero tilt
The trate style alters the current strain.

LIGGGHTS Users Manual

Errors: 1051

Cannot use fix enforce2d with 3d simulation
Self-explanatory.

Cannot use fix gcmc in a 2d simulation
Fix gcmc is set up to run in 3d only. No 2d simulations with fix gcmc are allowed.

Cannot use fix gcmc with a triclinic box
Fix gcmc is set up to run with othogonal boxes only. Simulations with triclinic boxes and fix gcmc are
not allowed.

Cannot use fix msst without per-type mass defined
Self-explanatory.

Cannot use fix npt and fix deform on same component of stress tensor
This would be changing the same box dimension twice.

Cannot use fix nvt/npt/nph on a 2nd non-periodic dimension
When specifying an off-diagonal pressure component, the 2nd of the two dimensions must be
periodic. E.g. if the xy component is specified, then the y dimension must be periodic.

Cannot use fix nvt/npt/nph on a non-periodic dimension
When specifying a diagonal pressure component, the dimension must be periodic.

Cannot use fix nvt/npt/nph with both xy dynamics and xy scaling
Self-explanatory.

Cannot use fix nvt/npt/nph with both xz dynamics and xz scaling
Self-explanatory.

Cannot use fix nvt/npt/nph with both yz dynamics and yz scaling
Self-explanatory.

Cannot use fix nvt/npt/nph with xy scaling when y is non-periodic dimension
The 2nd dimension in the barostatted tilt factor must be periodic.

Cannot use fix nvt/npt/nph with xz scaling when z is non-periodic dimension
The 2nd dimension in the barostatted tilt factor must be periodic.

Cannot use fix nvt/npt/nph with yz scaling when z is non-periodic dimension
The 2nd dimension in the barostatted tilt factor must be periodic.

Cannot use fix pour with triclinic box
This feature is not yet supported.

Cannot use fix press/berendsen and fix deform on same component of stress tensor
These commands both change the box size/shape, so you cannot use both together.

Cannot use fix press/berendsen on a non-periodic dimension
Self-explanatory.

Cannot use fix press/berendsen with triclinic box
Self-explanatory.

Cannot use fix reax/bonds without pair_style reax
Self-explantory.

Cannot use fix rigid npt/nph and fix deform on same component of stress tensor
This would be changing the same box dimension twice.

Cannot use fix rigid npt/nph on a non-periodic dimension
When specifying a diagonal pressure component, the dimension must be periodic.

Cannot use fix shake with non-molecular system
Your choice of atom style does not have bonds.

Cannot use fix ttm with 2d simulation
This is a current restriction of this fix due to the grid it creates.

Cannot use fix ttm with triclinic box
This is a current restriction of this fix due to the grid it creates.

Cannot use fix wall in periodic dimension
Self-explanatory.

Cannot use fix wall zlo/zhi for a 2d simulation
Self-explanatory.

Cannot use fix wall/reflect in periodic dimension
Self-explanatory.

LIGGGHTS Users Manual

Errors: 1052

Cannot use fix wall/reflect zlo/zhi for a 2d simulation
Self-explanatory.

Cannot use fix wall/srd in periodic dimension
Self-explanatory.

Cannot use fix wall/srd more than once
Nor is their a need to since multiple walls can be specified in one command.

Cannot use fix wall/srd without fix srd
Self-explanatory.

Cannot use fix wall/srd zlo/zhi for a 2d simulation
Self-explanatory.

Cannot use force/hybrid_neigh with triclinic box
Self-explanatory.

Cannot use force/neigh with triclinic box
This is a current limitation of the GPU implementation in LAMMPS.

Cannot use kspace solver on system with no charge
No atoms in system have a non-zero charge.

Cannot use kspace solver with selected options on system with no charge
No atoms in system have a non-zero charge. Change charges or change options of the kspace
solver/pair style.

Cannot use lines with fix srd unless overlap is set
This is because line segements are connected to each other.

Cannot use multiple fix wall commands with pair brownian
Self-explanatory.

Cannot use multiple fix wall commands with pair lubricate
Self-explanatory.

Cannot use multiple fix wall commands with pair lubricate/poly
Self-explanatory.

Cannot use multiple fix wall commands with pair lubricateU
Self-explanatory.

Cannot use neigh_modify exclude with GPU neighbor builds
This is a current limitation of the GPU implementation in LAMMPS.

Cannot use neighbor bins - box size << cutoff
Too many neighbor bins will be created. This typically happens when the simulation box is very small
in some dimension, compared to the neighbor cutoff. Use the "nsq" style instead of "bin" style.

Cannot use newton pair with born/coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with born/coul/wolf/gpu pair style
Self-explanatory.

Cannot use newton pair with born/gpu pair style
Self-explantory.

Cannot use newton pair with buck/coul/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with buck/coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with buck/gpu pair style
Self-explanatory.

Cannot use newton pair with colloid/gpu pair style
Self-explanatory.

Cannot use newton pair with coul/dsf/gpu pair style
Self-explanatory.

Cannot use newton pair with coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with dipole/cut/gpu pair style
Self-explanatory.

LIGGGHTS Users Manual

Errors: 1053

Cannot use newton pair with eam/gpu pair style
Self-explanatory.

Cannot use newton pair with gauss/gpu pair style
Self-explanatory.

Cannot use newton pair with gayberne/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/charmm/coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/class2/coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/class2/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/coul/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/coul/debye/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/coul/dsf/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/expand/gpu pair style
Self-explanatory.

Cannot use newton pair with lj96/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with morse/gpu pair style
Self-explanatory.

Cannot use newton pair with resquared/gpu pair style
Self-explanatory.

Cannot use newton pair with table/gpu pair style
Self-explanatory.

Cannot use newton pair with yukawa/colloid/gpu pair style
Self-explanatory.

Cannot use newton pair with yukawa/gpu pair style
Self-explanatory.

Cannot use non-zero forces in an energy minimization
Fix setforce cannot be used in this manner. Use fix addforce instead.

Cannot use nonperiodic boundares with fix ttm
This fix requires a fully periodic simulation box.

Cannot use nonperiodic boundaries with Ewald
For kspace style ewald, all 3 dimensions must have periodic boundaries unless you use the
kspace_modify command to define a 2d slab with a non-periodic z dimension.

Cannot use nonperiodic boundaries with EwaldDisp
For kspace style ewald/disp, all 3 dimensions must have periodic boundaries unless you use the
kspace_modify command to define a 2d slab with a non-periodic z dimension.

Cannot use nonperiodic boundaries with PPPM
For kspace style pppm, all 3 dimensions must have periodic boundaries unless you use the
kspace_modify command to define a 2d slab with a non-periodic z dimension.

Cannot use nonperiodic boundaries with PPPMDisp
For kspace style pppm/disp, all 3 dimensions must have periodic boundaries unless you use the
kspace_modify command to define a 2d slab with a non-periodic z dimension.

Cannot use order greater than 8 with pppm/gpu.
Self-explanatory.

LIGGGHTS Users Manual

Errors: 1054

Cannot use pair hybrid with GPU neighbor builds
See documentation for fix gpu.

Cannot use pair tail corrections with 2d simulations
The correction factors are only currently defined for 3d systems.

Cannot use processors part command without using partitions
See the command-line -partition switch.

Cannot use ramp in variable formula between runs
This is because the ramp() function is time dependent.

Cannot use region INF or EDGE when box does not exist
Regions that extend to the box boundaries can only be used after the create_box command has been
used.

Cannot use set atom with no atom IDs defined
Atom IDs are not defined, so they cannot be used to identify an atom.

Cannot use set mol with no molecule IDs defined
Self-explanatory.

Cannot use slab correction with MSM
Slab correction can only be used with Ewald and PPPM, not MSM.

Cannot use swiggle in variable formula between runs
This is a function of elapsed time.

Cannot use tris with fix srd unless overlap is set
This is because triangles are connected to each other.

Cannot use variable energy with constant force in fix addforce
This is because for constant force, LAMMPS can compute the change in energy directly.

Cannot use variable every setting for dump dcd
The format of DCD dump files requires snapshots be output at a constant frequency.

Cannot use variable every setting for dump xtc
The format of this file requires snapshots at regular intervals.

Cannot use vdisplace in variable formula between runs
This is a function of elapsed time.

Cannot use velocity create loop all unless atoms have IDs
Atoms in the simulation to do not have IDs, so this style of velocity creation cannot be performed.

Cannot use wall in periodic dimension
Self-explanatory.

Cannot wiggle and shear fix wall/gran
Cannot specify both options at the same time.

Cannot zero Langevin force of 0 atoms
The group has zero atoms, so you cannot request its force be zeroed.

Cannot zero momentum of 0 atoms
The collection of atoms for which momentum is being computed has no atoms.

Change_box command before simulation box is defined
Self-explanatory.

Change_box volume used incorrectly
The "dim volume" option must be used immediately following one or two settings for "dim1 ..." (and
optionally "dim2 ...") and must be for a different dimension, i.e. dim != dim1 and dim != dim2.

Communicate group != atom_modify first group
Self-explanatory.

Compute ID for compute atom/molecule does not exist
Self-explanatory.

Compute ID for compute reduce does not exist
Self-explanatory.

Compute ID for compute slice does not exist
Self-explanatory.

Compute ID for fix ave/atom does not exist
Self-explanatory.

LIGGGHTS Users Manual

Errors: 1055

Compute ID for fix ave/correlate does not exist
Self-explanatory.

Compute ID for fix ave/histo does not exist
Self-explanatory.

Compute ID for fix ave/spatial does not exist
Self-explanatory.

Compute ID for fix ave/time does not exist
Self-explanatory.

Compute ID for fix store/state does not exist
Self-explanatory.

Compute ID must be alphanumeric or underscore characters
Self-explanatory.

Compute angle/local used when angles are not allowed
The atom style does not support angles.

Compute atom/molecule compute array is accessed out-of-range
Self-explanatory.

Compute atom/molecule compute does not calculate a per-atom array
Self-explanatory.

Compute atom/molecule compute does not calculate a per-atom vector
Self-explanatory.

Compute atom/molecule compute does not calculate per-atom values
Self-explanatory.

Compute atom/molecule fix array is accessed out-of-range
Self-explanatory.

Compute atom/molecule fix does not calculate a per-atom array
Self-explanatory.

Compute atom/molecule fix does not calculate a per-atom vector
Self-explanatory.

Compute atom/molecule fix does not calculate per-atom values
Self-explanatory.

Compute atom/molecule requires molecular atom style
Self-explanatory.

Compute atom/molecule variable is not atom-style variable
Self-explanatory.

Compute body/local requires atom style body
Self-explanatory.

Compute bond/local used when bonds are not allowed
The atom style does not support bonds.

Compute centro/atom requires a pair style be defined
This is because the computation of the centro-symmetry values uses a pairwise neighbor list.

Compute cluster/atom cutoff is longer than pairwise cutoff
Cannot identify clusters beyond cutoff.

Compute cluster/atom requires a pair style be defined
This is so that the pair style defines a cutoff distance which is used to find clusters.

Compute cna/atom cutoff is longer than pairwise cutoff
Self-explantory.

Compute cna/atom requires a pair style be defined
Self-explantory.

Compute com/molecule requires molecular atom style
Self-explanatory.

Compute contact/atom requires a pair style be defined
Self-explantory.

Compute contact/atom requires atom style sphere
Self-explanatory.

LIGGGHTS Users Manual

Errors: 1056

Compute coord/atom cutoff is longer than pairwise cutoff
Cannot compute coordination at distances longer than the pair cutoff, since those atoms are not in the
neighbor list.

Compute coord/atom requires a pair style be defined
Self-explantory.

Compute damage/atom requires peridynamic potential
Damage is a Peridynamic-specific metric. It requires you to be running a Peridynamics simulation.

Compute dihedral/local used when dihedrals are not allowed
The atom style does not support dihedrals.

Compute does not allow an extra compute or fix to be reset
This is an internal LAMMPS error. Please report it to the developers.

Compute erotate/asphere requires atom style ellipsoid or line or tri
Self-explanatory.

Compute erotate/asphere requires extended particles
This compute cannot be used with point paritlces.

Compute erotate/sphere requires atom style sphere
Self-explanatory.

Compute erotate/sphere/atom requires atom style sphere
Self-explanatory.

Compute event/displace has invalid fix event assigned
This is an internal LAMMPS error. Please report it to the developers.

Compute group/group group ID does not exist
Self-explanatory.

Compute gyration/molecule requires molecular atom style
Self-explanatory.

Compute heat/flux compute ID does not compute ke/atom
Self-explanatory.

Compute heat/flux compute ID does not compute pe/atom
Self-explanatory.

Compute heat/flux compute ID does not compute stress/atom
Self-explanatory.

Compute improper/local used when impropers are not allowed
The atom style does not support impropers.

Compute inertia/molecule requires molecular atom style
Self-explanatory.

Compute msd/molecule requires molecular atom style
Self-explanatory.

Compute nve/asphere requires atom style ellipsoid
Self-explanatory.

Compute nvt/nph/npt asphere requires atom style ellipsoid
Self-explanatory.

Compute pair must use group all
Pair styles accumlate energy on all atoms.

Compute pe must use group all
Energies computed by potentials (pair, bond, etc) are computed on all atoms.

Compute pressure must use group all
Virial contributions computed by potentials (pair, bond, etc) are computed on all atoms.

Compute pressure temperature ID does not compute temperature
The compute ID assigned to a pressure computation must compute temperature.

Compute property/atom for atom property that isn't allocated
Self-explanatory.

Compute property/local cannot use these inputs together
Only inputs that generate the same number of datums can be used togther. E.g. bond and angle
quantities cannot be mixed.

LIGGGHTS Users Manual

Errors: 1057

Compute property/local for property that isn't allocated
Self-explanatory.

Compute property/molecule requires molecular atom style
Self-explanatory.

Compute rdf requires a pair style be defined
Self-explanatory.

Compute reduce compute array is accessed out-of-range
An index for the array is out of bounds.

Compute reduce compute calculates global values
A compute that calculates peratom or local values is required.

Compute reduce compute does not calculate a local array
Self-explanatory.

Compute reduce compute does not calculate a local vector
Self-explanatory.

Compute reduce compute does not calculate a per-atom array
Self-explanatory.

Compute reduce compute does not calculate a per-atom vector
Self-explanatory.

Compute reduce fix array is accessed out-of-range
An index for the array is out of bounds.

Compute reduce fix calculates global values
A fix that calculates peratom or local values is required.

Compute reduce fix does not calculate a local array
Self-explanatory.

Compute reduce fix does not calculate a local vector
Self-explanatory.

Compute reduce fix does not calculate a per-atom array
Self-explanatory.

Compute reduce fix does not calculate a per-atom vector
Self-explanatory.

Compute reduce replace requires min or max mode
Self-explanatory.

Compute reduce variable is not atom-style variable
Self-explanatory.

Compute slice compute array is accessed out-of-range
An index for the array is out of bounds.

Compute slice compute does not calculate a global array
Self-explanatory.

Compute slice compute does not calculate a global vector
Self-explanatory.

Compute slice compute does not calculate global vector or array
Self-explanatory.

Compute slice compute vector is accessed out-of-range
The index for the vector is out of bounds.

Compute slice fix array is accessed out-of-range
An index for the array is out of bounds.

Compute slice fix does not calculate a global array
Self-explanatory.

Compute slice fix does not calculate a global vector
Self-explanatory.

Compute slice fix does not calculate global vector or array
Self-explanatory.

Compute slice fix vector is accessed out-of-range
The index for the vector is out of bounds.

LIGGGHTS Users Manual

Errors: 1058

Compute temp/asphere requires atom style ellipsoid
Self-explanatory.

Compute temp/asphere requires extended particles
This compute cannot be used with point paritlces.

Compute temp/partial cannot use vz for 2d systemx
Self-explanatory.

Compute temp/profile cannot bin z for 2d systems
Self-explanatory.

Compute temp/profile cannot use vz for 2d systemx
Self-explanatory.

Compute temp/sphere requires atom style sphere
Self-explanatory.

Compute ti kspace style does not exist
Self-explanatory.

Compute ti pair style does not exist
Self-explanatory.

Compute ti tail when pair style does not compute tail corrections
Self-explanatory.

Compute used in variable between runs is not current
Computes cannot be invoked by a variable in between runs. Thus they must have been evaluated on
the last timestep of the previous run in order for their value(s) to be accessed. See the doc page for the
variable command for more info.

Compute used in variable thermo keyword between runs is not current
Some thermo keywords rely on a compute to calculate their value(s). Computes cannot be invoked by
a variable in between runs. Thus they must have been evaluated on the last timestep of the previous
run in order for their value(s) to be accessed. See the doc page for the variable command for more
info.

Compute voronoi/atom not allowed for triclinic boxes
This is a current restriction of this command.

Computed temperature for fix temp/berendsen cannot be 0.0
Self-explanatory.

Computed temperature for fix temp/rescale cannot be 0.0
Cannot rescale the temperature to a new value if the current temperature is 0.0.

Could not adjust g_ewald_6
The Newton-Raphson solver failed to converge to a good value for g_ewald_6. This error should not
occur for typical problems. Please send an email to the developers.

Could not compute g_ewald
The Newton-Raphson solver failed to converge to a good value for g_ewald. This error should not
occur for typical problems. Please send an email to the developers.

Could not compute grid size
The code is unable to compute a grid size consistent with the desired accuracy. This error should not
occur for typical problems. Please send an email to the developers.

Could not compute grid size for Coulomb interaction
The code is unable to compute a grid size consistent with the desired accuracy. This error should not
occur for typical problems. Please send an email to the developers.

Could not compute grid size for dispersion
The code is unable to compute a grid size consistent with the desired accuracy. This error should not
occur for typical problems. Please send an email to the developers.

Could not count initial bonds in fix bond/create
Could not find one of the atoms in a bond on this processor.

Could not create 3d FFT plan
The FFT setup for the PPPM solver failed, typically due to lack of memory. This is an unusual error.
Check the size of the FFT grid you are requesting.

Could not create 3d grid of processors

LIGGGHTS Users Manual

Errors: 1059

The specified constraints did not allow a Px by Py by Pz grid to be created where Px * Py * Pz = P =
total number of processors.

Could not create 3d remap plan
The FFT setup in pppm failed.

Could not create numa grid of processors
The specified constraints did not allow this style of grid to be created. Usually this is because the total
processor count is not a multiple of the cores/node or the user specified processor count is > 1 in one
of the dimensions.

Could not create twolevel 3d grid of processors
The specified constraints did not allow this style of grid to be created.

Could not find atom_modify first group ID
Self-explanatory.

Could not find change_box group ID
Group ID used in the change_box command does not exist.

Could not find compute ID for PRD
Self-explanatory.

Could not find compute ID for TAD
Self-explanatory.

Could not find compute ID for temperature bias
Self-explanatory.

Could not find compute ID to delete
Self-explanatory.

Could not find compute displace/atom fix ID
Self-explanatory.

Could not find compute event/displace fix ID
Self-explanatory.

Could not find compute group ID
Self-explanatory.

Could not find compute heat/flux compute ID
Self-explanatory.

Could not find compute msd fix ID
Self-explanatory.

Could not find compute pressure temperature ID
The compute ID for calculating temperature does not exist.

Could not find compute_modify ID
Self-explanatory.

Could not find delete_atoms group ID
Group ID used in the delete_atoms command does not exist.

Could not find delete_atoms region ID
Region ID used in the delete_atoms command does not exist.

Could not find displace_atoms group ID
Group ID used in the displace_atoms command does not exist.

Could not find dump custom compute ID
The compute ID needed by dump custom to compute a per-atom quantity does not exist.

Could not find dump custom fix ID
Self-explanatory.

Could not find dump custom variable name
Self-explanatory.

Could not find dump group ID
A group ID used in the dump command does not exist.

Could not find dump local compute ID
Self-explanatory.

Could not find dump local fix ID
Self-explanatory.

LIGGGHTS Users Manual

Errors: 1060

Could not find dump modify compute ID
Self-explanatory.

Could not find dump modify fix ID
Self-explanatory.

Could not find dump modify variable name
Self-explanatory.

Could not find fix ID to delete
Self-explanatory.

Could not find fix gcmc rotation group ID
Self-explanatory.

Could not find fix group ID
A group ID used in the fix command does not exist.

Could not find fix msst compute ID
Self-explanatory.

Could not find fix poems group ID
A group ID used in the fix poems command does not exist.

Could not find fix recenter group ID
A group ID used in the fix recenter command does not exist.

Could not find fix rigid group ID
A group ID used in the fix rigid command does not exist.

Could not find fix srd group ID
Self-explanatory.

Could not find fix_modify ID
A fix ID used in the fix_modify command does not exist.

Could not find fix_modify pressure ID
The compute ID for computing pressure does not exist.

Could not find fix_modify temperature ID
The compute ID for computing temperature does not exist.

Could not find group delete group ID
Self-explanatory.

Could not find set group ID
Group ID specified in set command does not exist.

Could not find thermo compute ID
Compute ID specified in thermo_style command does not exist.

Could not find thermo custom compute ID
The compute ID needed by thermo style custom to compute a requested quantity does not exist.

Could not find thermo custom fix ID
The fix ID needed by thermo style custom to compute a requested quantity does not exist.

Could not find thermo custom variable name
Self-explanatory.

Could not find thermo fix ID
Fix ID specified in thermo_style command does not exist.

Could not find thermo variable name
Self-explanatory.

Could not find thermo_modify pressure ID
The compute ID needed by thermo style custom to compute pressure does not exist.

Could not find thermo_modify temperature ID
The compute ID needed by thermo style custom to compute temperature does not exist.

Could not find undump ID
A dump ID used in the undump command does not exist.

Could not find velocity group ID
A group ID used in the velocity command does not exist.

Could not find velocity temperature ID
The compute ID needed by the velocity command to compute temperature does not exist.

LIGGGHTS Users Manual

Errors: 1061

Could not find/initialize a specified accelerator device
Could not initialize at least one of the devices specified for the gpu package

Could not grab element entry from EIM potential file
Self-explanatory

Could not grab global entry from EIM potential file
Self-explanatory.

Could not grab pair entry from EIM potential file
Self-explanatory.

Coulomb PPPMDisp order < minimum allowed order
The default minimum order is 2. This can be reset by the kspace_modify minorder command.

Coulomb cut not supported in pair_style buck/long/coul/coul
Must use long-range Coulombic interactions.

Coulomb cut not supported in pair_style lj/long/coul/long
Must use long-range Coulombic interactions.

Coulomb cut not supported in pair_style lj/long/tip4p/long
Must use long-range Coulombic interactions.

Coulomb cutoffs of pair hybrid sub-styles do not match
If using a Kspace solver, all Coulomb cutoffs of long pair styles must be the same.

Cound not find dump_modify ID
Self-explanatory.

Create_atoms command before simulation box is defined
The create_atoms command cannot be used before a read_data, read_restart, or create_box command.

Create_atoms region ID does not exist
A region ID used in the create_atoms command does not exist.

Create_box region ID does not exist
A region ID used in the create_box command does not exist.

Create_box region does not support a bounding box
Not all regions represent bounded volumes. You cannot use such a region with the create_box
command.

Cutoffs missing in pair_style buck/long/coul/long
Self-exlanatory.

Cutoffs missing in pair_style lj/long/coul/long
Self-explanatory.

Cyclic loop in joint connections
Fix poems cannot (yet) work with coupled bodies whose joints connect the bodies in a ring (or cycle).

Degenerate lattice primitive vectors
Invalid set of 3 lattice vectors for lattice command.

Delete region ID does not exist
Self-explanatory.

Delete_atoms command before simulation box is defined
The delete_atoms command cannot be used before a read_data, read_restart, or create_box command.

Delete_atoms cutoff > neighbor cutoff
Cannot delete atoms further away than a processor knows about.

Delete_atoms requires a pair style be defined
This is because atom deletion within a cutoff uses a pairwise neighbor list.

Delete_bonds command before simulation box is defined
The delete_bonds command cannot be used before a read_data, read_restart, or create_box command.

Delete_bonds command with no atoms existing
No atoms are yet defined so the delete_bonds command cannot be used.

Deposition region extends outside simulation box
Self-explanatory.

Did not assign all atoms correctly
Atoms read in from a data file were not assigned correctly to processors. This is likely due to some
atom coordinates being outside a non-periodic simulation box.

LIGGGHTS Users Manual

Errors: 1062

Did not find all elements in MEAM library file
The requested elements were not found in the MEAM file.

Did not find fix shake partner info
Could not find bond partners implied by fix shake command. This error can be triggered if the
delete_bonds command was used before fix shake, and it removed bonds without resetting the 1-2,
1-3, 1-4 weighting list via the special keyword.

Did not find keyword in table file
Keyword used in pair_coeff command was not found in table file.

Did not set pressure for fix rigid/nph
The press keyword must be specified.

Did not set temperature for fix rigid/nvt
The temp keyword must be specified.

Did not set temperature or pressure for fix rigid/npt
The temp and press keywords must be specified.

Dihedral atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular dihedral on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid dihedral.

Dihedral atom missing in set command
The set command cannot find one or more atoms in a particular dihedral on a particular processor.
The pairwise cutoff is too short or the atoms are too far apart to make a valid dihedral.

Dihedral atoms %d %d %d %d missing on proc %d at step %ld
One or more of 4 atoms needed to compute a particular dihedral are missing on this processor.
Typically this is because the pairwise cutoff is set too short or the dihedral has blown apart and an
atom is too far away.

Dihedral charmm is incompatible with Pair style
Dihedral style charmm must be used with a pair style charmm in order for the 1-4 epsilon/sigma
parameters to be defined.

Dihedral coeff for hybrid has invalid style
Dihedral style hybrid uses another dihedral style as one of its coefficients. The dihedral style used in
the dihedral_coeff command or read from a restart file is not recognized.

Dihedral coeffs are not set
No dihedral coefficients have been assigned in the data file or via the dihedral_coeff command.

Dihedral style hybrid cannot have hybrid as an argument
Self-explanatory.

Dihedral style hybrid cannot have none as an argument
Self-explanatory.

Dihedral style hybrid cannot use same dihedral style twice
Self-explanatory.

Dihedral/improper extent > half of periodic box length
This error was detected by the neigh_modify check yes setting. It is an error because the dihedral
atoms are so far apart it is ambiguous how it should be defined.

Dihedral_coeff command before dihedral_style is defined
Coefficients cannot be set in the data file or via the dihedral_coeff command until an dihedral_style
has been assigned.

Dihedral_coeff command before simulation box is defined
The dihedral_coeff command cannot be used before a read_data, read_restart, or create_box
command.

Dihedral_coeff command when no dihedrals allowed
The chosen atom style does not allow for dihedrals to be defined.

Dihedral_style command when no dihedrals allowed
The chosen atom style does not allow for dihedrals to be defined.

Dihedrals assigned incorrectly
Dihedrals read in from the data file were not assigned correctly to atoms. This means there is
something invalid about the topology definitions.

LIGGGHTS Users Manual

Errors: 1063

Dihedrals defined but no dihedral types
The data file header lists dihedrals but no dihedral types.

Dimension command after simulation box is defined
The dimension command cannot be used after a read_data, read_restart, or create_box command.

Dispersion PPPMDisp order has been reduced below minorder
This may lead to a larger grid than desired. See the kspace_modify overlap command to prevent
changing of the dipsersion order.

Displace_atoms command before simulation box is defined
The displace_atoms command cannot be used before a read_data, read_restart, or create_box
command.

Distance must be > 0 for compute event/displace
Self-explanatory.

Divide by 0 in influence function of pair peri/lps
This should not normally occur. It is likely a problem with your model.

Divide by 0 in variable formula
Self-explanatory.

Domain too large for neighbor bins
The domain has become extremely large so that neighbor bins cannot be used. Most likely, one or
more atoms have been blown out of the simulation box to a great distance.

Double precision is not supported on this accelerator
Self-explanatory

Dump cfg arguments can not mix xs|ys|zs with xsu|ysu|zsu
Self-explanatory.

Dump cfg arguments must start with 'id type xs ys zs' or 'id type xsu ysu zsu'
This is a requirement of the CFG output format.

Dump cfg requires one snapshot per file
Use the wildcard "*" character in the filename.

Dump custom and fix not computed at compatible times
The fix must produce per-atom quantities on timesteps that dump custom needs them.

Dump custom compute does not calculate per-atom array
Self-explanatory.

Dump custom compute does not calculate per-atom vector
Self-explanatory.

Dump custom compute does not compute per-atom info
Self-explanatory.

Dump custom compute vector is accessed out-of-range
Self-explanatory.

Dump custom fix does not compute per-atom array
Self-explanatory.

Dump custom fix does not compute per-atom info
Self-explanatory.

Dump custom fix does not compute per-atom vector
Self-explanatory.

Dump custom fix vector is accessed out-of-range
Self-explanatory.

Dump custom variable is not atom-style variable
Only atom-style variables generate per-atom quantities, needed for dump output.

Dump dcd of non-matching # of atoms
Every snapshot written by dump dcd must contain the same # of atoms.

Dump dcd requires sorting by atom ID
Use the dump_modify sort command to enable this.

Dump every variable returned a bad timestep
The variable must return a timestep greater than the current timestep.

Dump file does not contain requested snapshot

LIGGGHTS Users Manual

Errors: 1064

Self-explanatory.
Dump file is incorrectly formatted

Self-explanatory.
Dump image bond not allowed with no bond types

Self-explanatory.
Dump image cannot perform sorting

Self-explanatory.
Dump image persp option is not yet supported

Self-explanatory.
Dump image requires one snapshot per file

Use a "*" in the filename.
Dump local and fix not computed at compatible times

The fix must produce per-atom quantities on timesteps that dump local needs them.
Dump local attributes contain no compute or fix

Self-explanatory.
Dump local cannot sort by atom ID

This is because dump local does not really dump per-atom info.
Dump local compute does not calculate local array

Self-explanatory.
Dump local compute does not calculate local vector

Self-explanatory.
Dump local compute does not compute local info

Self-explanatory.
Dump local compute vector is accessed out-of-range

Self-explanatory.
Dump local count is not consistent across input fields

Every column of output must be the same length.
Dump local fix does not compute local array

Self-explanatory.
Dump local fix does not compute local info

Self-explanatory.
Dump local fix does not compute local vector

Self-explanatory.
Dump local fix vector is accessed out-of-range

Self-explanatory.
Dump modify bcolor not allowed with no bond types

Self-explanatory.
Dump modify bdiam not allowed with no bond types

Self-explanatory.
Dump modify compute ID does not compute per-atom array

Self-explanatory.
Dump modify compute ID does not compute per-atom info

Self-explanatory.
Dump modify compute ID does not compute per-atom vector

Self-explanatory.
Dump modify compute ID vector is not large enough

Self-explanatory.
Dump modify element names do not match atom types

Number of element names must equal number of atom types.
Dump modify fix ID does not compute per-atom array

Self-explanatory.
Dump modify fix ID does not compute per-atom info

Self-explanatory.
Dump modify fix ID does not compute per-atom vector

LIGGGHTS Users Manual

Errors: 1065

Self-explanatory.
Dump modify fix ID vector is not large enough

Self-explanatory.
Dump modify variable is not atom-style variable

Self-explanatory.
Dump sort column is invalid

Self-explanatory.
Dump xtc requires sorting by atom ID

Use the dump_modify sort command to enable this.
Dump_modify format string is too short

There are more fields to be dumped in a line of output than your format string specifies.
Dump_modify region ID does not exist

Self-explanatory.
Dumping an atom property that isn't allocated

The chosen atom style does not define the per-atom quantity being dumped.
Dumping an atom quantity that isn't allocated

Only per-atom quantities that are defined for the atom style being used are allowed.
Duplicate fields in read_dump command

Self-explanatory.
Duplicate particle in PeriDynamic bond - simulation box is too small

This is likely because your box length is shorter than 2 times the bond length.
Electronic temperature dropped below zero

Something has gone wrong with the fix ttm electron temperature model.
Empty brackets in variable

There is no variable syntax that uses empty brackets. Check the variable doc page.
Energy was not tallied on needed timestep

You are using a thermo keyword that requires potentials to have tallied energy, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.

Epsilon or sigma reference not set by pair style in PPPMDisp
The pair style is not providing the needed epsilon or sigma values.

Epsilon or sigma reference not set by pair style in ewald/n
The pair style is not providing the needed epsilon or sigma values.

Expected floating point parameter in input script or data file
The quantity being read is an integer on non-numeric value.

Expected floating point parameter in variable definition
The quantity being read is a non-numeric value.

Expected integer parameter in input script or data file
The quantity being read is a floating point or non-numeric value.

Expected integer parameter in variable definition
The quantity being read is a floating point or non-numeric value.

Failed to allocate %ld bytes for array %s
Your LAMMPS simulation has run out of memory. You need to run a smaller simulation or on more
processors.

Failed to reallocate %ld bytes for array %s
Your LAMMPS simulation has run out of memory. You need to run a smaller simulation or on more
processors.

Fewer SRD bins than processors in some dimension
This is not allowed. Make your SRD bin size smaller.

File variable could not read value
Check the file assigned to the variable.

Final box dimension due to fix deform is < 0.0
Self-explanatory.

Fix GPU split must be positive for hybrid pair styles
Self-explanatory.

LIGGGHTS Users Manual

Errors: 1066

Fix ID for compute atom/molecule does not exist
Self-explanatory.

Fix ID for compute reduce does not exist
Self-explanatory.

Fix ID for compute slice does not exist
Self-explanatory.

Fix ID for fix ave/atom does not exist
Self-explanatory.

Fix ID for fix ave/correlate does not exist
Self-explanatory.

Fix ID for fix ave/histo does not exist
Self-explanatory.

Fix ID for fix ave/spatial does not exist
Self-explanatory.

Fix ID for fix ave/time does not exist
Self-explanatory.

Fix ID for fix store/state does not exist
Self-explanatory

Fix ID for read_data does not exist
Self-explanatory.

Fix ID must be alphanumeric or underscore characters
Self-explanatory.

Fix SRD no-slip requires atom attribute torque
This is because the SRD collisions will impart torque to the solute particles.

Fix SRD: bad bin assignment for SRD advection
Something has gone wrong in your SRD model; try using more conservative settings.

Fix SRD: bad search bin assignment
Something has gone wrong in your SRD model; try using more conservative settings.

Fix SRD: bad stencil bin for big particle
Something has gone wrong in your SRD model; try using more conservative settings.

Fix SRD: too many big particles in bin
Reset the ATOMPERBIN parameter at the top of fix_srd.cpp to a larger value, and re-compile the
code.

Fix SRD: too many walls in bin
This should not happen unless your system has been setup incorrectly.

Fix adapt kspace style does not exist
Self-explanatory.

Fix adapt pair style does not exist
Self-explanatory

Fix adapt pair style param not supported
The pair style does not know about the parameter you specified.

Fix adapt requires atom attribute charge
The atom style being used does not specify an atom charge.

Fix adapt requires atom attribute diameter
The atom style being used does not specify an atom diameter.

Fix adapt type pair range is not valid for pair hybrid sub-style
Self-explanatory.

Fix append/atoms requires a lattice be defined
Use the lattice command for this purpose.

Fix ave/atom compute array is accessed out-of-range
Self-explanatory.

Fix ave/atom compute does not calculate a per-atom array
Self-explanatory.

Fix ave/atom compute does not calculate a per-atom vector

LIGGGHTS Users Manual

Errors: 1067

A compute used by fix ave/atom must generate per-atom values.
Fix ave/atom compute does not calculate per-atom values

A compute used by fix ave/atom must generate per-atom values.
Fix ave/atom fix array is accessed out-of-range

Self-explanatory.
Fix ave/atom fix does not calculate a per-atom array

Self-explanatory.
Fix ave/atom fix does not calculate a per-atom vector

A fix used by fix ave/atom must generate per-atom values.
Fix ave/atom fix does not calculate per-atom values

A fix used by fix ave/atom must generate per-atom values.
Fix ave/atom missed timestep

You cannot reset the timestep to a value beyond where the fix expects to next perform averaging.
Fix ave/atom variable is not atom-style variable

A variable used by fix ave/atom must generate per-atom values.
Fix ave/correlate compute does not calculate a scalar

Self-explanatory.
Fix ave/correlate compute does not calculate a vector

Self-explanatory.
Fix ave/correlate compute vector is accessed out-of-range

The index for the vector is out of bounds.
Fix ave/correlate fix does not calculate a scalar

Self-explanatory.
Fix ave/correlate fix does not calculate a vector

Self-explanatory.
Fix ave/correlate fix vector is accessed out-of-range

The index for the vector is out of bounds.
Fix ave/correlate missed timestep

You cannot reset the timestep to a value beyond where the fix expects to next perform averaging.
Fix ave/correlate variable is not equal-style variable

Self-explanatory.
Fix ave/histo cannot input local values in scalar mode

Self-explanatory.
Fix ave/histo cannot input per-atom values in scalar mode

Self-explanatory.
Fix ave/histo compute array is accessed out-of-range

Self-explanatory.
Fix ave/histo compute does not calculate a global array

Self-explanatory.
Fix ave/histo compute does not calculate a global scalar

Self-explanatory.
Fix ave/histo compute does not calculate a global vector

Self-explanatory.
Fix ave/histo compute does not calculate a local array

Self-explanatory.
Fix ave/histo compute does not calculate a local vector

Self-explanatory.
Fix ave/histo compute does not calculate a per-atom array

Self-explanatory.
Fix ave/histo compute does not calculate a per-atom vector

Self-explanatory.
Fix ave/histo compute does not calculate local values

Self-explanatory.
Fix ave/histo compute does not calculate per-atom values

LIGGGHTS Users Manual

Errors: 1068

Self-explanatory.
Fix ave/histo compute vector is accessed out-of-range

Self-explanatory.
Fix ave/histo fix array is accessed out-of-range

Self-explanatory.
Fix ave/histo fix does not calculate a global array

Self-explanatory.
Fix ave/histo fix does not calculate a global scalar

Self-explanatory.
Fix ave/histo fix does not calculate a global vector

Self-explanatory.
Fix ave/histo fix does not calculate a local array

Self-explanatory.
Fix ave/histo fix does not calculate a local vector

Self-explanatory.
Fix ave/histo fix does not calculate a per-atom array

Self-explanatory.
Fix ave/histo fix does not calculate a per-atom vector

Self-explanatory.
Fix ave/histo fix does not calculate local values

Self-explanatory.
Fix ave/histo fix does not calculate per-atom values

Self-explanatory.
Fix ave/histo fix vector is accessed out-of-range

Self-explanatory.
Fix ave/histo input is invalid compute

Self-explanatory.
Fix ave/histo input is invalid fix

Self-explanatory.
Fix ave/histo input is invalid variable

Self-explanatory.
Fix ave/histo inputs are not all global, peratom, or local

All inputs in a single fix ave/histo command must be of the same style.
Fix ave/histo missed timestep

You cannot reset the timestep to a value beyond where the fix expects to next perform averaging.
Fix ave/spatial compute does not calculate a per-atom array

Self-explanatory.
Fix ave/spatial compute does not calculate a per-atom vector

A compute used by fix ave/spatial must generate per-atom values.
Fix ave/spatial compute does not calculate per-atom values

A compute used by fix ave/spatial must generate per-atom values.
Fix ave/spatial compute vector is accessed out-of-range

The index for the vector is out of bounds.
Fix ave/spatial fix does not calculate a per-atom array

Self-explanatory.
Fix ave/spatial fix does not calculate a per-atom vector

A fix used by fix ave/spatial must generate per-atom values.
Fix ave/spatial fix does not calculate per-atom values

A fix used by fix ave/spatial must generate per-atom values.
Fix ave/spatial fix vector is accessed out-of-range

The index for the vector is out of bounds.
Fix ave/spatial for triclinic boxes requires units reduced

Self-explanatory.
Fix ave/spatial missed timestep

LIGGGHTS Users Manual

Errors: 1069

You cannot reset the timestep to a value beyond where the fix expects to next perform averaging.
Fix ave/spatial settings invalid with changing box

If the ave setting is "running" or "window" and the box size/shape changes during the simulation, then
the units setting must be "reduced", else the number of bins may change.

Fix ave/spatial variable is not atom-style variable
A variable used by fix ave/spatial must generate per-atom values.

Fix ave/time cannot set output array intensive/extensive from these inputs
One of more of the vector inputs has individual elements which are flagged as intensive or extensive.
Such an input cannot be flagged as all intensive/extensive when turned into an array by fix ave/time.

Fix ave/time cannot use variable with vector mode
Variables produce scalar values.

Fix ave/time columns are inconsistent lengths
Self-explanatory.

Fix ave/time compute array is accessed out-of-range
An index for the array is out of bounds.

Fix ave/time compute does not calculate a scalar
Self-explantory.

Fix ave/time compute does not calculate a vector
Self-explantory.

Fix ave/time compute does not calculate an array
Self-explanatory.

Fix ave/time compute vector is accessed out-of-range
The index for the vector is out of bounds.

Fix ave/time fix array is accessed out-of-range
An index for the array is out of bounds.

Fix ave/time fix does not calculate a scalar
Self-explanatory.

Fix ave/time fix does not calculate a vector
Self-explanatory.

Fix ave/time fix does not calculate an array
Self-explanatory.

Fix ave/time fix vector is accessed out-of-range
The index for the vector is out of bounds.

Fix ave/time missed timestep
You cannot reset the timestep to a value beyond where the fix expects to next perform averaging.

Fix ave/time variable is not equal-style variable
Self-explanatory.

Fix balance string is invalid
The string can only contain the characters "x", "y", or "z".

Fix balance string is invalid for 2d simulation
The string cannot contain the letter "z".

Fix bond/break requires special_bonds = 0,1,1
This is a restriction of the current fix bond/break implementation.

Fix bond/create cutoff is longer than pairwise cutoff
This is not allowed because bond creation is done using the pairwise neighbor list.

Fix bond/create requires special_bonds coul = 0,1,1
Self-explanatory.

Fix bond/create requires special_bonds lj = 0,1,1
Self-explanatory.

Fix bond/swap cannot use dihedral or improper styles
These styles cannot be defined when using this fix.

Fix bond/swap requires pair and bond styles
Self-explanatory.

Fix bond/swap requires special_bonds = 0,1,1

LIGGGHTS Users Manual

Errors: 1070

Self-explanatory.
Fix box/relax generated negative box length

The pressure being applied is likely too large. Try applying it incrementally, to build to the high
pressure.

Fix command before simulation box is defined
The fix command cannot be used before a read_data, read_restart, or create_box command.

Fix deform cannot use yz variable with xy
The yz setting cannot be a variable if xy deformation is also specified. This is because LAMMPS
cannot determine if the yz setting will induce a box flip which would be invalid if xy is also changing.

Fix deform is changing yz too much with xy
When both yz and xy are changing, it induces changes in xz if the box must flip from one tilt extreme
to another. Thus it is not allowed for yz to grow so much that a flip is induced.

Fix deform tilt factors require triclinic box
Cannot deform the tilt factors of a simulation box unless it is a triclinic (non-orthogonal) box.

Fix deform volume setting is invalid
Cannot use volume style unless other dimensions are being controlled.

Fix deposit region cannot be dynamic
Only static regions can be used with fix deposit.

Fix deposit region does not support a bounding box
Not all regions represent bounded volumes. You cannot use such a region with the fix deposit
command.

Fix efield requires atom attribute q
Self-explanatory.

Fix evaporate molecule requires atom attribute molecule
The atom style being used does not define a molecule ID.

Fix external callback function not set
This must be done by an external program in order to use this fix.

Fix for fix ave/atom not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/atom is requesting a value on a non-allowed
timestep.

Fix for fix ave/correlate not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/correlate is requesting a value on a
non-allowed timestep.

Fix for fix ave/histo not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/histo is requesting a value on a non-allowed
timestep.

Fix for fix ave/spatial not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/spatial is requesting a value on a
non-allowed timestep.

Fix for fix ave/time not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/time is requesting a value on a non-allowed
timestep.

Fix for fix store/state not computed at compatible time
Fixes generate their values on specific timesteps. Fix store/state is requesting a value on a
non-allowed timestep.

Fix freeze requires atom attribute torque
The atom style defined does not have this attribute.

Fix gcmc cannot exchange individual atoms belonging to a molecule
This is an error since you should not delete only one atom of a molecule. The user has specified
atomic (non-molecular) gas exchanges, but an atom belonging to a molecule could be deleted.

Fix gcmc could not find any atoms in the user-supplied template molecule
When using the molecule option with fix gcmc, the user must supply a template molecule in the usual
LAMMPS data file with its molecule id specified in the fix gcmc command as the "type" of the
exchanged gas.

LIGGGHTS Users Manual

Errors: 1071

Fix gcmc incompatible with given pair_style
Some pair_styles do not provide single-atom energies, which are needed by fix gcmc.

Fix gcmc incorrect number of atoms per molecule
The number of atoms in each gas molecule was not computed correctly.

Fix gcmc molecule command requires that atoms have molecule attributes
Should not choose the GCMC molecule feature if no molecules are being simulated. The general
molecule flag is off, but GCMC's molecule flag is on.

Fix gcmc ran out of available molecule IDs
This is a code limitation where more than MAXSMALLINT (usually around two billion) molecules
have been created. The code needs to be modified to either allow molecule ID recycling or use bigger
ints for molecule IDs. A work-around is to run shorter simulations.

Fix gcmc region cannot be dynamic
Only static regions can be used with fix gcmc.

Fix gcmc region does not support a bounding box
Not all regions represent bounded volumes. You cannot use such a region with the fix gcmc
command.

Fix gcmc region extends outside simulation box
Self-explanatory.

Fix heat group has no atoms
Self-explanatory.

Fix heat kinetic energy of an atom went negative
This will cause the velocity rescaling about to be performed by fix heat to be invalid.

Fix heat kinetic energy went negative
This will cause the velocity rescaling about to be performed by fix heat to be invalid.

Fix in variable not computed at compatible time
Fixes generate their values on specific timesteps. The variable is requesting the values on a
non-allowed timestep.

Fix langevin angmom requires atom style ellipsoid
Self-explanatory.

Fix langevin angmom requires extended particles
This fix option cannot be used with point paritlces.

Fix langevin omega requires atom style sphere
Self-explanatory.

Fix langevin omega requires extended particles
One of the particles has radius 0.0.

Fix langevin period must be > 0.0
The time window for temperature relaxation must be > 0

Fix langevin variable returned negative temperature
Self-explanatory.

Fix momentum group has no atoms
Self-explanatory.

Fix move cannot define z or vz variable for 2d problem
Self-explanatory.

Fix move cannot rotate aroung non z-axis for 2d problem
Self-explanatory.

Fix move cannot set linear z motion for 2d problem
Self-explanatory.

Fix move cannot set wiggle z motion for 2d problem
Self-explanatory.

Fix msst compute ID does not compute potential energy
Self-explanatory.

Fix msst compute ID does not compute pressure
Self-explanatory.

Fix msst compute ID does not compute temperature

LIGGGHTS Users Manual

Errors: 1072

Self-explanatory.
Fix msst requires a periodic box

Self-explanatory.
Fix msst tscale must satisfy 0 <= tscale < 1

Self-explanatory.
Fix npt/nph has tilted box too far in one step - periodic cell is too far from equilibrium state

Self-explanatory. The change in the box tilt is too extreme on a short timescale.
Fix nve/asphere requires extended particles

This fix can only be used for particles with a shape setting.
Fix nve/asphere/noforce requires atom style ellipsoid

Self-explanatory.
Fix nve/asphere/noforce requires extended particles

One of the particles is not an ellipsoid.
Fix nve/body requires atom style body

Self-explanatory.
Fix nve/body requires bodies

This fix can only be used for particles that are bodies.
Fix nve/line can only be used for 2d simulations

Self-explanatory.
Fix nve/line requires atom style line

Self-explanatory.
Fix nve/line requires line particles

Self-explanatory.
Fix nve/sphere requires atom attribute mu

An atom style with this attribute is needed.
Fix nve/sphere requires atom style sphere

Self-explanatory.
Fix nve/sphere requires extended particles

This fix can only be used for particles of a finite size.
Fix nve/tri can only be used for 3d simulations

Self-explanatory.
Fix nve/tri requires atom style tri

Self-explanatory.
Fix nve/tri requires tri particles

Self-explanatory.
Fix nvt/nph/npt asphere requires extended particles

The shape setting for a particle in the fix group has shape = 0.0, which means it is a point particle.
Fix nvt/nph/npt sphere requires atom style sphere

Self-explanatory.
Fix nvt/npt/nph damping parameters must be > 0.0

Self-explanatory.
Fix nvt/npt/nph dilate group ID does not exist

Self-explanatory.
Fix nvt/sphere requires extended particles

This fix can only be used for particles of a finite size.
Fix orient/fcc file open failed

The fix orient/fcc command could not open a specified file.
Fix orient/fcc file read failed

The fix orient/fcc command could not read the needed parameters from a specified file.
Fix orient/fcc found self twice

The neighbor lists used by fix orient/fcc are messed up. If this error occurs, it is likely a bug, so send
an email to the developers.

Fix peri neigh does not exist
Somehow a fix that the pair style defines has been deleted.

LIGGGHTS Users Manual

Errors: 1073

http://lammps.sandia.gov/authors.html

Fix pour region ID does not exist
Self-explanatory.

Fix pour region cannot be dynamic
Only static regions can be used with fix pour.

Fix pour region does not support a bounding box
Not all regions represent bounded volumes. You cannot use such a region with the fix pour command.

Fix pour requires atom attributes radius, rmass
The atom style defined does not have these attributes.

Fix press/berendsen damping parameters must be > 0.0
Self-explanatory.

Fix qeq/comb group has no atoms
Self-explanatory.

Fix qeq/comb requires atom attribute q
An atom style with charge must be used to perform charge equilibration.

Fix reax/bonds numbonds > nsbmax_most
The limit of the number of bonds expected by the ReaxFF force field was exceeded.

Fix recenter group has no atoms
Self-explanatory.

Fix restrain requires an atom map, see atom_modify
Self-explanatory.

Fix rigid atom has non-zero image flag in a non-periodic dimension
Image flags for non-periodic dimensions should not be set.

Fix rigid langevin period must be > 0.0
Self-explanatory.

Fix rigid molecule requires atom attribute molecule
Self-explanatory.

Fix rigid npt/nph dilate group ID does not exist
Self-explanatory.

Fix rigid npt/nph does not yet allow triclinic box
Self-explanatory.

Fix rigid npt/nph period must be > 0.0
Self-explanatory.

Fix rigid nvt/npt/nph damping parameters must be > 0.0
Self-explanatory.

Fix rigid xy torque cannot be on for 2d simulation
Self-explanatory.

Fix rigid z force cannot be on for 2d simulation
Self-explanatory.

Fix rigid/npt period must be > 0.0
Self-explanatory.

Fix rigid/npt temperature order must be 3 or 5
Self-explanatory.

Fix rigid/nvt period must be > 0.0
Self-explanatory.

Fix rigid/nvt temperature order must be 3 or 5
Self-explanatory.

Fix rigid/small atom has non-zero image flag in a non-periodic dimension
Image flags for non-periodic dimensions should not be set.

Fix rigid/small langevin period must be > 0.0
Self-explanatory.

Fix rigid/small requires atom attribute molecule
Self-explanatory.

Fix rigid: Bad principal moments
The principal moments of inertia computed for a rigid body are not within the required tolerances.

LIGGGHTS Users Manual

Errors: 1074

Fix shake cannot be used with minimization
Cannot use fix shake while doing an energy minimization since it turns off bonds that should
contribute to the energy.

Fix spring couple group ID does not exist
Self-explanatory.

Fix srd lamda must be >= 0.6 of SRD grid size
This is a requirement for accuracy reasons.

Fix srd requires SRD particles all have same mass
Self-explanatory.

Fix srd requires ghost atoms store velocity
Use the communicate vel yes command to enable this.

Fix srd requires newton pair on
Self-explanatory.

Fix store/state compute array is accessed out-of-range
Self-explanatory.

Fix store/state compute does not calculate a per-atom array
The compute calculates a per-atom vector.

Fix store/state compute does not calculate a per-atom vector
The compute calculates a per-atom vector.

Fix store/state compute does not calculate per-atom values
Computes that calculate global or local quantities cannot be used with fix store/state.

Fix store/state fix array is accessed out-of-range
Self-explanatory.

Fix store/state fix does not calculate a per-atom array
The fix calculates a per-atom vector.

Fix store/state fix does not calculate a per-atom vector
The fix calculates a per-atom array.

Fix store/state fix does not calculate per-atom values
Fixes that calculate global or local quantities cannot be used with fix store/state.

Fix store/state for atom property that isn't allocated
Self-explanatory.

Fix store/state variable is not atom-style variable
Only atom-style variables calculate per-atom quantities.

Fix temp/berendsen period must be > 0.0
Self-explanatory.

Fix temp/berendsen variable returned negative temperature
Self-explanatory.

Fix temp/rescale variable returned negative temperature
Self-explanatory.

Fix thermal/conductivity swap value must be positive
Self-explanatory.

Fix tmd must come after integration fixes
Any fix tmd command must appear in the input script after all time integration fixes (nve, nvt, npt).
See the fix tmd documentation for details.

Fix ttm electron temperatures must be > 0.0
Self-explanatory.

Fix ttm electronic_density must be > 0.0
Self-explanatory.

Fix ttm electronic_specific_heat must be > 0.0
Self-explanatory.

Fix ttm electronic_thermal_conductivity must be >= 0.0
Self-explanatory.

Fix ttm gamma_p must be > 0.0
Self-explanatory.

LIGGGHTS Users Manual

Errors: 1075

Fix ttm gamma_s must be >= 0.0
Self-explanatory.

Fix ttm number of nodes must be > 0
Self-explanatory.

Fix ttm v_0 must be >= 0.0
Self-explanatory.

Fix used in compute atom/molecule not computed at compatible time
The fix must produce per-atom quantities on timesteps that the compute needs them.

Fix used in compute reduce not computed at compatible time
Fixes generate their values on specific timesteps. Compute reduce is requesting a value on a
non-allowed timestep.

Fix used in compute slice not computed at compatible time
Fixes generate their values on specific timesteps. Compute slice is requesting a value on a
non-allowed timestep.

Fix viscosity swap value must be positive
Self-explanatory.

Fix viscosity vtarget value must be positive
Self-explanatory.

Fix wall cutoff <= 0.0
Self-explanatory.

Fix wall/colloid requires atom style sphere
Self-explanatory.

Fix wall/colloid requires extended particles
One of the particles has radius 0.0.

Fix wall/gran is incompatible with Pair style
Must use a granular pair style to define the parameters needed for this fix.

Fix wall/gran requires atom style sphere
Self-explanatory.

Fix wall/piston command only available at zlo
The face keyword must be zlo.

Fix wall/region colloid requires atom style sphere
Self-explanatory.

Fix wall/region colloid requires extended particles
One of the particles has radius 0.0.

Fix wall/region cutoff <= 0.0
Self-explanatory.

Fix_modify pressure ID does not compute pressure
The compute ID assigned to the fix must compute pressure.

Fix_modify temperature ID does not compute temperature
The compute ID assigned to the fix must compute temperature.

For triclinic deformation, specified target stress must be hydrostatic
Triclinic pressure control is allowed using the tri keyword, but non-hydrostatic pressure control can
not be used in this case.

Found no restart file matching pattern
When using a "*" in the restart file name, no matching file was found.

GPU library not compiled for this accelerator
Self-explanatory.

GPU particle split must be set to 1 for this pair style.
For this pair style, you cannot run part of the force calculation on the host. See the package command.

Gmask function in equal-style variable formula
Gmask is per-atom operation.

Gravity changed since fix pour was created
Gravity must be static and not dynamic for use with fix pour.

Gravity must point in -y to use with fix pour in 2d

LIGGGHTS Users Manual

Errors: 1076

Gravity must be pointing "down" in a 2d box.
Gravity must point in -z to use with fix pour in 3d

Gravity must be pointing "down" in a 3d box, i.e. theta = 180.0.
Grmask function in equal-style variable formula

Grmask is per-atom operation.
Group ID does not exist

A group ID used in the group command does not exist.
Group ID in variable formula does not exist

Self-explanatory.
Group command before simulation box is defined

The group command cannot be used before a read_data, read_restart, or create_box command.
Group region ID does not exist

A region ID used in the group command does not exist.
If read_dump purges it cannot replace or trim

These operations are not compatible. See the read_dump doc page for details.
Illegal ... command

Self-explanatory. Check the input script syntax and compare to the documentation for the command.
You can use -echo screen as a command-line option when running LAMMPS to see the offending
line.

Illegal COMB parameter
One or more of the coefficients defined in the potential file is invalid.

Illegal Stillinger-Weber parameter
One or more of the coefficients defined in the potential file is invalid.

Illegal Tersoff parameter
One or more of the coefficients defined in the potential file is invalid.

Illegal fix gcmc gas mass <= 0
The computed mass of the designated gas molecule or atom type was less than or equal to zero.

Illegal fix wall/piston velocity
The piston velocity must be positive.

Illegal integrate style
Self-explanatory.

Illegal number of angle table entries
There must be at least 2 table entries.

Illegal number of bond table entries
There must be at least 2 table entries.

Illegal number of pair table entries
There must be at least 2 table entries.

Illegal simulation box
The lower bound of the simulation box is greater than the upper bound.

Improper atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular improper on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid improper.

Improper atom missing in set command
The set command cannot find one or more atoms in a particular improper on a particular processor.
The pairwise cutoff is too short or the atoms are too far apart to make a valid improper.

Improper atoms %d %d %d %d missing on proc %d at step %ld
One or more of 4 atoms needed to compute a particular improper are missing on this processor.
Typically this is because the pairwise cutoff is set too short or the improper has blown apart and an
atom is too far away.

Improper coeff for hybrid has invalid style
Improper style hybrid uses another improper style as one of its coefficients. The improper style used
in the improper_coeff command or read from a restart file is not recognized.

Improper coeffs are not set
No improper coefficients have been assigned in the data file or via the improper_coeff command.

LIGGGHTS Users Manual

Errors: 1077

Improper style hybrid cannot have hybrid as an argument
Self-explanatory.

Improper style hybrid cannot have none as an argument
Self-explanatory.

Improper style hybrid cannot use same improper style twice
Self-explanatory.

Improper_coeff command before improper_style is defined
Coefficients cannot be set in the data file or via the improper_coeff command until an improper_style
has been assigned.

Improper_coeff command before simulation box is defined
The improper_coeff command cannot be used before a read_data, read_restart, or create_box
command.

Improper_coeff command when no impropers allowed
The chosen atom style does not allow for impropers to be defined.

Improper_style command when no impropers allowed
The chosen atom style does not allow for impropers to be defined.

Impropers assigned incorrectly
Impropers read in from the data file were not assigned correctly to atoms. This means there is
something invalid about the topology definitions.

Impropers defined but no improper types
The data file header lists improper but no improper types.

Inconsistent iparam/jparam values in fix bond/create command
If itype and jtype are the same, then their maxbond and newtype settings must also be the same.

Inconsistent line segment in data file
The end points of the line segment are not equal distances from the center point which is the atom
coordinate.

Inconsistent triangle in data file
The centroid of the triangle as defined by the corner points is not the atom coordinate.

Incorrect # of floating-point values in Bodies section of data file
See doc page for body style.

Incorrect # of integer values in Bodies section of data file
See doc page for body style.

Incorrect args for angle coefficients
Self-explanatory. Check the input script or data file.

Incorrect args for bond coefficients
Self-explanatory. Check the input script or data file.

Incorrect args for dihedral coefficients
Self-explanatory. Check the input script or data file.

Incorrect args for improper coefficients
Self-explanatory. Check the input script or data file.

Incorrect args for pair coefficients
Self-explanatory. Check the input script or data file.

Incorrect args in pair_style command
Self-explanatory.

Incorrect atom format in data file
Number of values per atom line in the data file is not consistent with the atom style.

Incorrect bonus data format in data file
See the read_data doc page for a description of how various kinds of bonus data must be formatted for
certain atom styles.

Incorrect boundaries with slab Ewald
Must have periodic x,y dimensions and non-periodic z dimension to use 2d slab option with Ewald.

Incorrect boundaries with slab EwaldDisp
Must have periodic x,y dimensions and non-periodic z dimension to use 2d slab option with Ewald.

Incorrect boundaries with slab PPPM

LIGGGHTS Users Manual

Errors: 1078

Must have periodic x,y dimensions and non-periodic z dimension to use 2d slab option with PPPM.
Incorrect boundaries with slab PPPMDisp

Must have periodic x,y dimensions and non-periodic z dimension to use 2d slab option with PPPM.
Incorrect element names in ADP potential file

The element names in the ADP file do not match those requested.
Incorrect element names in EAM potential file

The element names in the EAM file do not match those requested.
Incorrect format in COMB potential file

Incorrect number of words per line in the potential file.
Incorrect format in MEAM potential file

Incorrect number of words per line in the potential file.
Incorrect format in NEB coordinate file

Self-explanatory.
Incorrect format in Stillinger-Weber potential file

Incorrect number of words per line in the potential file.
Incorrect format in TMD target file

Format of file read by fix tmd command is incorrect.
Incorrect format in Tersoff potential file

Incorrect number of words per line in the potential file.
Incorrect integer value in Bodies section of data file

See doc page for body style.
Incorrect multiplicity arg for dihedral coefficients

Self-explanatory. Check the input script or data file.
Incorrect rigid body format in fix rigid file

The number of fields per line is not what expected.
Incorrect sign arg for dihedral coefficients

Self-explanatory. Check the input script or data file.
Incorrect velocity format in data file

Each atom style defines a format for the Velocity section of the data file. The read-in lines do not
match.

Incorrect weight arg for dihedral coefficients
Self-explanatory. Check the input script or data file.

Index between variable brackets must be positive
Self-explanatory.

Indexed per-atom vector in variable formula without atom map
Accessing a value from an atom vector requires the ability to lookup an atom index, which is provided
by an atom map. An atom map does not exist (by default) for non-molecular problems. Using the
atom_modify map command will force an atom map to be created.

Initial temperatures not all set in fix ttm
Self-explantory.

Input line quote not followed by whitespace
An end quote must be followed by whitespace.

Insertion region extends outside simulation box
Region specified with fix pour command extends outside the global simulation box.

Insufficient Jacobi rotations for POEMS body
Eigensolve for rigid body was not sufficiently accurate.

Insufficient Jacobi rotations for body nparticle
Eigensolve for rigid body was not sufficiently accurate.

Insufficient Jacobi rotations for rigid body
Eigensolve for rigid body was not sufficiently accurate.

Insufficient Jacobi rotations for triangle
The calculation of the intertia tensor of the triangle failed. This should not happen if it is a reasonably
shaped triangle.

Insufficient memory on accelerator

LIGGGHTS Users Manual

Errors: 1079

There is insufficient memory on one of the devices specified for the gpu package
Internal error in atom_style body

This error should not occur. Contact the developers.
Invalid -reorder N value

Self-explanatory.
Invalid Boolean syntax in if command

Self-explanatory.
Invalid REAX atom type

There is a mis-match between LAMMPS atom types and the elements listed in the ReaxFF force field
file.

Invalid angle style
The choice of angle style is unknown.

Invalid angle table length
Length must be 2 or greater.

Invalid angle type in Angles section of data file
Angle type must be positive integer and within range of specified angle types.

Invalid angle type index for fix shake
Self-explanatory.

Invalid args for non-hybrid pair coefficients
"NULL" is only supported in pair_coeff calls when using pair hybrid

Invalid atom ID in Angles section of data file
Atom IDs must be positive integers and within range of defined atoms.

Invalid atom ID in Atoms section of data file
Atom IDs must be positive integers.

Invalid atom ID in Bodies section of data file
Atom IDs must be positive integers and within range of defined atoms.

Invalid atom ID in Bonds section of data file
Atom IDs must be positive integers and within range of defined atoms.

Invalid atom ID in Bonus section of data file
Atom IDs must be positive integers and within range of defined atoms.

Invalid atom ID in Dihedrals section of data file
Atom IDs must be positive integers and within range of defined atoms.

Invalid atom ID in Impropers section of data file
Atom IDs must be positive integers and within range of defined atoms.

Invalid atom ID in Velocities section of data file
Atom IDs must be positive integers and within range of defined atoms.

Invalid atom mass for fix shake
Mass specified in fix shake command must be > 0.0.

Invalid atom style
The choice of atom style is unknown.

Invalid atom type in Atoms section of data file
Atom types must range from 1 to specified # of types.

Invalid atom type in create_atoms command
The create_box command specified the range of valid atom types. An invalid type is being requested.

Invalid atom type in fix bond/create command
Self-explanatory.

Invalid atom type in fix gcmc command
The atom type specified in the GCMC command does not exist.

Invalid atom type in neighbor exclusion list
Atom types must range from 1 to Ntypes inclusive.

Invalid atom type index for fix shake
Atom types must range from 1 to Ntypes inclusive.

Invalid atom types in pair_write command
Atom types must range from 1 to Ntypes inclusive.

LIGGGHTS Users Manual

Errors: 1080

Invalid atom vector in variable formula
The atom vector is not recognized.

Invalid atom_style body command
No body style argument was provided.

Invalid atom_style command
Self-explanatory.

Invalid attribute in dump custom command
Self-explantory.

Invalid attribute in dump local command
Self-explantory.

Invalid attribute in dump modify command
Self-explantory.

Invalid body nparticle command
Arguments in atom-style command are not correct.

Invalid body style
The choice of body style is unknown.

Invalid bond style
The choice of bond style is unknown.

Invalid bond table length
Length must be 2 or greater.

Invalid bond type in Bonds section of data file
Bond type must be positive integer and within range of specified bond types.

Invalid bond type in fix bond/break command
Self-explanatory.

Invalid bond type in fix bond/create command
Self-explanatory.

Invalid bond type index for fix shake
Self-explanatory. Check the fix shake command in the input script.

Invalid coeffs for this dihedral style
Cannot set class 2 coeffs in data file for this dihedral style.

Invalid color in dump_modify command
The specified color name was not in the list of recognized colors. See the dump_modify doc page.

Invalid command-line argument
One or more command-line arguments is invalid. Check the syntax of the command you are using to
launch LAMMPS.

Invalid compute ID in variable formula
The compute is not recognized.

Invalid compute style
Self-explanatory.

Invalid cutoff in communicate command
Specified cutoff must be >= 0.0.

Invalid cutoffs in pair_write command
Inner cutoff must be larger than 0.0 and less than outer cutoff.

Invalid d1 or d2 value for pair colloid coeff
Neither d1 or d2 can be < 0.

Invalid data file section: Angle Coeffs
Atom style does not allow angles.

Invalid data file section: AngleAngle Coeffs
Atom style does not allow impropers.

Invalid data file section: AngleAngleTorsion Coeffs
Atom style does not allow dihedrals.

Invalid data file section: AngleTorsion Coeffs
Atom style does not allow dihedrals.

Invalid data file section: Angles

LIGGGHTS Users Manual

Errors: 1081

Atom style does not allow angles.
Invalid data file section: Bodies

Atom style does not allow bodies.
Invalid data file section: Bond Coeffs

Atom style does not allow bonds.
Invalid data file section: BondAngle Coeffs

Atom style does not allow angles.
Invalid data file section: BondBond Coeffs

Atom style does not allow angles.
Invalid data file section: BondBond13 Coeffs

Atom style does not allow dihedrals.
Invalid data file section: Bonds

Atom style does not allow bonds.
Invalid data file section: Dihedral Coeffs

Atom style does not allow dihedrals.
Invalid data file section: Dihedrals

Atom style does not allow dihedrals.
Invalid data file section: Ellipsoids

Atom style does not allow ellipsoids.
Invalid data file section: EndBondTorsion Coeffs

Atom style does not allow dihedrals.
Invalid data file section: Improper Coeffs

Atom style does not allow impropers.
Invalid data file section: Impropers

Atom style does not allow impropers.
Invalid data file section: Lines

Atom style does not allow lines.
Invalid data file section: MiddleBondTorsion Coeffs

Atom style does not allow dihedrals.
Invalid data file section: Triangles

Atom style does not allow triangles.
Invalid delta_conf in tad command

The value must be between 0 and 1 inclusive.
Invalid density in Atoms section of data file

Density value cannot be <= 0.0.
Invalid diameter in set command

Self-explanatory.
Invalid dihedral style

The choice of dihedral style is unknown.
Invalid dihedral type in Dihedrals section of data file

Dihedral type must be positive integer and within range of specified dihedral types.
Invalid dipole length in set command

Self-explanatory.
Invalid displace_atoms rotate axis for 2d

Axis must be in z direction.
Invalid dump dcd filename

Filenames used with the dump dcd style cannot be binary or compressed or cause multiple files to be
written.

Invalid dump frequency
Dump frequency must be 1 or greater.

Invalid dump image element name
The specified element name was not in the standard list of elements. See the dump_modify doc page.

Invalid dump image filename
The file produced by dump image cannot be binary and must be for a single processor.

LIGGGHTS Users Manual

Errors: 1082

Invalid dump image persp value
Persp value must be >= 0.0.

Invalid dump image theta value
Theta must be between 0.0 and 180.0 inclusive.

Invalid dump image zoom value
Zoom value must be > 0.0.

Invalid dump reader style
Self-explanatory.

Invalid dump style
The choice of dump style is unknown.

Invalid dump xtc filename
Filenames used with the dump xtc style cannot be binary or compressed or cause multiple files to be
written.

Invalid dump xyz filename
Filenames used with the dump xyz style cannot be binary or cause files to be written by each
processor.

Invalid dump_modify threshhold operator
Operator keyword used for threshold specification in not recognized.

Invalid entry in -reorder file
Self-explanatory.

Invalid fix ID in variable formula
The fix is not recognized.

Invalid fix ave/time off column
Self-explantory.

Invalid fix box/relax command for a 2d simulation
Fix box/relax styles involving the z dimension cannot be used in a 2d simulation.

Invalid fix box/relax command pressure settings
If multiple dimensions are coupled, those dimensions must be specified.

Invalid fix box/relax pressure settings
Settings for coupled dimensions must be the same.

Invalid fix nvt/npt/nph command for a 2d simulation
Cannot control z dimension in a 2d model.

Invalid fix nvt/npt/nph command pressure settings
If multiple dimensions are coupled, those dimensions must be specified.

Invalid fix nvt/npt/nph pressure settings
Settings for coupled dimensions must be the same.

Invalid fix press/berendsen for a 2d simulation
The z component of pressure cannot be controlled for a 2d model.

Invalid fix press/berendsen pressure settings
Settings for coupled dimensions must be the same.

Invalid fix rigid npt/nph command for a 2d simulation
Cannot control z dimension in a 2d model.

Invalid fix rigid npt/nph command pressure settings
If multiple dimensions are coupled, those dimensions must be specified.

Invalid fix rigid npt/nph pressure settings
Settings for coupled dimensions must be the same.

Invalid fix style
The choice of fix style is unknown.

Invalid flag in force field section of restart file
Unrecognized entry in restart file.

Invalid flag in header section of restart file
Unrecognized entry in restart file.

Invalid flag in type arrays section of restart file
Unrecognized entry in restart file.

LIGGGHTS Users Manual

Errors: 1083

Invalid format in Bodies section of data file
The specified number of integer or floating point values does not appear.

Invalid frequency in temper command
Nevery must be > 0.

Invalid group ID in neigh_modify command
A group ID used in the neigh_modify command does not exist.

Invalid group function in variable formula
Group function is not recognized.

Invalid group in communicate command
Self-explanatory.

Invalid image color range
The lo value in the range is larger than the hi value.

Invalid image up vector
Up vector cannot be (0,0,0).

Invalid immediate variable
Syntax of immediate value is incorrect.

Invalid improper style
The choice of improper style is unknown.

Invalid improper type in Impropers section of data file
Improper type must be positive integer and within range of specified improper types.

Invalid index for non-body particles in compute body/local command
Only indices 1,2,3 can be used for non-body particles.

Invalid index in compute body/local command
Self-explanatory.

Invalid keyword in angle table parameters
Self-explanatory.

Invalid keyword in bond table parameters
Self-explanatory.

Invalid keyword in compute angle/local command
Self-explanatory.

Invalid keyword in compute bond/local command
Self-explanatory.

Invalid keyword in compute dihedral/local command
Self-explanatory.

Invalid keyword in compute improper/local command
Self-explanatory.

Invalid keyword in compute pair/local command
Self-explanatory.

Invalid keyword in compute property/atom command
Self-explanatory.

Invalid keyword in compute property/local command
Self-explanatory.

Invalid keyword in compute property/molecule command
Self-explanatory.

Invalid keyword in dump cfg command
Self-explanatory.

Invalid keyword in pair table parameters
Keyword used in list of table parameters is not recognized.

Invalid keyword in thermo_style custom command
One or more specified keywords are not recognized.

Invalid kspace style
The choice of kspace style is unknown.

Invalid length in set command
Self-explanatory.

LIGGGHTS Users Manual

Errors: 1084

Invalid mass in set command
Self-explanatory.

Invalid mass line in data file
Self-explanatory.

Invalid mass value
Self-explanatory.

Invalid math function in variable formula
Self-explanatory.

Invalid math/group/special function in variable formula
Self-explanatory.

Invalid option in lattice command for non-custom style
Certain lattice keywords are not supported unless the lattice style is "custom".

Invalid order of forces within respa levels
For respa, ordering of force computations within respa levels must obey certain rules. E.g. bonds
cannot be compute less frequently than angles, pairwise forces cannot be computed less frequently
than kspace, etc.

Invalid pair style
The choice of pair style is unknown.

Invalid pair table cutoff
Cutoffs in pair_coeff command are not valid with read-in pair table.

Invalid pair table length
Length of read-in pair table is invalid

Invalid partitions in processors part command
Valid partitions are numbered 1 to N and the sender and receiver cannot be the same partition.

Invalid radius in Atoms section of data file
Radius must be >= 0.0.

Invalid random number seed in fix ttm command
Random number seed must be > 0.

Invalid random number seed in set command
Random number seed must be > 0.

Invalid region style
The choice of region style is unknown.

Invalid replace values in compute reduce
Self-explanatory.

Invalid rigid body ID in fix rigid file
The ID does not match the number or an existing ID of rigid bodies that are defined by the fix rigid
command.

Invalid run command N value
The number of timesteps must fit in a 32-bit integer. If you want to run for more steps than this,
perform multiple shorter runs.

Invalid run command start/stop value
Self-explanatory.

Invalid run command upto value
Self-explanatory.

Invalid seed for Marsaglia random # generator
The initial seed for this random number generator must be a positive integer less than or equal to 900
million.

Invalid seed for Park random # generator
The initial seed for this random number generator must be a positive integer.

Invalid shape in Ellipsoids section of data file
Self-explanatory.

Invalid shape in Triangles section of data file
Two or more of the triangle corners are duplicate points.

Invalid shape in set command

LIGGGHTS Users Manual

Errors: 1085

Self-explanatory.
Invalid shear direction for fix wall/gran

Self-explanatory.
Invalid special function in variable formula

Self-explanatory.
Invalid style in pair_write command

Self-explanatory. Check the input script.
Invalid syntax in variable formula

Self-explanatory.
Invalid t_event in prd command

Self-explanatory.
Invalid t_event in tad command

The value must be greater than 0.
Invalid thermo keyword in variable formula

The keyword is not recognized.
Invalid tmax in tad command

The value must be greater than 0.0.
Invalid type for mass set

Mass command must set a type from 1-N where N is the number of atom types.
Invalid value in set command

The value specified for the setting is invalid, likely because it is too small or too large.
Invalid variable evaluation in variable formula

A variable used in a formula could not be evaluated.
Invalid variable in next command

Self-explanatory.
Invalid variable in special function next

Only file-style variables can be used with the next() function.
Invalid variable name

Variable name used in an input script line is invalid.
Invalid variable name in variable formula

Variable name is not recognized.
Invalid variable style with next command

Variable styles equal and world cannot be used in a next command.
Invalid wiggle direction for fix wall/gran

Self-explanatory.
Invoked angle equil angle on angle style none

Self-explanatory.
Invoked angle single on angle style none

Self-explanatory.
Invoked bond equil distance on bond style none

Self-explanatory.
Invoked bond single on bond style none

Self-explanatory.
Invoked pair single on pair style none

A command (e.g. a dump) attempted to invoke the single() function on a pair style none, which is
illegal. You are probably attempting to compute per-atom quantities with an undefined pair style.

KIM neighbor iterator exceeded range
This should not happen. It likely indicates a bug in the KIM implementation of the interatomic
potential where it is requesting neighbors incorrectly.

KSpace accuracy must be > 0
The kspace accuracy designated in the input must be greater than zero.

KSpace accuracy too large to estimate G vector
Reduce the accuracy request or specify gwald explicitly via the kspace_modify command.

KSpace accuracy too low

LIGGGHTS Users Manual

Errors: 1086

Requested accuracy must be less than 1.0.
KSpace solver requires a pair style

No pair style is defined.
KSpace style has not yet been set

Cannot use kspace_modify command until a kspace style is set.
KSpace style is incompatible with Pair style

Setting a kspace style requires that a pair style with a long-range Coulombic or dispersion component
be used.

Keyword %s in MEAM parameter file not recognized
Self-explanatory.

Kspace style does not support compute group/group
Self-explanatory.

Kspace style pppm/disp/tip4p requires newton on
Self-explanatory.

Kspace style pppm/tip4p requires newton on
Self-explanatory.

Kspace style requires atom attribute q
The atom style defined does not have these attributes.

Kspace style with selected options requires atom attribute q
The atom style defined does not have these attributes. Change the atom style or switch of the coulomb
solver.

LAMMPS unit_style lj not supported by KIM models
Self-explanatory. Check the input script or data file.

LJ6 off not supported in pair_style buck/long/coul/long
Self-exlanatory.

Label wasn't found in input script
Self-explanatory.

Lattice orient vectors are not orthogonal
The three specified lattice orientation vectors must be mutually orthogonal.

Lattice orient vectors are not right-handed
The three specified lattice orientation vectors must create a right-handed coordinate system such that
a1 cross a2 = a3.

Lattice primitive vectors are collinear
The specified lattice primitive vectors do not for a unit cell with non-zero volume.

Lattice settings are not compatible with 2d simulation
One or more of the specified lattice vectors has a non-zero z component.

Lattice spacings are invalid
Each x,y,z spacing must be > 0.

Lattice style incompatible with simulation dimension
2d simulation can use sq, sq2, or hex lattice. 3d simulation can use sc, bcc, or fcc lattice.

Log of zero/negative value in variable formula
Self-explanatory.

Lost atoms via balance: original %ld current %ld
This should not occur. Report the problem to the developers.

Lost atoms: original %ld current %ld
Lost atoms are checked for each time thermo output is done. See the thermo_modify lost command
for options. Lost atoms usually indicate bad dynamics, e.g. atoms have been blown far out of the
simulation box, or moved futher than one processor's sub-domain away before reneighboring.

MEAM library error %d
A call to the MEAM Fortran library returned an error.

MPI_LMP_BIGINT and bigint in lmptype.h are not compatible
The size of the MPI datatype does not match the size of a bigint.

MPI_LMP_TAGINT and tagint in lmptype.h are not compatible
The size of the MPI datatype does not match the size of a tagint.

LIGGGHTS Users Manual

Errors: 1087

MSM grid is too large
The global MSM grid is larger than OFFSET in one or more dimensions. OFFSET is currently set to
16384. You likely need to decrease the requested accuracy.

MSM order must be 4, 6, 8, or 10
This is a limitation of the MSM implementation in LAMMPS: the MSM order can only be 4, 6, 8, or
10.

Mass command before simulation box is defined
The mass command cannot be used before a read_data, read_restart, or create_box command.

Min_style command before simulation box is defined
The min_style command cannot be used before a read_data, read_restart, or create_box command.

Minimization could not find thermo_pe compute
This compute is created by the thermo command. It must have been explicitly deleted by a uncompute
command.

Minimize command before simulation box is defined
The minimize command cannot be used before a read_data, read_restart, or create_box command.

Mismatched brackets in variable
Self-explanatory.

Mismatched compute in variable formula
A compute is referenced incorrectly or a compute that produces per-atom values is used in an
equal-style variable formula.

Mismatched fix in variable formula
A fix is referenced incorrectly or a fix that produces per-atom values is used in an equal-style variable
formula.

Mismatched variable in variable formula
A variable is referenced incorrectly or an atom-style variable that produces per-atom values is used in
an equal-style variable formula.

Modulo 0 in variable formula
Self-explanatory.

Molecular data file has too many atoms
These kids of data files are currently limited to a number of atoms that fits in a 32-bit integer.

Molecule count changed in compute atom/molecule
Number of molecules must remain constant over time.

Molecule count changed in compute com/molecule
Number of molecules must remain constant over time.

Molecule count changed in compute gyration/molecule
Number of molecules must remain constant over time.

Molecule count changed in compute inertia/molecule
Number of molecules must remain constant over time.

Molecule count changed in compute msd/molecule
Number of molecules must remain constant over time.

Molecule count changed in compute property/molecule
Number of molecules must remain constant over time.

More than one fix deform
Only one fix deform can be defined at a time.

More than one fix freeze
Only one of these fixes can be defined, since the granular pair potentials access it.

More than one fix shake
Only one fix shake can be defined.

Must define angle_style before Angle Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.

Must define angle_style before BondAngle Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.

Must define angle_style before BondBond Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.

LIGGGHTS Users Manual

Errors: 1088

Must define bond_style before Bond Coeffs
Must use a bond_style command before reading a data file that defines Bond Coeffs.

Must define dihedral_style before AngleAngleTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines AngleAngleTorsion Coeffs.

Must define dihedral_style before AngleTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines AngleTorsion Coeffs.

Must define dihedral_style before BondBond13 Coeffs
Must use a dihedral_style command before reading a data file that defines BondBond13 Coeffs.

Must define dihedral_style before Dihedral Coeffs
Must use a dihedral_style command before reading a data file that defines Dihedral Coeffs.

Must define dihedral_style before EndBondTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines EndBondTorsion Coeffs.

Must define dihedral_style before MiddleBondTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines MiddleBondTorsion
Coeffs.

Must define improper_style before AngleAngle Coeffs
Must use an improper_style command before reading a data file that defines AngleAngle Coeffs.

Must define improper_style before Improper Coeffs
Must use an improper_style command before reading a data file that defines Improper Coeffs.

Must define pair_style before Pair Coeffs
Must use a pair_style command before reading a data file that defines Pair Coeffs.

Must have more than one processor partition to temper
Cannot use the temper command with only one processor partition. Use the -partition command-line
option.

Must read Atoms before Angles
The Atoms section of a data file must come before an Angles section.

Must read Atoms before Bodies
The Atoms section of a data file must come before a Bodies section.

Must read Atoms before Bonds
The Atoms section of a data file must come before a Bonds section.

Must read Atoms before Dihedrals
The Atoms section of a data file must come before a Dihedrals section.

Must read Atoms before Ellipsoids
The Atoms section of a data file must come before a Ellipsoids section.

Must read Atoms before Impropers
The Atoms section of a data file must come before an Impropers section.

Must read Atoms before Lines
The Atoms section of a data file must come before a Lines section.

Must read Atoms before Triangles
The Atoms section of a data file must come before a Triangles section.

Must read Atoms before Velocities
The Atoms section of a data file must come before a Velocities section.

Must set both respa inner and outer
Cannot use just the inner or outer option with respa without using the other.

Must shrink-wrap piston boundary
The boundary style of the face where the piston is applied must be of type s (shrink-wrapped).

Must specify a region in fix deposit
The region keyword must be specified with this fix.

Must specify a region in fix pour
The region keyword must be specified with this fix.

Must use -in switch with multiple partitions
A multi-partition simulation cannot read the input script from stdin. The -in command-line option
must be used to specify a file.

Must use a block or cylinder region with fix pour

LIGGGHTS Users Manual

Errors: 1089

Self-explanatory.
Must use a block region with fix pour for 2d simulations

Self-explanatory.
Must use a bond style with TIP4P potential

TIP4P potentials assume bond lengths in water are constrained by a fix shake command.
Must use a molecular atom style with fix poems molecule

Self-explanatory.
Must use a z-axis cylinder with fix pour

The axis of the cylinder region used with the fix pour command must be oriented along the z
dimension.

Must use an angle style with TIP4P potential
TIP4P potentials assume angles in water are constrained by a fix shake command.

Must use atom style with molecule IDs with fix bond/swap
Self-explanatory.

Must use pair_style comb with fix qeq/comb
Self-explanatory.

Must use variable energy with fix addforce
Must define an energy vartiable when applyting a dynamic force during minimization.

NEB command before simulation box is defined
Self-explanatory.

NEB requires damped dynamics minimizer
Use a different minimization style.

NEB requires use of fix neb
Self-explanatory.

NL ramp in wall/piston only implemented in zlo for now
The ramp keyword can only be used for piston applied to face zlo.

Needed bonus data not in data file
Some atom styles require bonus data. See the read_data doc page for details.

Needed topology not in data file
The header of the data file indicated that bonds or angles or dihedrals or impropers would be included,
but they were not present.

Neigh_modify exclude molecule requires atom attribute molecule
Self-explanatory.

Neigh_modify include group != atom_modify first group
Self-explanatory.

Neighbor delay must be 0 or multiple of every setting
The delay and every parameters set via the neigh_modify command are inconsistent. If the delay
setting is non-zero, then it must be a multiple of the every setting.

Neighbor include group not allowed with ghost neighbors
This is a current restriction within LAMMPS.

Neighbor list overflow, boost neigh_modify one
There are too many neighbors of a single atom. Use the neigh_modify command to increase the max
number of neighbors allowed for one atom. You may also want to boost the page size.

Neighbor list overflow, boost neigh_modify one or page
There are too many neighbors of a single atom. Use the neigh_modify command to increase the
neighbor page size and the max number of neighbors allowed for one atom.

Neighbor multi not yet enabled for ghost neighbors
This is a current restriction within LAMMPS.

Neighbor multi not yet enabled for granular
Self-explanatory.

Neighbor multi not yet enabled for rRESPA
Self-explanatory.

Neighbor page size must be >= 10x the one atom setting
This is required to prevent wasting too much memory.

LIGGGHTS Users Manual

Errors: 1090

New bond exceeded bonds per atom in fix bond/create
See the read_data command for info on setting the "extra bond per atom" header value to allow for
additional bonds to be formed.

New bond exceeded special list size in fix bond/create
See the special_bonds extra command for info on how to leave space in the special bonds list to allow
for additional bonds to be formed.

Newton bond change after simulation box is defined
The newton command cannot be used to change the newton bond value after a read_data, read_restart,
or create_box command.

No Kspace style defined for compute group/group
Self-explanatory.

No OpenMP support compiled in
An OpenMP flag is set, but LAMMPS was not built with OpenMP support.

No angle style is defined for compute angle/local
Self-explanatory.

No angles allowed with this atom style
Self-explanatory. Check data file.

No atoms in data file
The header of the data file indicated that atoms would be included, but they were not present.

No basis atoms in lattice
Basis atoms must be defined for lattice style user.

No bodies allowed with this atom style
Self-explanatory. Check data file.

No bond style is defined for compute bond/local
Self-explanatory.

No bonds allowed with this atom style
Self-explanatory. Check data file.

No box information in dump. You have to use 'box no'
Self-explanatory.

No dihedral style is defined for compute dihedral/local
Self-explanatory.

No dihedrals allowed with this atom style
Self-explanatory. Check data file.

No dump custom arguments specified
The dump custom command requires that atom quantities be specified to output to dump file.

No dump local arguments specified
Self-explanatory.

No ellipsoids allowed with this atom style
Self-explanatory. Check data file.

No fix gravity defined for fix pour
Cannot add poured particles without gravity to move them.

No improper style is defined for compute improper/local
Self-explanatory.

No impropers allowed with this atom style
Self-explanatory. Check data file.

No lines allowed with this atom style
Self-explanatory. Check data file.

No matching element in ADP potential file
The ADP potential file does not contain elements that match the requested elements.

No matching element in EAM potential file
The EAM potential file does not contain elements that match the requested elements.

No overlap of box and region for create_atoms
Self-explanatory.

No pair hbond/dreiding coefficients set

LIGGGHTS Users Manual

Errors: 1091

Self-explanatory.
No pair style defined for compute group/group

Cannot calculate group interactions without a pair style defined.
No pair style is defined for compute pair/local

Self-explanatory.
No pair style is defined for compute property/local

Self-explanatory.
No rigid bodies defined

The fix specification did not end up defining any rigid bodies.
No triangles allowed with this atom style

Self-explanatory. Check data file.
Non digit character between brackets in variable

Self-explantory.
Non integer # of swaps in temper command

Swap frequency in temper command must evenly divide the total # of timesteps.
Nprocs not a multiple of N for -reorder

Self-explanatory.
Numeric index is out of bounds

A command with an argument that specifies an integer or range of integers is using a value that is less
than 1 or greater than the maximum allowed limit.

One or more atoms belong to multiple rigid bodies
Two or more rigid bodies defined by the fix rigid command cannot contain the same atom.

One or zero atoms in rigid body
Any rigid body defined by the fix rigid command must contain 2 or more atoms.

Only one cutoff allowed when requesting all long
Self-explanatory.

Only zhi currently implemented for fix append/atoms
Self-explanatory.

Out of range atoms - cannot compute MSM
One or more atoms are attempting to map their charge to a MSM grid point that is not owned by a
processor. This is likely for one of two reasons, both of them bad. First, it may mean that an atom near
the boundary of a processor's sub-domain has moved more than 1/2 the neighbor skin distance
without neighbor lists being rebuilt and atoms being migrated to new processors. This also means you
may be missing pairwise interactions that need to be computed. The solution is to change the
re-neighboring criteria via the neigh_modify command. The safest settings are "delay 0 every 1 check
yes". Second, it may mean that an atom has moved far outside a processor's sub-domain or even the
entire simulation box. This indicates bad physics, e.g. due to highly overlapping atoms, too large a
timestep, etc.

Out of range atoms - cannot compute PPPM
One or more atoms are attempting to map their charge to a PPPM grid point that is not owned by a
processor. This is likely for one of two reasons, both of them bad. First, it may mean that an atom near
the boundary of a processor's sub-domain has moved more than 1/2 the neighbor skin distance
without neighbor lists being rebuilt and atoms being migrated to new processors. This also means you
may be missing pairwise interactions that need to be computed. The solution is to change the
re-neighboring criteria via the neigh_modify command. The safest settings are "delay 0 every 1 check
yes". Second, it may mean that an atom has moved far outside a processor's sub-domain or even the
entire simulation box. This indicates bad physics, e.g. due to highly overlapping atoms, too large a
timestep, etc.

Out of range atoms - cannot compute PPPMDisp
One or more atoms are attempting to map their charge to a PPPM grid point that is not owned by a
processor. This is likely for one of two reasons, both of them bad. First, it may mean that an atom near
the boundary of a processor's sub-domain has moved more than 1/2 the neighbor skin distance
without neighbor lists being rebuilt and atoms being migrated to new processors. This also means you
may be missing pairwise interactions that need to be computed. The solution is to change the

LIGGGHTS Users Manual

Errors: 1092

re-neighboring criteria via the neigh_modify command. The safest settings are "delay 0 every 1 check
yes". Second, it may mean that an atom has moved far outside a processor's sub-domain or even the
entire simulation box. This indicates bad physics, e.g. due to highly overlapping atoms, too large a
timestep, etc.

Overlapping large/large in pair colloid
This potential is infinite when there is an overlap.

Overlapping small/large in pair colloid
This potential is infinite when there is an overlap.

POEMS fix must come before NPT/NPH fix
NPT/NPH fix must be defined in input script after all poems fixes, else the fix contribution to the
pressure virial is incorrect.

PPPM grid is too large
The global PPPM grid is larger than OFFSET in one or more dimensions. OFFSET is currently set to
4096. You likely need to decrease the requested accuracy.

PPPM grid stencil extends beyond nearest neighbor processor
This is not allowed if the kspace_modify overlap setting is no.

PPPM order < minimum allowed order
The default minimum order is 2. This can be reset by the kspace_modify minorder command.

PPPM order cannot be < 2 or > than %d
This is a limitation of the PPPM implementation in LAMMPS.

PPPMDisp Coulomb grid is too large
The global PPPM grid is larger than OFFSET in one or more dimensions. OFFSET is currently set to
4096. You likely need to decrease the requested accuracy.

PPPMDisp Dispersion grid is too large
The global dispersion grid is larger than OFFSET in one or more dimensions. OFFSET is currently
set to 4096. You likely need to decrease the requested accuracy.

PPPMDisp coulomb order cannot be greater than %d
This is a limitation of the PPPM implementation in LAMMPS.

PRD command before simulation box is defined
The prd command cannot be used before a read_data, read_restart, or create_box command.

PRD nsteps must be multiple of t_event
Self-explanatory.

PRD t_corr must be multiple of t_event
Self-explanatory.

Package command after simulation box is defined
The package command cannot be used afer a read_data, read_restart, or create_box command.

Package cuda command without USER-CUDA installed
The USER-CUDA package must be installed via "make yes-user-cuda" before LAMMPS is built.

Pair body requires atom style body
Self-explanatory.

Pair body requires body style nparticle
This pair style is specific to the nparticle body style.

Pair brownian requires atom style sphere
Self-explanatory.

Pair brownian requires extended particles
One of the particles has radius 0.0.

Pair brownian requires monodisperse particles
All particles must be the same finite size.

Pair brownian/poly requires atom style sphere
Self-explanatory.

Pair brownian/poly requires extended particles
One of the particles has radius 0.0.

Pair brownian/poly requires newton pair off
Self-explanatory.

LIGGGHTS Users Manual

Errors: 1093

Pair coeff for hybrid has invalid style
Style in pair coeff must have been listed in pair_style command.

Pair colloid/poly requires atom style sphere
Self-explanatory.

Pair coul/wolf requires atom attribute q
The atom style defined does not have this attribute.

Pair cutoff < Respa interior cutoff
One or more pairwise cutoffs are too short to use with the specified rRESPA cutoffs.

Pair dipole/cut requires atom attributes q, mu, torque
The atom style defined does not have these attributes.

Pair dipole/cut/gpu requires atom attributes q, mu, torque
The atom style defined does not have this attribute.

Pair distance < table inner cutoff
Two atoms are closer together than the pairwise table allows.

Pair distance > table outer cutoff
Two atoms are further apart than the pairwise table allows.

Pair dpd requires ghost atoms store velocity
Use the communicate vel yes command to enable this.

Pair gayberne epsilon a,b,c coeffs are not all set
Each atom type involved in pair_style gayberne must have these 3 coefficients set at least once.

Pair gayberne requires atom style ellipsoid
Self-explanatory.

Pair gayberne requires atoms with same type have same shape
Self-explanatory.

Pair gayberne/gpu requires atom style ellipsoid
Self-explanatory.

Pair gayberne/gpu requires atoms with same type have same shape
Self-explanatory.

Pair granular requires atom style sphere
Self-explanatory.

Pair granular requires ghost atoms store velocity
Use the communicate vel yes command to enable this.

Pair granular with shear history requires newton pair off
This is a current restriction of the implementation of pair granular styles with history.

Pair hybrid sub-style does not support single call
You are attempting to invoke a single() call on a pair style that doesn't support it.

Pair hybrid sub-style is not used
No pair_coeff command used a sub-style specified in the pair_style command.

Pair inner cutoff < Respa interior cutoff
One or more pairwise cutoffs are too short to use with the specified rRESPA cutoffs.

Pair inner cutoff >= Pair outer cutoff
The specified cutoffs for the pair style are inconsistent.

Pair line/lj requires atom style line
Self-explanatory.

Pair lubricate requires atom style sphere
Self-explanatory.

Pair lubricate requires ghost atoms store velocity
Use the communicate vel yes command to enable this.

Pair lubricate requires monodisperse particles
All particles must be the same finite size.

Pair lubricate/poly requires atom style sphere
Self-explanatory.

Pair lubricate/poly requires extended particles
One of the particles has radius 0.0.

LIGGGHTS Users Manual

Errors: 1094

Pair lubricate/poly requires ghost atoms store velocity
Use the communicate vel yes command to enable this.

Pair lubricate/poly requires newton pair off
Self-explanatory.

Pair lubricateU requires atom style sphere
Self-explanatory.

Pair lubricateU requires ghost atoms store velocity
Use the communicate vel yes command to enable this.

Pair lubricateU requires monodisperse particles
All particles must be the same finite size.

Pair lubricateU/poly requires ghost atoms store velocity
Use the communicate vel yes command to enable this.

Pair lubricateU/poly requires newton pair off
Self-explanatory.

Pair peri lattice is not identical in x, y, and z
The lattice defined by the lattice command must be cubic.

Pair peri requires a lattice be defined
Use the lattice command for this purpose.

Pair peri requires an atom map, see atom_modify
Even for atomic systems, an atom map is required to find Peridynamic bonds. Use the atom_modify
command to define one.

Pair resquared epsilon a,b,c coeffs are not all set
Self-explanatory.

Pair resquared epsilon and sigma coeffs are not all set
Self-explanatory.

Pair resquared requires atom style ellipsoid
Self-explanatory.

Pair resquared requires atoms with same type have same shape
Self-explanatory.

Pair resquared/gpu requires atom style ellipsoid
Self-explanatory.

Pair resquared/gpu requires atoms with same type have same shape
Self-explanatory.

Pair style AIREBO requires atom IDs
This is a requirement to use the AIREBO potential.

Pair style AIREBO requires newton pair on
See the newton command. This is a restriction to use the AIREBO potential.

Pair style BOP requires atom IDs
This is a requirement to use the BOP potential.

Pair style BOP requires newton pair on
See the newton command. This is a restriction to use the BOP potential.

Pair style COMB requires atom IDs
This is a requirement to use the AIREBO potential.

Pair style COMB requires atom attribute q
Self-explanatory.

Pair style COMB requires newton pair on
See the newton command. This is a restriction to use the COMB potential.

Pair style LCBOP requires atom IDs
This is a requirement to use the LCBOP potential.

Pair style LCBOP requires newton pair on
See the newton command. This is a restriction to use the LCBOP potential.

Pair style MEAM requires newton pair on
See the newton command. This is a restriction to use the MEAM potential.

Pair style Stillinger-Weber requires atom IDs

LIGGGHTS Users Manual

Errors: 1095

This is a requirement to use the SW potential.
Pair style Stillinger-Weber requires newton pair on

See the newton command. This is a restriction to use the SW potential.
Pair style Tersoff requires atom IDs

This is a requirement to use the Tersoff potential.
Pair style Tersoff requires newton pair on

See the newton command. This is a restriction to use the Tersoff potential.
Pair style bop requires comm ghost cutoff at least 3x larger than %g

Use the communicate ghost command to set this. See the pair bop doc page for more details.
Pair style born/coul/long requires atom attribute q

An atom style that defines this attribute must be used.
Pair style born/coul/long/gpu requires atom attribute q

The atom style defined does not have this attribute.
Pair style born/coul/wolf requires atom attribute q

The atom style defined does not have this attribute.
Pair style buck/coul/cut requires atom attribute q

The atom style defined does not have this attribute.
Pair style buck/coul/long requires atom attribute q

The atom style defined does not have these attributes.
Pair style buck/coul/long/gpu requires atom attribute q

The atom style defined does not have this attribute.
Pair style buck/long/coul/long requires atom attribute q

The atom style defined does not have this attribute.
Pair style coul/cut requires atom attribute q

The atom style defined does not have these attributes.
Pair style coul/dsf requires atom attribute q

The atom style defined does not have this attribute.
Pair style coul/dsf/gpu requires atom attribute q

The atom style defined does not have this attribute.
Pair style coul/long/gpu requires atom attribute q

The atom style defined does not have these attributes.
Pair style does not have extra field requested by compute pair/local

The pair style does not support the pN value requested by the compute pair/local command.
Pair style does not support bond_style quartic

The pair style does not have a single() function, so it can not be invoked by bond_style quartic.
Pair style does not support compute group/group

The pair_style does not have a single() function, so it cannot be invokded by the compute group/group
command.

Pair style does not support compute pair/local
The pair style does not have a single() function, so it can not be invoked by compute pair/local.

Pair style does not support compute property/local
The pair style does not have a single() function, so it can not be invoked by fix bond/swap.

Pair style does not support fix bond/swap
The pair style does not have a single() function, so it can not be invoked by fix bond/swap.

Pair style does not support pair_write
The pair style does not have a single() function, so it can not be invoked by pair write.

Pair style does not support rRESPA inner/middle/outer
You are attempting to use rRESPA options with a pair style that does not support them.

Pair style granular with history requires atoms have IDs
Atoms in the simulation do not have IDs, so history effects cannot be tracked by the granular pair
potential.

Pair style hbond/dreiding requires an atom map, see atom_modify
Self-explanatory.

Pair style hbond/dreiding requires atom IDs

LIGGGHTS Users Manual

Errors: 1096

Self-explanatory.
Pair style hbond/dreiding requires molecular system

Self-explanatory.
Pair style hbond/dreiding requires newton pair on

See the newton command for details.
Pair style hybrid cannot have hybrid as an argument

Self-explanatory.
Pair style hybrid cannot have none as an argument

Self-explanatory.
Pair style is incompatible with KSpace style

If a pair style with a long-range Coulombic component is selected, then a kspace style must also be
used.

Pair style lj/charmm/coul/charmm requires atom attribute q
The atom style defined does not have these attributes.

Pair style lj/charmm/coul/long requires atom attribute q
The atom style defined does not have these attributes.

Pair style lj/charmm/coul/long/gpu requires atom attribute q
The atom style defined does not have this attribute.

Pair style lj/class2/coul/cut requires atom attribute q
The atom style defined does not have this attribute.

Pair style lj/class2/coul/long requires atom attribute q
The atom style defined does not have this attribute.

Pair style lj/class2/coul/long/gpu requires atom attribute q
The atom style defined does not have this attribute.

Pair style lj/cut/coul/cut requires atom attribute q
The atom style defined does not have this attribute.

Pair style lj/cut/coul/cut/gpu requires atom attribute q
The atom style defined does not have this attribute.

Pair style lj/cut/coul/debye/gpu requires atom attribute q
The atom style defined does not have this attribute.

Pair style lj/cut/coul/dsf requires atom attribute q
The atom style defined does not have these attributes.

Pair style lj/cut/coul/dsf/gpu requires atom attribute q
The atom style defined does not have this attribute.

Pair style lj/cut/coul/long requires atom attribute q
The atom style defined does not have this attribute.

Pair style lj/cut/coul/long/gpu requires atom attribute q
The atom style defined does not have this attribute.

Pair style lj/cut/tip4p/long requires atom IDs
There are no atom IDs defined in the system and the TIP4P potential requires them to find O,H atoms
with a water molecule.

Pair style lj/cut/tip4p/long requires atom attribute q
The atom style defined does not have these attributes.

Pair style lj/cut/tip4p/long requires newton pair on
This is because the computation of constraint forces within a water molecule adds forces to atoms
owned by other processors.

Pair style lj/cut/coul/msm requires atom attribute q
The atom style defined does not have this attribute.

Pair style lj/gromacs/coul/gromacs requires atom attribute q
An atom_style with this attribute is needed.

Pair style lj/long/coul/long requires atom attribute q
The atom style defined does not have this attribute.

Pair style lj/long/tip4p/long requires atom IDs
There are no atom IDs defined in the system and the TIP4P potential requires them to find O,H atoms

LIGGGHTS Users Manual

Errors: 1097

with a water molecule.
Pair style lj/long/tip4p/long requires atom attribute q

The atom style defined does not have these attributes.
Pair style lj/long/tip4p/long requires newton pair on

This is because the computation of constraint forces within a water molecule adds forces to atoms
owned by other processors.

Pair style peri requires atom style peri
Self-explanatory.

Pair style reax requires atom IDs
This is a requirement to use the ReaxFF potential.

Pair style reax requires newton pair on
This is a requirement to use the ReaxFF potential.

Pair style requires a KSpace style
No kspace style is defined.

Pair table cutoffs must all be equal to use with KSpace
When using pair style table with a long-range KSpace solver, the cutoffs for all atom type pairs must
all be the same, since the long-range solver starts at that cutoff.

Pair table parameters did not set N
List of pair table parameters must include N setting.

Pair tersoff/zbl requires metal or real units
This is a current restriction of this pair potential.

Pair tri/lj requires atom style tri
Self-explanatory.

Pair yukawa/colloid requires atom style sphere
Self-explantory.

Pair yukawa/colloid requires atoms with same type have same radius
Self-explantory.

Pair yukawa/colloid/gpu requires atom style sphere
Self-explanatory.

PairKIM only works with 3D problems.
This is a current restriction of this pair style.

Pair_coeff command before pair_style is defined
Self-explanatory.

Pair_coeff command before simulation box is defined
The pair_coeff command cannot be used before a read_data, read_restart, or create_box command.

Pair_modify command before pair_style is defined
Self-explanatory.

Pair_write command before pair_style is defined
Self-explanatory.

Particle on or inside fix wall surface
Particles must be "exterior" to the wall in order for energy/force to be calculated.

Particle on or inside surface of region used in fix wall/region
Particles must be "exterior" to the region surface in order for energy/force to be calculated.

Per-atom compute in equal-style variable formula
Equal-style variables cannot use per-atom quantities.

Per-atom energy was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied energy, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.

Per-atom fix in equal-style variable formula
Equal-style variables cannot use per-atom quantities.

Per-atom virial was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied the virial, but they didn't on
this timestep. See the variable doc page for ideas on how to make this work.

Per-processor system is too big

LIGGGHTS Users Manual

Errors: 1098

The number of owned atoms plus ghost atoms on a single processor must fit in 32-bit integer.
Potential energy ID for fix neb does not exist

Self-explanatory.
Potential energy ID for fix nvt/nph/npt does not exist

A compute for potential energy must be defined.
Potential file has duplicate entry

The potential file for a SW or Tersoff potential has more than one entry for the same 3 ordered
elements.

Potential file is missing an entry
The potential file for a SW or Tersoff potential does not have a needed entry.

Power by 0 in variable formula
Self-explanatory.

Pressure ID for fix box/relax does not exist
The compute ID needed to compute pressure for the fix does not exist.

Pressure ID for fix modify does not exist
Self-explanatory.

Pressure ID for fix npt/nph does not exist
Self-explanatory.

Pressure ID for fix press/berendsen does not exist
The compute ID needed to compute pressure for the fix does not exist.

Pressure ID for fix rigid npt/nph does not exist
Self-explanatory.

Pressure ID for thermo does not exist
The compute ID needed to compute pressure for thermodynamics does not exist.

Pressure control can not be used with fix nvt
Self-explanatory.

Pressure control can not be used with fix nvt/asphere
Self-explanatory.

Pressure control can not be used with fix nvt/sllod
Self-explanatory.

Pressure control can not be used with fix nvt/sphere
Self-explanatory.

Pressure control must be used with fix nph
Self-explanatory.

Pressure control must be used with fix nph/asphere
Self-explanatory.

Pressure control must be used with fix nph/sphere
Self-explanatory.

Pressure control must be used with fix nphug
A pressure control keyword (iso, aniso, tri, x, y, or z) must be provided.

Pressure control must be used with fix npt
Self-explanatory.

Pressure control must be used with fix npt/asphere
Self-explanatory.

Pressure control must be used with fix npt/sphere
Self-explanatory.

Processor count in z must be 1 for 2d simulation
Self-explanatory.

Processor partitions are inconsistent
The total number of processors in all partitions must match the number of processors LAMMPS is
running on.

Processors command after simulation box is defined
The processors command cannot be used after a read_data, read_restart, or create_box command.

Processors custom grid file is inconsistent

LIGGGHTS Users Manual

Errors: 1099

The vales in the custom file are not consistent with the number of processors you are running on or
the Px,Py,Pz settings of the processors command. Or there was not a setting for every processor.

Processors grid numa and map style are incompatible
Using numa for gstyle in the processors command requires using cart for the map option.

Processors part option and grid style are incompatible
Cannot use gstyle numa or custom with the part option.

Processors twogrid requires proc count be a multiple of core count
Self-explanatory.

Pstart and Pstop must have the same value
Self-explanatory.

R0 < 0 for fix spring command
Equilibrium spring length is invalid.

Read_dump command before simulation box is defined
The read_dump command cannot be used before a read_data, read_restart, or create_box command.

Read_dump field not found in dump file
Self-explanatory.

Read_dump triclinic status does not match simulation
Both the dump snapshot and the current LAMMPS simulation must be using either an orthogonal or
triclinic box.

Read_dump x,y,z fields do not have consistent scaling
Self-explanatory.

Reax_defs.h setting for NATDEF is too small
Edit the setting in the ReaxFF library and re-compile the library and re-build LAMMPS.

Reax_defs.h setting for NNEIGHMAXDEF is too small
Edit the setting in the ReaxFF library and re-compile the library and re-build LAMMPS.

Receiving partition in processors part command is already a receiver
Cannot specify a partition to be a receiver twice.

Region ID for compute reduce/region does not exist
Self-explanatory.

Region ID for compute temp/region does not exist
Self-explanatory.

Region ID for dump custom does not exist
Self-explanatory.

Region ID for fix addforce does not exist
Self-explanatory.

Region ID for fix ave/spatial does not exist
Self-explanatory.

Region ID for fix aveforce does not exist
Self-explanatory.

Region ID for fix deposit does not exist
Self-explanatory.

Region ID for fix evaporate does not exist
Self-explanatory.

Region ID for fix gcmc does not exist
Self-explanatory.

Region ID for fix heat does not exist
Self-explanatory.

Region ID for fix setforce does not exist
Self-explanatory.

Region ID for fix wall/region does not exist
Self-explanatory.

Region ID in variable formula does not exist
Self-explanatory.

Region cannot have 0 length rotation vector

LIGGGHTS Users Manual

Errors: 1100

Self-explanatory.
Region intersect region ID does not exist

Self-explanatory.
Region union or intersect cannot be dynamic

The sub-regions can be dynamic, but not the combined region.
Region union region ID does not exist

One or more of the region IDs specified by the region union command does not exist.
Replacing a fix, but new style != old style

A fix ID can be used a 2nd time, but only if the style matches the previous fix. In this case it is
assumed you with to reset a fix's parameters. This error may mean you are mistakenly re-using a fix
ID when you do not intend to.

Replicate command before simulation box is defined
The replicate command cannot be used before a read_data, read_restart, or create_box command.

Replicate did not assign all atoms correctly
Atoms replicated by the replicate command were not assigned correctly to processors. This is likely
due to some atom coordinates being outside a non-periodic simulation box.

Replicated molecular system atom IDs are too big
See the setting for the allowed atom ID size in the src/lmptype.h file.

Replicated system is too big
See the setting for bigint in the src/lmptype.h file.

Rerun command before simulation box is defined
The rerun command cannot be used before a read_data, read_restart, or create_box command.

Rerun dump file does not contain requested snapshot
Self-explanatory.

Resetting timestep is not allowed with fix move
This is because fix move is moving atoms based on elapsed time.

Respa inner cutoffs are invalid
The first cutoff must be <= the second cutoff.

Respa levels must be >= 1
Self-explanatory.

Respa middle cutoffs are invalid
The first cutoff must be <= the second cutoff.

Restart variable returned a bad timestep
The variable must return a timestep greater than the current timestep.

Restrain atoms %d %d %d %d missing on proc %d at step %ld
The 4 atoms in a restrain dihedral specified by the fix restrain command are not all accessible to a
processor. This probably means an atom has moved too far.

Restrain atoms %d %d %d missing on proc %d at step %ld
The 3 atoms in a restrain angle specified by the fix restrain command are not all accessible to a
processor. This probably means an atom has moved too far.

Restrain atoms %d %d missing on proc %d at step %ld
The 2 atoms in a restrain bond specified by the fix restrain command are not all accessible to a
processor. This probably means an atom has moved too far.

Reuse of compute ID
A compute ID cannot be used twice.

Reuse of dump ID
A dump ID cannot be used twice.

Reuse of region ID
A region ID cannot be used twice.

Rigid body atoms %d %d missing on proc %d at step %ld
This means that an atom cannot find the atom that owns the rigid body it is part of, or vice versa. The
solution is to use the communicate cutoff command to insure ghost atoms are acquired from far
enough away to encompass the max distance printed when the fix rigid/small command was invoked.

Rigid body has degenerate moment of inertia

LIGGGHTS Users Manual

Errors: 1101

Fix poems will only work with bodies (collections of atoms) that have non-zero principal moments of
inertia. This means they must be 3 or more non-collinear atoms, even with joint atoms removed.

Rigid fix must come before NPT/NPH fix
NPT/NPH fix must be defined in input script after all rigid fixes, else the rigid fix contribution to the
pressure virial is incorrect.

Rmask function in equal-style variable formula
Rmask is per-atom operation.

Run command before simulation box is defined
The run command cannot be used before a read_data, read_restart, or create_box command.

Run command start value is after start of run
Self-explanatory.

Run command stop value is before end of run
Self-explanatory.

Run_style command before simulation box is defined
The run_style command cannot be used before a read_data, read_restart, or create_box command.

SRD bin size for fix srd differs from user request
Fix SRD had to adjust the bin size to fit the simulation box. See the cubic keyword if you want this
message to be an error vs warning.

SRD bins for fix srd are not cubic enough
The bin shape is not within tolerance of cubic. See the cubic keyword if you want this message to be
an error vs warning.

SRD particle %d started inside big particle %d on step %ld bounce %d
See the inside keyword if you want this message to be an error vs warning.

Same dimension twice in fix ave/spatial
Self-explanatory.

Sending partition in processors part command is already a sender
Cannot specify a partition to be a sender twice.

Set command before simulation box is defined
The set command cannot be used before a read_data, read_restart, or create_box command.

Set command with no atoms existing
No atoms are yet defined so the set command cannot be used.

Set region ID does not exist
Region ID specified in set command does not exist.

Shake angles have different bond types
All 3-atom angle-constrained SHAKE clusters specified by the fix shake command that are the same
angle type, must also have the same bond types for the 2 bonds in the angle.

Shake atoms %d %d %d %d missing on proc %d at step %ld
The 4 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.

Shake atoms %d %d %d missing on proc %d at step %ld
The 3 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.

Shake atoms %d %d missing on proc %d at step %ld
The 2 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.

Shake cluster of more than 4 atoms
A single cluster specified by the fix shake command can have no more than 4 atoms.

Shake clusters are connected
A single cluster specified by the fix shake command must have a single central atom with up to 3
other atoms bonded to it.

Shake determinant = 0.0
The determinant of the matrix being solved for a single cluster specified by the fix shake command is
numerically invalid.

Shake fix must come before NPT/NPH fix

LIGGGHTS Users Manual

Errors: 1102

NPT fix must be defined in input script after SHAKE fix, else the SHAKE fix contribution to the
pressure virial is incorrect.

Small, tag, big integers are not sized correctly
See description of these 3 data types in src/lmptype.h.

Smallint setting in lmptype.h is invalid
It has to be the size of an integer.

Smallint setting in lmptype.h is not compatible
Smallint stored in restart file is not consistent with LAMMPS version you are running.

Specified processors != physical processors
The 3d grid of processors defined by the processors command does not match the number of
processors LAMMPS is being run on.

Specified target stress must be uniaxial or hydrostatic
Self-explanatory.

Sqrt of negative value in variable formula
Self-explanatory.

Substitution for illegal variable
Input script line contained a variable that could not be substituted for.

System in data file is too big
See the setting for bigint in the src/lmptype.h file.

System is not charge neutral, net charge = %g
The total charge on all atoms on the system is not 0.0, which is not valid for the long-range
Coulombic solvers.

TAD nsteps must be multiple of t_event
Self-explanatory.

TIP4P hydrogen has incorrect atom type
The TIP4P pairwise computation found an H atom whose type does not agree with the specified H
type.

TIP4P hydrogen is missing
The TIP4P pairwise computation failed to find the correct H atom within a water molecule.

TMD target file did not list all group atoms
The target file for the fix tmd command did not list all atoms in the fix group.

Tad command before simulation box is defined
Self-explanatory.

Tagint setting in lmptype.h is invalid
Tagint must be as large or larger than smallint.

Tagint setting in lmptype.h is not compatible
Smallint stored in restart file is not consistent with LAMMPS version you are running.

Target temperature for fix nvt/npt/nph cannot be 0.0
Self-explanatory.

Target temperature for fix rigid/npt cannot be 0.0
Self-explanatory.

Target temperature for fix rigid/nvt cannot be 0.0
Self-explanatory.

Temper command before simulation box is defined
The temper command cannot be used before a read_data, read_restart, or create_box command.

Temperature ID for fix bond/swap does not exist
Self-explanatory.

Temperature ID for fix box/relax does not exist
Self-explanatory.

Temperature ID for fix nvt/npt does not exist
Self-explanatory.

Temperature ID for fix press/berendsen does not exist
Self-explanatory.

Temperature ID for fix rigid nvt/npt/nph does not exist

LIGGGHTS Users Manual

Errors: 1103

Self-explanatory.
Temperature ID for fix temp/berendsen does not exist

Self-explanatory.
Temperature ID for fix temp/rescale does not exist

Self-explanatory.
Temperature control can not be used with fix nph

Self-explanatory.
Temperature control can not be used with fix nph/asphere

Self-explanatory.
Temperature control can not be used with fix nph/sphere

Self-explanatory.
Temperature control must be used with fix nphug

The temp keyword must be provided.
Temperature control must be used with fix npt

Self-explanatory.
Temperature control must be used with fix npt/asphere

Self-explanatory.
Temperature control must be used with fix npt/sphere

Self-explanatory.
Temperature control must be used with fix nvt

Self-explanatory.
Temperature control must be used with fix nvt/asphere

Self-explanatory.
Temperature control must be used with fix nvt/sllod

Self-explanatory.
Temperature control must be used with fix nvt/sphere

Self-explanatory.
Temperature for fix nvt/sllod does not have a bias

The specified compute must compute temperature with a bias.
Tempering could not find thermo_pe compute

This compute is created by the thermo command. It must have been explicitly deleted by a uncompute
command.

Tempering fix ID is not defined
The fix ID specified by the temper command does not exist.

Tempering temperature fix is not valid
The fix specified by the temper command is not one that controls temperature (nvt or langevin).

Test_descriptor_string already allocated
This should not happen. It likely indicates a bug in the pair_kim implementation.

The package gpu command is required for gpu styles
Self-explanatory.

Thermo and fix not computed at compatible times
Fixes generate values on specific timesteps. The thermo output does not match these timesteps.

Thermo compute array is accessed out-of-range
Self-explanatory.

Thermo compute does not compute array
Self-explanatory.

Thermo compute does not compute scalar
Self-explanatory.

Thermo compute does not compute vector
Self-explanatory.

Thermo compute vector is accessed out-of-range
Self-explanatory.

Thermo custom variable cannot be indexed
Self-explanatory.

LIGGGHTS Users Manual

Errors: 1104

Thermo custom variable is not equal-style variable
Only equal-style variables can be output with thermodynamics, not atom-style variables.

Thermo every variable returned a bad timestep
The variable must return a timestep greater than the current timestep.

Thermo fix array is accessed out-of-range
Self-explanatory.

Thermo fix does not compute array
Self-explanatory.

Thermo fix does not compute scalar
Self-explanatory.

Thermo fix does not compute vector
Self-explanatory.

Thermo fix vector is accessed out-of-range
Self-explanatory.

Thermo keyword in variable requires lattice be defined
The xlat, ylat, zlat keywords refer to lattice properties.

Thermo keyword in variable requires thermo to use/init pe
You are using a thermo keyword in a variable that requires potential energy to be calculated, but your
thermo output does not use it. Add it to your thermo output.

Thermo keyword in variable requires thermo to use/init press
You are using a thermo keyword in a variable that requires pressure to be calculated, but your thermo
output does not use it. Add it to your thermo output.

Thermo keyword in variable requires thermo to use/init temp
You are using a thermo keyword in a variable that requires temperature to be calculated, but your
thermo output does not use it. Add it to your thermo output.

Thermo keyword requires lattice be defined
The xlat, ylat, zlat keywords refer to lattice properties.

Thermo style does not use press
Cannot use thermo_modify to set this parameter since the thermo_style is not computing this quantity.

Thermo style does not use temp
Cannot use thermo_modify to set this parameter since the thermo_style is not computing this quantity.

Thermo_modify int format does not contain d character
Self-explanatory.

Thermo_modify pressure ID does not compute pressure
The specified compute ID does not compute pressure.

Thermo_modify temperature ID does not compute temperature
The specified compute ID does not compute temperature.

Thermo_style command before simulation box is defined
The thermo_style command cannot be used before a read_data, read_restart, or create_box command.

This variable thermo keyword cannot be used between runs
Keywords that refer to time (such as cpu, elapsed) do not make sense in between runs.

Threshhold for an atom property that isn't allocated
A dump threshhold has been requested on a quantity that is not defined by the atom style used in this
simulation.

Timestep must be >= 0
Specified timestep is invalid.

Too big a problem to use velocity create loop all
The system size must fit in a 32-bit integer to use this option.

Too big a timestep
Specified timestep is too large.

Too big a timestep for dump dcd
The timestep must fit in a 32-bit integer to use this dump style.

Too big a timestep for dump xtc
The timestep must fit in a 32-bit integer to use this dump style.

LIGGGHTS Users Manual

Errors: 1105

Too few bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.

Too many MSM grid levels
The max number of MSM grid levels is hardwired to 10.

Too many atom pairs for pair bop
The number of atomic pairs exceeds the expected number. Check your atomic structure to ensure that
it is realistic.

Too many atom sorting bins
This is likely due to an immense simulation box that has blown up to a large size.

Too many atom triplets for pair bop
The number of three atom groups for angle determinations exceeds the expected number. Check your
atomic structrure to ensure that it is realistic.

Too many atoms for dump dcd
The system size must fit in a 32-bit integer to use this dump style.

Too many atoms for dump xtc
The system size must fit in a 32-bit integer to use this dump style.

Too many atoms to dump sort
Cannot sort when running with more than 2^31 atoms.

Too many exponent bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.

Too many groups
The maximum number of atom groups (including the "all" group) is given by MAX_GROUP in
group.cpp and is 32.

Too many iterations
You must use a number of iterations that fit in a 32-bit integer for minimization.

Too many lines in one body in data file - boost MAXBODY
MAXBODY is a setting at the top of the src/read_data.cpp file. Set it larger and re-compile the code.

Too many local+ghost atoms for neighbor list
The number of nlocal + nghost atoms on a processor is limited by the size of a 32-bit integer with 2
bits removed for masking 1-2, 1-3, 1-4 neighbors.

Too many mantissa bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.

Too many masses for fix shake
The fix shake command cannot list more masses than there are atom types.

Too many neighbor bins
This is likely due to an immense simulation box that has blown up to a large size.

Too many timesteps
The cummulative timesteps must fit in a 64-bit integer.

Too many timesteps for NEB
You must use a number of timesteps that fit in a 32-bit integer for NEB.

Too many total atoms
See the setting for bigint in the src/lmptype.h file.

Too many total bits for bitmapped lookup table
Table size specified via pair_modify command is too large. Note that a value of N generates a 2^N
size table.

Too many touching neighbors - boost MAXTOUCH
A granular simulation has too many neighbors touching one atom. The MAXTOUCH parameter in
fix_shear_history.cpp must be set larger and LAMMPS must be re-built.

Too much per-proc info for dump
Number of local atoms times number of columns must fit in a 32-bit integer for dump.

Tree structure in joint connections

LIGGGHTS Users Manual

Errors: 1106

Fix poems cannot (yet) work with coupled bodies whose joints connect the bodies in a tree structure.
Triclinic box skew is too large

The displacement in a skewed direction must be less than half the box length in that dimension. E.g.
the xy tilt must be between -half and +half of the x box length. This constraint can be relaxed by using
the box tilt command.

Tried to convert a double to int, but input_double > INT_MAX
Self-explanatory.

Two groups cannot be the same in fix spring couple
Self-explanatory.

USER-CUDA mode requires CUDA variant of min style
CUDA mode is enabled, so the min style must include a cuda suffix.

USER-CUDA mode requires CUDA variant of run style
CUDA mode is enabled, so the run style must include a cuda suffix.

USER-CUDA package requires a cuda enabled atom_style
Self-explanatory.

Unable to initialize accelerator for use
There was a problem initializing an accelerator for the gpu package

Unbalanced quotes in input line
No matching end double quote was found following a leading double quote.

Unexpected end of -reorder file
Self-explanatory.

Unexpected end of custom file
Self-explanatory.

Unexpected end of data file
LAMMPS hit the end of the data file while attempting to read a section. Something is wrong with the
format of the data file.

Unexpected end of dump file
A read operation from the file failed.

Unexpected end of fix rigid file
A read operation from the file failed.

Units command after simulation box is defined
The units command cannot be used after a read_data, read_restart, or create_box command.

Universe/uloop variable count < # of partitions
A universe or uloop style variable must specify a number of values >= to the number of processor
partitions.

Unknown command: %s
The command is not known to LAMMPS. Check the input script.

Unknown error in GPU library
Self-explanatory.

Unknown identifier in data file: %s
A section of the data file cannot be read by LAMMPS.

Unknown table style in angle style table
Self-explanatory.

Unknown table style in bond style table
Self-explanatory.

Unknown table style in pair_style command
Style of table is invalid for use with pair_style table command.

Unknown unit_style
Self-explanatory. Check the input script or data file.

Unrecognized lattice type in MEAM file 1
The lattice type in an entry of the MEAM library file is not valid.

Unrecognized lattice type in MEAM file 2
The lattice type in an entry of the MEAM parameter file is not valid.

Unrecognized pair style in compute pair command

LIGGGHTS Users Manual

Errors: 1107

Self-explanatory.
Unrecognized virial argument in pair_style command

Only two options are supported: LAMMPSvirial and KIMvirial
Unsupported mixing rule in kspace_style ewald/disp

Only geometric mixing is supported.
Unsupported mixing rule in kspace_style pppm/disp for pair_style %s

Only geometric mixing is supported.
Unsupported order in kspace_style ewald/disp

Only 1/r^6 dispersion terms are supported.
Unsupported order in kspace_style pppm/disp pair_style %s

Only 1/r^6 dispersion terms are supported.
Use of change_box with undefined lattice

Must use lattice command with displace_box command if units option is set to lattice.
Use of compute temp/ramp with undefined lattice

Must use lattice command with compute temp/ramp command if units option is set to lattice.
Use of displace_atoms with undefined lattice

Must use lattice command with displace_atoms command if units option is set to lattice.
Use of fix append/atoms with undefined lattice

A lattice must be defined before using this fix.
Use of fix ave/spatial with undefined lattice

A lattice must be defined to use fix ave/spatial with units = lattice.
Use of fix deform with undefined lattice

A lattice must be defined to use fix deform with units = lattice.
Use of fix deposit with undefined lattice

Must use lattice command with compute fix deposit command if units option is set to lattice.
Use of fix dt/reset with undefined lattice

Must use lattice command with fix dt/reset command if units option is set to lattice.
Use of fix indent with undefined lattice

The lattice command must be used to define a lattice before using the fix indent command.
Use of fix move with undefined lattice

Must use lattice command with fix move command if units option is set to lattice.
Use of fix recenter with undefined lattice

Must use lattice command with fix recenter command if units option is set to lattice.
Use of fix wall with undefined lattice

Must use lattice command with fix wall command if units option is set to lattice.
Use of fix wall/piston with undefined lattice

A lattice must be defined before using this fix.
Use of region with undefined lattice

If units = lattice (the default) for the region command, then a lattice must first be defined via the
lattice command.

Use of velocity with undefined lattice
If units = lattice (the default) for the velocity set or velocity ramp command, then a lattice must first
be defined via the lattice command.

Using fix nvt/sllod with inconsistent fix deform remap option
Fix nvt/sllod requires that deforming atoms have a velocity profile provided by "remap v" as a fix
deform option.

Using fix nvt/sllod with no fix deform defined
Self-explanatory.

Using fix srd with inconsistent fix deform remap option
When shearing the box in an SRD simulation, the remap v option for fix deform needs to be used.

Using pair lubricate with inconsistent fix deform remap option
Must use remap v option with fix deform with this pair style.

Using pair lubricate/poly with inconsistent fix deform remap option
If fix deform is used, the remap v option is required.

LIGGGHTS Users Manual

Errors: 1108

Variable ID in variable formula does not exist
Self-explanatory.

Variable evaluation before simulation box is defined
Cannot evaluate a compute or fix or atom-based value in a variable before the simulation has been
setup.

Variable evaluation in fix wall gave bad value
The returned value for epsilon or sigma < 0.0.

Variable evaluation in region gave bad value
Variable returned a radius < 0.0.

Variable for compute ti is invalid style
Self-explanatory.

Variable for dump every is invalid style
Only equal-style variables can be used.

Variable for dump image center is invalid style
Must be an equal-style variable.

Variable for dump image persp is invalid style
Must be an equal-style variable.

Variable for dump image phi is invalid style
Must be an equal-style variable.

Variable for dump image theta is invalid style
Must be an equal-style variable.

Variable for dump image zoom is invalid style
Must be an equal-style variable.

Variable for fix adapt is invalid style
Only equal-style variables can be used.

Variable for fix addforce is invalid style
Self-explanatory.

Variable for fix aveforce is invalid style
Only equal-style variables can be used.

Variable for fix deform is invalid style
The variable must be an equal-style variable.

Variable for fix efield is invalid style
Only equal-style variables can be used.

Variable for fix gravity is invalid style
Only equal-style variables can be used.

Variable for fix heat is invalid style
Only equal-style or atom-style variables can be used.

Variable for fix indent is invalid style
Only equal-style variables can be used.

Variable for fix indent is not equal style
Only equal-style variables can be used.

Variable for fix langevin is invalid style
It must be an equal-style variable.

Variable for fix move is invalid style
Only equal-style variables can be used.

Variable for fix setforce is invalid style
Only equal-style variables can be used.

Variable for fix temp/berendsen is invalid style
Only equal-style variables can be used.

Variable for fix temp/rescale is invalid style
Only equal-style variables can be used.

Variable for fix wall is invalid style
Only equal-style variables can be used.

Variable for fix wall/reflect is invalid style

LIGGGHTS Users Manual

Errors: 1109

Only equal-style variables can be used.
Variable for fix wall/srd is invalid style

Only equal-style variables can be used.
Variable for group is invalid style

Only atom-style variables can be used.
Variable for region cylinder is invalid style

Only equal-style varaibles are allowed.
Variable for region is invalid style

Only equal-style variables can be used.
Variable for region is not equal style

Self-explanatory.
Variable for region sphere is invalid style

Only equal-style varaibles are allowed.
Variable for restart is invalid style

Only equal-style variables can be used.
Variable for thermo every is invalid style

Only equal-style variables can be used.
Variable for velocity set is invalid style

Only atom-style variables can be used.
Variable formula compute array is accessed out-of-range

Self-explanatory.
Variable formula compute vector is accessed out-of-range

Self-explanatory.
Variable formula fix array is accessed out-of-range

Self-explanatory.
Variable formula fix vector is accessed out-of-range

Self-explanatory.
Variable has circular dependency

A circular dependency is when variable "a" in used by variable "b" and variable "b" is also used by
varaible "a". Circular dependencies with longer chains of dependence are also not allowed.

Variable name for compute atom/molecule does not exist
Self-explanatory.

Variable name for compute reduce does not exist
Self-explanatory.

Variable name for compute ti does not exist
Self-explanatory.

Variable name for dump every does not exist
Self-explanatory.

Variable name for dump image center does not exist
Self-explanatory.

Variable name for dump image persp does not exist
Self-explanatory.

Variable name for dump image phi does not exist
Self-explanatory.

Variable name for dump image theta does not exist
Self-explanatory.

Variable name for dump image zoom does not exist
Self-explanatory.

Variable name for fix adapt does not exist
Self-explanatory.

Variable name for fix addforce does not exist
Self-explanatory.

Variable name for fix ave/atom does not exist
Self-explanatory.

LIGGGHTS Users Manual

Errors: 1110

Variable name for fix ave/correlate does not exist
Self-explanatory.

Variable name for fix ave/histo does not exist
Self-explanatory.

Variable name for fix ave/spatial does not exist
Self-explanatory.

Variable name for fix ave/time does not exist
Self-explanatory.

Variable name for fix aveforce does not exist
Self-explanatory.

Variable name for fix deform does not exist
Self-explantory.

Variable name for fix efield does not exist
Self-explanatory.

Variable name for fix gravity does not exist
Self-explanatory.

Variable name for fix heat does not exist
Self-explanatory.

Variable name for fix indent does not exist
Self-explanatory.

Variable name for fix langevin does not exist
Self-explanatory.

Variable name for fix move does not exist
Self-explanatory.

Variable name for fix setforce does not exist
Self-explanatory.

Variable name for fix store/state does not exist
Self-explanatory.

Variable name for fix temp/berendsen does not exist
Self-explanatory.

Variable name for fix temp/rescale does not exist
Self-explanatory.

Variable name for fix wall does not exist
Self-explanatory.

Variable name for fix wall/reflect does not exist
Self-explanatory.

Variable name for fix wall/srd does not exist
Self-explanatory.

Variable name for group does not exist
Self-explanatory.

Variable name for region cylinder does not exist
Self-explanatory.

Variable name for region does not exist
Self-explanatory.

Variable name for region sphere does not exist
Self-explanatory.

Variable name for restart does not exist
Self-explanatory.

Variable name for thermo every does not exist
Self-explanatory.

Variable name for velocity set does not exist
Self-explanatory.

Variable name must be alphanumeric or underscore characters
Self-explanatory.

LIGGGHTS Users Manual

Errors: 1111

Velocity command before simulation box is defined
The velocity command cannot be used before a read_data, read_restart, or create_box command.

Velocity command with no atoms existing
A velocity command has been used, but no atoms yet exist.

Velocity ramp in z for a 2d problem
Self-explanatory.

Velocity temperature ID does not compute temperature
The compute ID given to the velocity command must compute temperature.

Verlet/split requires 2 partitions
See the -partition command-line switch.

Verlet/split requires Rspace partition layout be multiple of Kspace partition layout in each dim
This is controlled by the processors command.

Verlet/split requires Rspace partition size be multiple of Kspace partition size
This is so there is an equal number of Rspace processors for every Kspace processor.

Virial was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied the virial, but they didn't on
this timestep. See the variable doc page for ideas on how to make this work.

Wall defined twice in fix wall command
Self-explanatory.

Wall defined twice in fix wall/reflect command
Self-explanatory.

Wall defined twice in fix wall/srd command
Self-explanatory.

Water H epsilon must be 0.0 for pair style lj/cut/tip4p/long
This is because LAMMPS does not compute the Lennard-Jones interactions with these particles for
efficiency reasons.

Water H epsilon must be 0.0 for pair style lj/long/tip4p/long
This is because LAMMPS does not compute the Lennard-Jones interactions with these particles for
efficiency reasons.

World variable count doesn't match # of partitions
A world-style variable must specify a number of values equal to the number of processor partitions.

Write_restart command before simulation box is defined
The write_restart command cannot be used before a read_data, read_restart, or create_box command.

Zero length rotation vector with displace_atoms
Self-explanatory.

Zero length rotation vector with fix move
Self-explanatory.

Zero-length lattice orient vector
Self-explanatory.

Warnings:

Adjusting Coulombic cutoff for MSM, new cutoff = %g
The adjust/cutoff command is turned on and the Coulombic cutoff has been adjusted to match the
user-specified accuracy.

Atom with molecule ID = 0 included in compute molecule group
The group used in a compute command that operates on moleclues includes atoms with no molecule
ID. This is probably not what you want.

Bond/angle/dihedral extent > half of periodic box length
This is a restriction because LAMMPS can be confused about which image of an atom in the bonded
interaction is the correct one to use. "Extent" in this context means the maximum end-to-end length of
the bond/angle/dihedral. LAMMPS computes this by taking the maximum bond length, multiplying
by the number of bonds in the interaction (e.g. 3 for a dihedral) and adding a small amount of stretch.

Both groups in compute group/group have a net charge; the Kspace boundary correction to energy will be

LIGGGHTS Users Manual

Warnings: 1112

non-zero
Self-explantory.

Broken bonds will not alter angles, dihedrals, or impropers
See the doc page for fix bond/break for more info on this restriction.

Building an occasional neighobr list when atoms may have moved too far
This can cause LAMMPS to crash when the neighbor list is built. The solution is to check for building
the regular neighbor lists more frequently.

Cannot include log terms without 1/r terms; setting flagHI to 1
Self-explanatory.

Cannot include log terms without 1/r terms; setting flagHI to 1.
Self-explanatory.

Charges are set, but coulombic solver is not used
The atom style supports charge, but this KSpace style does not include long-range Coulombics.

Compute cna/atom cutoff may be too large to find ghost atom neighbors
The neighbor cutoff used may not encompass enough ghost atoms to perform this operation correctly.

Computing temperature of portions of rigid bodies
The group defined by the temperature compute does not encompass all the atoms in one or more rigid
bodies, so the change in degrees-of-freedom for the atoms in those partial rigid bodies will not be
accounted for.

Created bonds will not create angles, dihedrals, or impropers
See the doc page for fix bond/create for more info on this restriction.

Dihedral problem: %d %ld %d %d %d %d
Conformation of the 4 listed dihedral atoms is extreme; you may want to check your simulation
geometry.

Dump dcd/xtc timestamp may be wrong with fix dt/reset
If the fix changes the timestep, the dump dcd file will not reflect the change.

Ewald/disp Newton solver failed, using old method to estimate g_ewald
Self-explanatory.

FENE bond too long: %ld %d %d %g
A FENE bond has stretched dangerously far. It's interaction strength will be truncated to attempt to
prevent the bond from blowing up.

FENE bond too long: %ld %g
A FENE bond has stretched dangerously far. It's interaction strength will be truncated to attempt to
prevent the bond from blowing up.

Fix SRD walls overlap but fix srd overlap not set
You likely want to set this in your input script.

Fix bond/swap will ignore defined angles
See the doc page for fix bond/swap for more info on this restriction.

Fix evaporate may delete atom with non-zero molecule ID
This is probably an error, since you should not delete only one atom of a molecule.

Fix move does not update angular momentum
Atoms store this quantity, but fix move does not (yet) update it.

Fix move does not update quaternions
Atoms store this quantity, but fix move does not (yet) update it.

Fix recenter should come after all other integration fixes
Other fixes may change the position of the center-of-mass, so fix recenter should come last.

Fix shake with rRESPA computes invalid pressures
This is a known bug in LAMMPS that has not yet been fixed. If you use SHAKE with rRESPA and
perform a constant volume simulation (e.g. using fix npt) this only affects the output pressure, not the
dynamics of the simulation. If you use SHAKE with rRESPA and perform a constant pressure
simulation (e.g. using fix npt) then you will be equilibrating to the wrong volume.

Fix srd SRD moves may trigger frequent reneighboring
This is because the SRD particles may move long distances.

Fix srd grid size > 1/4 of big particle diameter

LIGGGHTS Users Manual

Warnings: 1113

This may cause accuracy problems.
Fix srd particle moved outside valid domain

This may indicate a problem with your simulation parameters.
Fix srd particles may move > big particle diameter

This may cause accuracy problems.
Fix srd viscosity < 0.0 due to low SRD density

This may cause accuracy problems.
Fix thermal/conductivity comes before fix ave/spatial

The order of these 2 fixes in your input script is such that fix thermal/conductivity comes first. If you
are using fix ave/spatial to measure the temperature profile induced by fix viscosity, then this may
cause a glitch in the profile since you are averaging immediately after swaps have occurred. Flipping
the order of the 2 fixes typically helps.

Fix viscosity comes before fix ave/spatial
The order of these 2 fixes in your input script is such that fix viscosity comes first. If you are using fix
ave/spatial to measure the velocity profile induced by fix viscosity, then this may cause a glitch in the
profile since you are averaging immediately after swaps have occurred. Flipping the order of the 2
fixes typically helps.

For better accuracy use 'pair_modify table 0'
The user-specified force accuracy cannot be achieved unless the table feature is disabled by using
'pair_modify table 0'.

Geometric mixing assumed for 1/r^6 coefficients
Self-explanatory.

Group for fix_modify temp != fix group
The fix_modify command is specifying a temperature computation that computes a temperature on a
different group of atoms than the fix itself operates on. This is probably not what you want to do.

Improper problem: %d %ld %d %d %d %d
Conformation of the 4 listed improper atoms is extreme; you may want to check your simulation
geometry.

Inconsistent image flags
The image flags for a pair on bonded atoms appear to be inconsistent. Inconsistent means that when
the coordinates of the two atoms are unwrapped using the image flags, the two atoms are far apart.
Specifically they are further apart than half a periodic box length. Or they are more than a box length
apart in a non-periodic dimension. This is usually due to the initial data file not having correct image
flags for the 2 atoms in a bond that straddles a periodic boundary. They should be different by 1 in
that case. This is a warning because inconsistent image flags will not cause problems for dynamics or
most LAMMPS simulations. However they can cause problems when such atoms are used with the
fix rigid or replicate commands.

KIM Model does not provide `energy'; Potential energy will be zero
Self-explanatory.

KIM Model does not provide `forces'; Forces will be zero
Self-explanatory.

KIM Model does not provide `particleEnergy'; energy per atom will be zero
Self-explanatory.

KIM Model does not provide `particleVirial'; virial per atom will be zero
Self-explanatory.

Kspace_modify slab param < 2.0 may cause unphysical behavior
The kspace_modify slab parameter should be larger to insure periodic grids padded with empty space
do not overlap.

Less insertions than requested
Less atom insertions occurred on this timestep due to the fix pour command than were scheduled.
This is probably because there were too many overlaps detected.

Library error in lammps_gather_atoms
This library function cannot be used if atom IDs are not defined or are not consecutively numbered.

Library error in lammps_scatter_atoms

LIGGGHTS Users Manual

Warnings: 1114

This library function cannot be used if atom IDs are not defined or are not consecutively numbered, or
if no atom map is defined. See the atom_modify command for details about atom maps.

Lost atoms via change_box: original %ld current %ld
The command options you have used caused atoms to be lost.

Lost atoms via displace_atoms: original %ld current %ld
The command options you have used caused atoms to be lost.

Lost atoms: original %ld current %ld
Lost atoms are checked for each time thermo output is done. See the thermo_modify lost command
for options. Lost atoms usually indicate bad dynamics, e.g. atoms have been blown far out of the
simulation box, or moved futher than one processor's sub-domain away before reneighboring.

MSM mesh too small, increasing to 2 points in each direction
Self-explanatory.

Mismatch between velocity and compute groups
The temperature computation used by the velocity command will not be on the same group of atoms
that velocities are being set for.

Mixing forced for LJ coefficients
Self-explanatory.

Mixing forced for lj coefficients
Self-explanatory.

More than one compute centro/atom
It is not efficient to use compute centro/atom more than once.

More than one compute cluster/atom
It is not efficient to use compute cluster/atom more than once.

More than one compute cna/atom defined
It is not efficient to use compute cna/atom more than once.

More than one compute contact/atom
It is not efficient to use compute contact/atom more than once.

More than one compute coord/atom
It is not efficient to use compute coord/atom more than once.

More than one compute damage/atom
It is not efficient to use compute ke/atom more than once.

More than one compute erotate/sphere/atom
It is not efficient to use compute erorate/sphere/atom more than once.

More than one compute ke/atom
It is not efficient to use compute ke/atom more than once.

More than one compute voronoi/atom command
It is not efficient to use compute voronoi/atom more than once.

More than one fix poems
It is not efficient to use fix poems more than once.

More than one fix rigid
It is not efficient to use fix rigid more than once.

Neighbor exclusions used with KSpace solver may give inconsistent Coulombic energies
This is because excluding specific pair interactions also excludes them from long-range interactions
which may not be the desired effect. The special_bonds command handles this consistently by
insuring excluded (or weighted) 1-2, 1-3, 1-4 interactions are treated consistently by both the
short-range pair style and the long-range solver. This is not done for exclusions of charged atom pairs
via the neigh_modify exclude command.

New thermo_style command, previous thermo_modify settings will be lost
If a thermo_style command is used after a thermo_modify command, the settings changed by the
thermo_modify command will be reset to their default values. This is because the thermo_modify
commmand acts on the currently defined thermo style, and a thermo_style command creates a new
style.

No Kspace calculation with verlet/split
The 2nd partition performs a kspace calculation so the kspace_style command must be used.

LIGGGHTS Users Manual

Warnings: 1115

No fixes defined, atoms won't move
If you are not using a fix like nve, nvt, npt then atom velocities and coordinates will not be updated
during timestepping.

No joints between rigid bodies, use fix rigid instead
The bodies defined by fix poems are not connected by joints. POEMS will integrate the body motion,
but it would be more efficient to use fix rigid.

Not using real units with pair reax
This is most likely an error, unless you have created your own ReaxFF parameter file in a different set
of units.

Number of MSM mesh points increased to be a multiple of 2
MSM requires that the number of grid points in each direction be a multiple of two and the number of
grid points in one or more directions have been adjusted to meet this requirement.

OMP_NUM_THREADS environment is not set.
This environment variable must be set appropriately to use the USER-OMP pacakge.

One or more atoms are time integrated more than once
This is probably an error since you typically do not want to advance the positions or velocities of an
atom more than once per timestep.

One or more compute molecules has atoms not in group
The group used in a compute command that operates on moleclues does not include all the atoms in
some molecules. This is probably not what you want.

One or more respa levels compute no forces
This is computationally inefficient.

Pair COMB charge %.10f with force %.10f hit max barrier
Something is possibly wrong with your model.

Pair COMB charge %.10f with force %.10f hit min barrier
Something is possibly wrong with your model.

Pair brownian needs newton pair on for momentum conservation
Self-explanatory.

Pair dpd needs newton pair on for momentum conservation
Self-explanatory.

Pair dsmc: num_of_collisions > number_of_A
Collision model in DSMC is breaking down.

Pair dsmc: num_of_collisions > number_of_B
Collision model in DSMC is breaking down.

Particle deposition was unsuccessful
The fix deposit command was not able to insert as many atoms as needed. The requested volume
fraction may be too high, or other atoms may be in the insertion region.

Reducing PPPM order b/c stencil extends beyond nearest neighbor processor
This may lead to a larger grid than desired. See the kspace_modify overlap command to prevent
changing of the PPPM order.

Reducing PPPMDisp Coulomb order b/c stencil extends beyond neighbor processor.
This may lead to a larger grid than desired. See the kspace_modify overlap command to prevent
changing of the PPPM order.

Reducing PPPMDisp Dispersion order b/c stencil extends beyond neighbor processor
This may lead to a larger grid than desired. See the kspace_modify overlap command to prevent
changing of the PPPM order.

Replacing a fix, but new group != old group
The ID and style of a fix match for a fix you are changing with a fix command, but the new group you
are specifying does not match the old group.

Replicating in a non-periodic dimension
The parameters for a replicate command will cause a non-periodic dimension to be replicated; this
may cause unwanted behavior.

Resetting reneighboring criteria during PRD
A PRD simulation requires that neigh_modify settings be delay = 0, every = 1, check = yes. Since

LIGGGHTS Users Manual

Warnings: 1116

these settings were not in place, LAMMPS changed them and will restore them to their original
values after the PRD simulation.

Resetting reneighboring criteria during TAD
A TAD simulation requires that neigh_modify settings be delay = 0, every = 1, check = yes. Since
these settings were not in place, LAMMPS changed them and will restore them to their original
values after the PRD simulation.

Resetting reneighboring criteria during minimization
Minimization requires that neigh_modify settings be delay = 0, every = 1, check = yes. Since these
settings were not in place, LAMMPS changed them and will restore them to their original values after
the minimization.

Restart file used different # of processors
The restart file was written out by a LAMMPS simulation running on a different number of
processors. Due to round-off, the trajectories of your restarted simulation may diverge a little more
quickly than if you ran on the same # of processors.

Restart file used different 3d processor grid
The restart file was written out by a LAMMPS simulation running on a different 3d grid of
processors. Due to round-off, the trajectories of your restarted simulation may diverge a little more
quickly than if you ran on the same # of processors.

Restart file used different boundary settings, using restart file values
Your input script cannot change these restart file settings.

Restart file used different newton bond setting, using restart file value
The restart file value will override the setting in the input script.

Restart file used different newton pair setting, using input script value
The input script value will override the setting in the restart file.

Restart file version does not match LAMMPS version
This may cause problems when reading the restart file.

Restrain problem: %d %ld %d %d %d %d
Conformation of the 4 listed dihedral atoms is extreme; you may want to check your simulation
geometry.

Running PRD with only one replica
This is allowed, but you will get no parallel speed-up.

SRD bin shifting turned on due to small lamda
This is done to try to preserve accuracy.

SRD bin size for fix srd differs from user request
Fix SRD had to adjust the bin size to fit the simulation box. See the cubic keyword if you want this
message to be an error vs warning.

SRD bins for fix srd are not cubic enough
The bin shape is not within tolerance of cubic. See the cubic keyword if you want this message to be
an error vs warning.

SRD particle %d started inside big particle %d on step %ld bounce %d
See the inside keyword if you want this message to be an error vs warning.

Shake determinant < 0.0
The determinant of the quadratic equation being solved for a single cluster specified by the fix shake
command is numerically suspect. LAMMPS will set it to 0.0 and continue.

Should not allow rigid bodies to bounce off relecting walls
LAMMPS allows this, but their dynamics are not computed correctly.

System is not charge neutral, net charge = %g
The total charge on all atoms on the system is not 0.0, which is not valid for the long-range
Coulombic solvers.

Table inner cutoff >= outer cutoff
You specified an inner cutoff for a Coulombic table that is longer than the global cutoff. Probably not
what you wanted.

Temperature for MSST is not for group all
User-assigned temperature to MSST fix does not compute temperature for all atoms. Since MSST

LIGGGHTS Users Manual

Warnings: 1117

computes a global pressure, the kinetic energy contribution from the temperature is assumed to also
be for all atoms. Thus the pressure used by MSST could be inaccurate.

Temperature for NPT is not for group all
User-assigned temperature to NPT fix does not compute temperature for all atoms. Since NPT
computes a global pressure, the kinetic energy contribution from the temperature is assumed to also
be for all atoms. Thus the pressure used by NPT could be inaccurate.

Temperature for fix modify is not for group all
The temperature compute is being used with a pressure calculation which does operate on group all,
so this may be inconsistent.

Temperature for thermo pressure is not for group all
User-assigned temperature to thermo via the thermo_modify command does not compute temperature
for all atoms. Since thermo computes a global pressure, the kinetic energy contribution from the
temperature is assumed to also be for all atoms. Thus the pressure printed by thermo could be
inaccurate.

Too many common neighbors in CNA %d times
More than the maximum # of neighbors was found multiple times. This was unexpected.

Too many inner timesteps in fix ttm
Self-explanatory.

Too many neighbors in CNA for %d atoms
More than the maximum # of neighbors was found multiple times. This was unexpected.

Triclinic box skew is large
The displacement in a skewed direction is normally required to be less than half the box length in that
dimension. E.g. the xy tilt must be between -half and +half of the x box length. You have relaxed the
constraint using the box tilt command, but the warning means that a LAMMPS simulation may be
inefficient as a result.

Use special bonds = 0,1,1 with bond style fene
Most FENE models need this setting for the special_bonds command.

Use special bonds = 0,1,1 with bond style fene/expand
Most FENE models need this setting for the special_bonds command.

Using compute temp/deform with inconsistent fix deform remap option
Fix nvt/sllod assumes deforming atoms have a velocity profile provided by "remap v" or "remap
none" as a fix deform option.

Using compute temp/deform with no fix deform defined
This is probably an error, since it makes little sense to use compute temp/deform in this case.

Using fix srd with box deformation but no SRD thermostat
The deformation will heat the SRD particles so this can be dangerous.

Using largest cutoff for buck/long/coul/long
Self-exlanatory.

Using largest cutoff for pair_style lj/long/coul/long
Self-explanatory.

Using largest cutoff for pair_style lj/long/tip4p/long
Self-explanatory.

Using pair tail corrections with nonperiodic system
This is probably a bogus thing to do, since tail corrections are computed by integrating the density of
a periodic system out to infinity.

LIGGGHTS Users Manual

Warnings: 1118

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

7. Example problems

The LAMMPS distribution includes an examples sub-directory with several sample problems. Each problem
is in a sub-directory of its own. Most are 2d models so that they run quickly, requiring at most a couple of
minutes to run on a desktop machine. Each problem has an input script (in.*) and produces a log file (log.*)
and dump file (dump.*) when it runs. Some use a data file (data.*) of initial coordinates as additional input. A
few sample log file outputs on different machines and different numbers of processors are included in the
directories to compare your answers to. E.g. a log file like log.crack.foo.P means it ran on P processors of
machine "foo".

For examples that use input data files, many of them were produced by Pizza.py or setup tools described in
the Additional Tools section of the LAMMPS documentation and provided with the LAMMPS distribution.

If you uncomment the dump command in the input script, a text dump file will be produced, which can be
animated by various visualization programs. It can also be animated using the xmovie tool described in the
Additional Tools section of the LAMMPS documentation.

If you uncomment the dump image command in the input script, and assuming you have built LAMMPS with
a JPG library, JPG snapshot images will be produced when the simulation runs. They can be quickly
post-processed into a movie using commands described on the dump image doc page.

Animations of many of these examples can be viewed on the Movies section of the LAMMPS WWW Site.

These are the sample problems in the examples sub-directories:

body body particles, 2d system
colloid big colloid particles in a small particle solvent, 2d system
comb models using the COMB potential
crack crack propagation in a 2d solid
dipole point dipolar particles, 2d system
dreiding methanol via Dreiding FF
eim NaCl using the EIM potential
ellipse ellipsoidal particles in spherical solvent, 2d system
flow Couette and Poiseuille flow in a 2d channel
friction frictional contact of spherical asperities between 2d surfaces
gpu use of the GPU package for GPU acceleration
hugoniostat Hugoniostat shock dynamics
indent spherical indenter into a 2d solid
kim use of potentials in Knowledge Base for Interatomic Models (KIM)
line line segment particles in 2d rigid bodies
meam MEAM test for SiC and shear (same as shear examples)
melt rapid melt of 3d LJ system
micelle self-assembly of small lipid-like molecules into 2d bilayers
min energy minimization of 2d LJ melt
msst MSST shock dynamics
neb nudged elastic band (NEB) calculation for barrier finding
nemd non-equilibrium MD of 2d sheared system

LIGGGHTS Users Manual

7. Example problems 1119

http://lammps.sandia.gov
http://pizza.sandia.gov
http://lammps.sandia.gov/viz.html
http://lammps.sandia.gov

obstacle flow around two voids in a 2d channel
peptide dynamics of a small solvated peptide chain (5-mer)
peri Peridynamic model of cylinder impacted by indenter
pour pouring of granular particles into a 3d box, then chute flow
prd parallel replica dynamics of vacancy diffusion in bulk Si
reax RDX and TATB models using the ReaxFF
rigid rigid bodies modeled as independent or coupled
shear sideways shear applied to 2d solid, with and without a void
srd stochastic rotation dynamics (SRD) particles as solvent
tad temperature-accelerated dynamics of vacancy diffusion in bulk Si
tri triangular particles in rigid bodies

Here is how you might run and visualize one of the sample problems:

cd indent
cp ../../src/lmp_linux . # copy LAMMPS executable to this dir
lmp_linux <in.indent # run the problem

Running the simulation produces the files dump.indent and log.lammps. You can visualize the dump file as
follows:

../../tools/xmovie/xmovie -scale dump.indent

If you uncomment the dump image line(s) in the input script a series of JPG images will be produced by the
run. These can be viewed individually or turned into a movie or animated by tools like ImageMagick or
QuickTime or various Windows-based tools. See the dump image doc page for more details. E.g. this
Imagemagick command would create a GIF file suitable for viewing in a browser.

% convert -loop 1 *.jpg foo.gif

There is also a COUPLE directory with examples of how to use LAMMPS as a library, either by itself or in
tandem with another code or library. See the COUPLE/README file to get started.

There is also an ELASTIC directory with an example script for computing elastic constants, using a zero
temperature Si example. See the in.elastic file for more info.

There is also a USER directory which contains subdirectories of user-provided examples for user packages.
See the README files in those directories for more info. See the Section_start.html file for more info about
user packages.

LIGGGHTS Users Manual

7. Example problems 1120

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

3. Commands

This section describes what granular models can be used along with pair gran and fix wall/gran

cohesion commands

Click on the style itself for a full description:

sjkr sjkr2
model commands

Click on the style itself for a full description:

hertz hertz/stiffness hooke hooke/stiffness
rolling_friction commands

Click on the style itself for a full description:

cdt epsd
tangential commands

Click on the style itself for a full description:

history no_history

LIGGGHTS Users Manual

3. Commands 1121

http://www.cfdem.com
http://lammps.sandia.gov

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

13. Future and history

This section lists features we plan to add to LAMMPS, features of previous versions of LAMMPS, and
features of other parallel molecular dynamics codes our group has distributed.

13.1 Coming attractions
13.2 Past versions

13.1 Coming attractions

The Wish list link on the LAMMPS WWW page gives a list of features we are hoping to add to LAMMPS in
the future, including contact names of individuals you can email if you are interested in contributing to the
developement or would be a future user of that feature.

You can also send email to the developers if you want to add your wish to the list.

13.2 Past versions

LAMMPS development began in the mid 1990s under a cooperative research & development agreement
(CRADA) between two DOE labs (Sandia and LLNL) and 3 companies (Cray, Bristol Myers Squibb, and
Dupont). The goal was to develop a large-scale parallel classical MD code; the coding effort was led by Steve
Plimpton at Sandia.

After the CRADA ended, a final F77 version, LAMMPS 99, was released. As development of LAMMPS
continued at Sandia, its memory management was converted to F90; a final F90 version was released as
LAMMPS 2001.

The current LAMMPS is a rewrite in C++ and was first publicly released as an open source code in 2004. It
includes many new features beyond those in LAMMPS 99 or 2001. It also includes features from older
parallel MD codes written at Sandia, namely ParaDyn, Warp, and GranFlow (see below).

In late 2006 we began merging new capabilities into LAMMPS that were developed by Aidan Thompson at
Sandia for his MD code GRASP, which has a parallel framework similar to LAMMPS. Most notably, these
have included many-body potentials - Stillinger-Weber, Tersoff, ReaxFF - and the associated
charge-equilibration routines needed for ReaxFF.

The History link on the LAMMPS WWW page gives a timeline of features added to the C++ open-source
version of LAMMPS over the last several years.

These older codes are available for download from the LAMMPS WWW site, except for Warp & GranFlow
which were primarily used internally. A brief listing of their features is given here.

LAMMPS 2001

F90 + MPI•
dynamic memory•
spatial-decomposition parallelism•
NVE, NVT, NPT, NPH, rRESPA integrators•
LJ and Coulombic pairwise force fields•
all-atom, united-atom, bead-spring polymer force fields•
CHARMM-compatible force fields•

LIGGGHTS Users Manual

tangential commands 1122

http://lammps.sandia.gov
http://lammps.sandia.gov/future.html
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov/history.html
http://lammps.sandia.gov

class 2 force fields•
3d/2d Ewald & PPPM•
various force and temperature constraints•
SHAKE•
Hessian-free truncated-Newton minimizer•
user-defined diagnostics•

LAMMPS 99

F77 + MPI•
static memory allocation•
spatial-decomposition parallelism•
most of the LAMMPS 2001 features with a few exceptions•
no 2d Ewald & PPPM•
molecular force fields are missing a few CHARMM terms•
no SHAKE•

Warp

F90 + MPI•
spatial-decomposition parallelism•
embedded atom method (EAM) metal potentials + LJ•
lattice and grain-boundary atom creation•
NVE, NVT integrators•
boundary conditions for applying shear stresses•
temperature controls for actively sheared systems•
per-atom energy and centro-symmetry computation and output•

ParaDyn

F77 + MPI•
atom- and force-decomposition parallelism•
embedded atom method (EAM) metal potentials•
lattice atom creation•
NVE, NVT, NPT integrators•
all serial DYNAMO features for controls and constraints•

GranFlow

F90 + MPI•
spatial-decomposition parallelism•
frictional granular potentials•
NVE integrator•
boundary conditions for granular flow and packing and walls•
particle insertion•

LIGGGHTS Users Manual

13.2 Past versions 1123

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

6. How-to discussions

This section describes how to perform common tasks using LAMMPS.

6.1 Restarting a simulation
6.2 2d simulations
6.3 CHARMM, AMBER, and DREIDING force fields
6.4 Running multiple simulations from one input script
6.5 Multi-replica simulations
6.6 Granular models
6.7 TIP3P water model
6.8 TIP4P water model
6.9 SPC water model
6.10 Coupling LAMMPS to other codes
6.11 Visualizing LAMMPS snapshots
6.12 Triclinic (non-orthogonal) simulation boxes
6.13 NEMD simulations
6.14 Finite-size spherical and aspherical particles
6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
6.16 Thermostatting, barostatting and computing temperature
6.17 Walls
6.18 Elastic constants
6.19 Library interface to LAMMPS
6.20 Calculating thermal conductivity
6.21 Calculating viscosity

The example input scripts included in the LAMMPS distribution and highlighted in Section_example also
show how to setup and run various kinds of simulations.

6.1 Restarting a simulation

There are 3 ways to continue a long LAMMPS simulation. Multiple run commands can be used in the same
input script. Each run will continue from where the previous run left off. Or binary restart files can be saved to
disk using the restart command. At a later time, these binary files can be read via a read_restart command in a
new script. Or they can be converted to text data files using the -r command-line switch and read by a
read_data command in a new script.

Here we give examples of 2 scripts that read either a binary restart file or a converted data file and then issue a
new run command to continue where the previous run left off. They illustrate what settings must be made in
the new script. Details are discussed in the documentation for the read_restart and read_data commands.

Look at the in.chain input script provided in the bench directory of the LAMMPS distribution to see the
original script that these 2 scripts are based on. If that script had the line

restart 50 tmp.restart

added to it, it would produce 2 binary restart files (tmp.restart.50 and tmp.restart.100) as it ran.

This script could be used to read the 1st restart file and re-run the last 50 timesteps:

LIGGGHTS Users Manual

6. How-to discussions 1124

http://lammps.sandia.gov

read_restart tmp.restart.50

neighbor 0.4 bin
neigh_modify every 1 delay 1

fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297

timestep 0.012

run 50

Note that the following commands do not need to be repeated because their settings are included in the restart
file: units, atom_style, special_bonds, pair_style, bond_style. However these commands do need to be used,
since their settings are not in the restart file: neighbor, fix, timestep.

If you actually use this script to perform a restarted run, you will notice that the thermodynamic data match at
step 50 (if you also put a "thermo 50" command in the original script), but do not match at step 100. This is
because the fix langevin command uses random numbers in a way that does not allow for perfect restarts.

As an alternate approach, the restart file could be converted to a data file as follows:

lmp_g++ -r tmp.restart.50 tmp.restart.data

Then, this script could be used to re-run the last 50 steps:

units lj
atom_style bond
pair_style lj/cut 1.12
pair_modify shift yes
bond_style fene
special_bonds 0.0 1.0 1.0

read_data tmp.restart.data

neighbor 0.4 bin
neigh_modify every 1 delay 1

fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297

timestep 0.012

reset_timestep 50
run 50

Note that nearly all the settings specified in the original in.chain script must be repeated, except the pair_coeff
and bond_coeff commands since the new data file lists the force field coefficients. Also, the reset_timestep
command is used to tell LAMMPS the current timestep. This value is stored in restart files, but not in data
files.

6.2 2d simulations

Use the dimension command to specify a 2d simulation.

Make the simulation box periodic in z via the boundary command. This is the default.

LIGGGHTS Users Manual

6.1 Restarting a simulation 1125

If using the create box command to define a simulation box, set the z dimensions narrow, but finite, so that the
create_atoms command will tile the 3d simulation box with a single z plane of atoms - e.g.

create box 1 -10 10 -10 10 -0.25 0.25

If using the read data command to read in a file of atom coordinates, set the "zlo zhi" values to be finite but
narrow, similar to the create_box command settings just described. For each atom in the file, assign a z
coordinate so it falls inside the z-boundaries of the box - e.g. 0.0.

Use the fix enforce2d command as the last defined fix to insure that the z-components of velocities and forces
are zeroed out every timestep. The reason to make it the last fix is so that any forces induced by other fixes
will be zeroed out.

Many of the example input scripts included in the LAMMPS distribution are for 2d models.

IMPORTANT NOTE: Some models in LAMMPS treat particles as finite-size spheres, as opposed to point
particles. In 2d, the particles will still be spheres, not disks, meaning their moment of inertia will be the same
as in 3d.

6.3 CHARMM, AMBER, and DREIDING force fields

A force field has 2 parts: the formulas that define it and the coefficients used for a particular system. Here we
only discuss formulas implemented in LAMMPS that correspond to formulas commonly used in the
CHARMM, AMBER, and DREIDING force fields. Setting coefficients is done in the input data file via the
read_data command or in the input script with commands like pair_coeff or bond_coeff. See Section_tools for
additional tools that can use CHARMM or AMBER to assign force field coefficients and convert their output
into LAMMPS input.

See (MacKerell) for a description of the CHARMM force field. See (Cornell) for a description of the AMBER
force field.

These style choices compute force field formulas that are consistent with common options in CHARMM or
AMBER. See each command's documentation for the formula it computes.

bond_style harmonic•
angle_style charmm•
dihedral_style charmm•
pair_style lj/charmm/coul/charmm•
pair_style lj/charmm/coul/charmm/implicit•
pair_style lj/charmm/coul/long•

special_bonds charmm•
special_bonds amber•

DREIDING is a generic force field developed by the Goddard group at Caltech and is useful for predicting
structures and dynamics of organic, biological and main-group inorganic molecules. The philosophy in
DREIDING is to use general force constants and geometry parameters based on simple hybridization
considerations, rather than individual force constants and geometric parameters that depend on the particular
combinations of atoms involved in the bond, angle, or torsion terms. DREIDING has an explicit hydrogen
bond term to describe interactions involving a hydrogen atom on very electronegative atoms (N, O, F).

See (Mayo) for a description of the DREIDING force field

LIGGGHTS Users Manual

6.2 2d simulations 1126

http://www.wag.caltech.edu

These style choices compute force field formulas that are consistent with the DREIDING force field. See each
command's documentation for the formula it computes.

bond_style harmonic•
bond_style morse•

angle_style harmonic•
angle_style cosine•
angle_style cosine/periodic•

dihedral_style charmm•
improper_style umbrella•

pair_style buck•
pair_style buck/coul/cut•
pair_style buck/coul/long•
pair_style lj/cut•
pair_style lj/cut/coul/cut•
pair_style lj/cut/coul/long•

pair_style hbond/dreiding/lj•
pair_style hbond/dreiding/morse•

special_bonds dreiding•

6.4 Running multiple simulations from one input script

This can be done in several ways. See the documentation for individual commands for more details on how
these examples work.

If "multiple simulations" means continue a previous simulation for more timesteps, then you simply use the
run command multiple times. For example, this script

units lj
atom_style atomic
read_data data.lj
run 10000
run 10000
run 10000
run 10000
run 10000

would run 5 successive simulations of the same system for a total of 50,000 timesteps.

If you wish to run totally different simulations, one after the other, the clear command can be used in between
them to re-initialize LAMMPS. For example, this script

units lj
atom_style atomic
read_data data.lj
run 10000
clear
units lj
atom_style atomic
read_data data.lj.new
run 10000

LIGGGHTS Users Manual

6.3 CHARMM, AMBER, and DREIDING force fields 1127

would run 2 independent simulations, one after the other.

For large numbers of independent simulations, you can use variables and the next and jump commands to
loop over the same input script multiple times with different settings. For example, this script, named
in.polymer

variable d index run1 run2 run3 run4 run5 run6 run7 run8
shell cd $d
read_data data.polymer
run 10000
shell cd ..
clear
next d
jump in.polymer

would run 8 simulations in different directories, using a data.polymer file in each directory. The same concept
could be used to run the same system at 8 different temperatures, using a temperature variable and storing the
output in different log and dump files, for example

variable a loop 8
variable t index 0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15
log log.$a
read data.polymer
velocity all create $t 352839
fix 1 all nvt $t $t 100.0
dump 1 all atom 1000 dump.$a
run 100000
next t
next a
jump in.polymer

All of the above examples work whether you are running on 1 or multiple processors, but assumed you are
running LAMMPS on a single partition of processors. LAMMPS can be run on multiple partitions via the
"-partition" command-line switch as described in this section of the manual.

In the last 2 examples, if LAMMPS were run on 3 partitions, the same scripts could be used if the "index" and
"loop" variables were replaced with universe-style variables, as described in the variable command. Also, the
"next t" and "next a" commands would need to be replaced with a single "next a t" command. With these
modifications, the 8 simulations of each script would run on the 3 partitions one after the other until all were
finished. Initially, 3 simulations would be started simultaneously, one on each partition. When one finished,
that partition would then start the 4th simulation, and so forth, until all 8 were completed.

6.5 Multi-replica simulations

Several commands in LAMMPS run mutli-replica simulations, meaning that multiple instances (replicas) of
your simulation are run simultaneously, with small amounts of data exchanged between replicas periodically.

These are the relevant commands:

neb for nudged elastic band calculations•
prd for parallel replica dynamics•
tad for temperature accelerated dynamics•
temper for parallel tempering•

NEB is a method for finding transition states and barrier energies. PRD and TAD are methods for performing
accelerated dynamics to find and perform infrequent events. Parallel tempering or replica exchange runs
different replicas at a series of temperature to facilitate rare-event sampling.

LIGGGHTS Users Manual

6.4 Running multiple simulations from one input script 1128

These command can only be used if LAMMPS was built with the "replica" package. See the Making
LAMMPS section for more info on packages.

In all these cases, you must run with one or more processors per replica. The processors assigned to each
replica are determined at run-time by using the -partition command-line switch to launch LAMMPS on
multiple partitions, which in this context are the same as replicas. E.g. these commands:

mpirun -np 16 lmp_linux -partition 8x2 -in in.temper
mpirun -np 8 lmp_linux -partition 8x1 -in in.neb

would each run 8 replicas, on either 16 or 8 processors. Note the use of the -in command-line switch to
specify the input script which is required when running in multi-replica mode.

Also note that with MPI installed on a machine (e.g. your desktop), you can run on more (virtual) processors
than you have physical processors. Thus the above commands could be run on a single-processor (or
few-processor) desktop so that you can run a multi-replica simulation on more replicas than you have physical
processors.

6.6 Granular models

Granular system are composed of spherical particles with a diameter, as opposed to point particles. This
means they have an angular velocity and torque can be imparted to them to cause them to rotate.

To run a simulation of a granular model, you will want to use the following commands:

atom_style sphere•
fix nve/sphere•
fix gravity•

This compute

compute erotate/sphere•

calculates rotational kinetic energy which can be output with thermodynamic info.

Use one of these 3 pair potentials, which compute forces and torques between interacting pairs of particles:

pair_style gran/history•
pair_style gran/no_history•
pair_style gran/hertzian•

These commands implement fix options specific to granular systems:

fix freeze•
fix pour•
fix viscous•
fix wall/gran•

The fix style freeze zeroes both the force and torque of frozen atoms, and should be used for granular system
instead of the fix style setforce.

For computational efficiency, you can eliminate needless pairwise computations between frozen atoms by
using this command:

LIGGGHTS Users Manual

6.5 Multi-replica simulations 1129

neigh_modify exclude•

6.7 TIP3P water model

The TIP3P water model as implemented in CHARMM (MacKerell) specifies a 3-site rigid water molecule
with charges and Lennard-Jones parameters assigned to each of the 3 atoms. In LAMMPS the fix shake
command can be used to hold the two O-H bonds and the H-O-H angle rigid. A bond style of harmonic and an
angle style of harmonic or charmm should also be used.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a
rigid TIP3P-CHARMM model with a cutoff. The K values can be used if a flexible TIP3P model (without fix
shake) is desired. If the LJ epsilon and sigma for HH and OH are set to 0.0, it corresponds to the original 1983
TIP3P model (Jorgensen).

O mass = 15.9994
H mass = 1.008
O charge = -0.834
H charge = 0.417
LJ epsilon of OO = 0.1521
LJ sigma of OO = 3.1507
LJ epsilon of HH = 0.0460
LJ sigma of HH = 0.4000
LJ epsilon of OH = 0.0836
LJ sigma of OH = 1.7753
K of OH bond = 450
r0 of OH bond = 0.9572
K of HOH angle = 55
theta of HOH angle = 104.52

These are the parameters to use for TIP3P with a long-range Coulombic solver (e.g. Ewald or PPPM in
LAMMPS), see (Price) for details:

O mass = 15.9994
H mass = 1.008
O charge = -0.830
H charge = 0.415
LJ epsilon of OO = 0.102
LJ sigma of OO = 3.188
LJ epsilon, sigma of OH, HH = 0.0
K of OH bond = 450
r0 of OH bond = 0.9572
K of HOH angle = 55
theta of HOH angle = 104.52

Wikipedia also has a nice article on water models.

6.8 TIP4P water model

The four-point TIP4P rigid water model extends the traditional three-point TIP3P model by adding an
additional site, usually massless, where the charge associated with the oxygen atom is placed. This site M is
located at a fixed distance away from the oxygen along the bisector of the HOH bond angle. A bond style of
harmonic and an angle style of harmonic or charmm should also be used.

LIGGGHTS Users Manual

6.6 Granular models 1130

http://en.wikipedia.org/wiki/Water_model

A TIP4P model is run with LAMMPS using either this command for a cutoff model:

pair_style lj/cut/tip4p/cut

or these two commands for a long-range model:

pair_style lj/cut/tip4p/long•
kspace_style pppm/tip4p•

For both models, the bond lengths and bond angles should be held fixed using the fix shake command.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a
rigid TIP4P model with a cutoff (Jorgensen). Note that the OM distance is specified in the pair_style
command, not as part of the pair coefficients.

O mass = 15.9994
H mass = 1.008
O charge = -1.040
H charge = 0.520
r0 of OH bond = 0.9572
theta of HOH angle = 104.52
OM distance = 0.15
LJ epsilon of O-O = 0.1550
LJ sigma of O-O = 3.1536
LJ epsilon, sigma of OH, HH = 0.0
Coulombic cutoff = 8.5

For the TIP4/Ice model (J Chem Phys, 122, 234511 (2005); http://dx.doi.org/10.1063/1.1931662) these values
can be used:

O mass = 15.9994
H mass = 1.008
O charge = -1.1794
H charge = 0.5897
r0 of OH bond = 0.9572
theta of HOH angle = 104.52
OM distance = 0.1577
LJ epsilon of O-O = 0.21084
LJ sigma of O-O = 3.1668
LJ epsilon, sigma of OH, HH = 0.0
Coulombic cutoff = 8.5

For the TIP4P/2005 model (J Chem Phys, 123, 234505 (2005); http://dx.doi.org/10.1063/1.2121687), these
values can be used:

O mass = 15.9994
H mass = 1.008
O charge = -1.1128
H charge = 0.5564
r0 of OH bond = 0.9572
theta of HOH angle = 104.52
OM distance = 0.1546
LJ epsilon of O-O = 0.1852
LJ sigma of O-O = 3.1589

LIGGGHTS Users Manual

6.8 TIP4P water model 1131

LJ epsilon, sigma of OH, HH = 0.0
Coulombic cutoff = 8.5

These are the parameters to use for TIP4P with a long-range Coulombic solver (e.g. Ewald or PPPM in
LAMMPS):

O mass = 15.9994
H mass = 1.008
O charge = -1.0484
H charge = 0.5242
r0 of OH bond = 0.9572
theta of HOH angle = 104.52
OM distance = 0.1250
LJ epsilon of O-O = 0.16275
LJ sigma of O-O = 3.16435
LJ epsilon, sigma of OH, HH = 0.0

Note that the when using the TIP4P pair style, the neighobr list cutoff for Coulomb interactions is effectively
extended by a distance 2 * (OM distance), to account for the offset distance of the fictitious charges on O
atoms in water molecules. Thus it is typically best in an efficiency sense to use a LJ cutoff >= Coulomb cutoff
+ 2*(OM distance), to shrink the size of the neighbor list. This leads to slightly larger cost for the long-range
calculation, so you can test the trade-off for your model. The OM distance and the LJ and Coulombic cutoffs
are set in the pair_style lj/cut/tip4p/long command.

Wikipedia also has a nice article on water models.

6.9 SPC water model

The SPC water model specifies a 3-site rigid water molecule with charges and Lennard-Jones parameters
assigned to each of the 3 atoms. In LAMMPS the fix shake command can be used to hold the two O-H bonds
and the H-O-H angle rigid. A bond style of harmonic and an angle style of harmonic or charmm should also
be used.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a
rigid SPC model.

O mass = 15.9994
H mass = 1.008
O charge = -0.820
H charge = 0.410
LJ epsilon of OO = 0.1553
LJ sigma of OO = 3.166
LJ epsilon, sigma of OH, HH = 0.0
r0 of OH bond = 1.0
theta of HOH angle = 109.47

Note that as originally proposed, the SPC model was run with a 9 Angstrom cutoff for both LJ and
Coulommbic terms. It can also be used with long-range Coulombics (Ewald or PPPM in LAMMPS), without
changing any of the parameters above, though it becomes a different model in that mode of usage.

The SPC/E (extended) water model is the same, except the partial charge assignemnts change:

O charge = -0.8476

LIGGGHTS Users Manual

6.9 SPC water model 1132

http://en.wikipedia.org/wiki/Water_model

H charge = 0.4238

See the (Berendsen) reference for more details on both the SPC and SPC/E models.

Wikipedia also has a nice article on water models.

6.10 Coupling LAMMPS to other codes

LAMMPS is designed to allow it to be coupled to other codes. For example, a quantum mechanics code might
compute forces on a subset of atoms and pass those forces to LAMMPS. Or a continuum finite element (FE)
simulation might use atom positions as boundary conditions on FE nodal points, compute a FE solution, and
return interpolated forces on MD atoms.

LAMMPS can be coupled to other codes in at least 3 ways. Each has advantages and disadvantages, which
you'll have to think about in the context of your application.

(1) Define a new fix command that calls the other code. In this scenario, LAMMPS is the driver code. During
its timestepping, the fix is invoked, and can make library calls to the other code, which has been linked to
LAMMPS as a library. This is the way the POEMS package that performs constrained rigid-body motion on
groups of atoms is hooked to LAMMPS. See the fix_poems command for more details. See this section of the
documentation for info on how to add a new fix to LAMMPS.

(2) Define a new LAMMPS command that calls the other code. This is conceptually similar to method (1), but
in this case LAMMPS and the other code are on a more equal footing. Note that now the other code is not
called during the timestepping of a LAMMPS run, but between runs. The LAMMPS input script can be used
to alternate LAMMPS runs with calls to the other code, invoked via the new command. The run command
facilitates this with its every option, which makes it easy to run a few steps, invoke the command, run a few
steps, invoke the command, etc.

In this scenario, the other code can be called as a library, as in (1), or it could be a stand-alone code, invoked
by a system() call made by the command (assuming your parallel machine allows one or more processors to
start up another program). In the latter case the stand-alone code could communicate with LAMMPS thru files
that the command writes and reads.

See Section_modify of the documentation for how to add a new command to LAMMPS.

(3) Use LAMMPS as a library called by another code. In this case the other code is the driver and calls
LAMMPS as needed. Or a wrapper code could link and call both LAMMPS and another code as libraries.
Again, the run command has options that allow it to be invoked with minimal overhead (no setup or clean-up)
if you wish to do multiple short runs, driven by another program.

Examples of driver codes that call LAMMPS as a library are included in the examples/COUPLE directory of
the LAMMPS distribution; see examples/COUPLE/README for more details:

simple: simple driver programs in C++ and C which invoke LAMMPS as a library•
lammps_quest: coupling of LAMMPS and Quest, to run classical MD with quantum forces calculated
by a density functional code

•

lammps_spparks: coupling of LAMMPS and SPPARKS, to couple a kinetic Monte Carlo model for
grain growth using MD to calculate strain induced across grain boundaries

•

This section of the documentation describes how to build LAMMPS as a library. Once this is done, you can
interface with LAMMPS either via C++, C, Fortran, or Python (or any other language that supports a vanilla
C-like interface). For example, from C++ you could create one (or more) "instances" of LAMMPS, pass it an

LIGGGHTS Users Manual

6.10 Coupling LAMMPS to other codes 1133

http://en.wikipedia.org/wiki/Water_model
http://www.rpi.edu/~anderk5/lab
http://dft.sandia.gov/Quest
http://www.sandia.gov/~sjplimp/spparks.html

input script to process, or execute individual commands, all by invoking the correct class methods in
LAMMPS. From C or Fortran you can make function calls to do the same things. See Section_python of the
manual for a description of the Python wrapper provided with LAMMPS that operates through the LAMMPS
library interface.

The files src/library.cpp and library.h contain the C-style interface to LAMMPS. See Section_howto 19 of the
manual for a description of the interface and how to extend it for your needs.

Note that the lammps_open() function that creates an instance of LAMMPS takes an MPI communicator as an
argument. This means that instance of LAMMPS will run on the set of processors in the communicator. Thus
the calling code can run LAMMPS on all or a subset of processors. For example, a wrapper script might
decide to alternate between LAMMPS and another code, allowing them both to run on all the processors. Or it
might allocate half the processors to LAMMPS and half to the other code and run both codes simultaneously
before syncing them up periodically. Or it might instantiate multiple instances of LAMMPS to perform
different calculations.

6.11 Visualizing LAMMPS snapshots

LAMMPS itself does not do visualization, but snapshots from LAMMPS simulations can be visualized (and
analyzed) in a variety of ways.

LAMMPS snapshots are created by the dump command which can create files in several formats. The native
LAMMPS dump format is a text file (see "dump atom" or "dump custom") which can be visualized by the
xmovie program, included with the LAMMPS package. This produces simple, fast 2d projections of 3d
systems, and can be useful for rapid debugging of simulation geometry and atom trajectories.

Several programs included with LAMMPS as auxiliary tools can convert native LAMMPS dump files to other
formats. See the Section_tools doc page for details. The first is the ch2lmp tool, which contains a
lammps2pdb Perl script which converts LAMMPS dump files into PDB files. The second is the lmp2arc tool
which converts LAMMPS dump files into Accelrys' Insight MD program files. The third is the lmp2cfg tool
which converts LAMMPS dump files into CFG files which can be read into the AtomEye visualizer.

A Python-based toolkit distributed by our group can read native LAMMPS dump files, including custom
dump files with additional columns of user-specified atom information, and convert them to various formats
or pipe them into visualization software directly. See the Pizza.py WWW site for details. Specifically,
Pizza.py can convert LAMMPS dump files into PDB, XYZ, Ensight, and VTK formats. Pizza.py can pipe
LAMMPS dump files directly into the Raster3d and RasMol visualization programs. Pizza.py has tools that
do interactive 3d OpenGL visualization and one that creates SVG images of dump file snapshots.

LAMMPS can create XYZ files directly (via "dump xyz") which is a simple text-based file format used by
many visualization programs including VMD.

LAMMPS can create DCD files directly (via "dump dcd") which can be read by VMD in conjunction with a
CHARMM PSF file. Using this form of output avoids the need to convert LAMMPS snapshots to PDB files.
See the dump command for more information on DCD files.

LAMMPS can create XTC files directly (via "dump xtc") which is GROMACS file format which can also be
read by VMD for visualization. See the dump command for more information on XTC files.

LIGGGHTS Users Manual

6.11 Visualizing LAMMPS snapshots 1134

http://mt.seas.upenn.edu/Archive/Graphics/A
http://www.sandia.gov/~sjplimp/pizza.html
http://www.ensight.com
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd

6.12 Triclinic (non-orthogonal) simulation boxes

By default, LAMMPS uses an orthogonal simulation box to encompass the particles. The boundary command
sets the boundary conditions of the box (periodic, non-periodic, etc). The orthogonal box has its "origin" at
(xlo,ylo,zlo) and is defined by 3 edge vectors starting from the origin given by a = (xhi-xlo,0,0); b =
(0,yhi-ylo,0); c = (0,0,zhi-zlo). The 6 parameters (xlo,xhi,ylo,yhi,zlo,zhi) are defined at the time the
simulation box is created, e.g. by the create_box or read_data or read_restart commands. Additionally,
LAMMPS defines box size parameters lx,ly,lz where lx = xhi-xlo, and similarly in the y and z dimensions.
The 6 parameters, as well as lx,ly,lz, can be output via the thermo_style custom command.

LAMMPS also allows simulations to be performed in triclinic (non-orthogonal) simulation boxes shaped as a
parallelepiped with triclinic symmetry. The parallelepiped has its "origin" at (xlo,ylo,zlo) and is defined by 3
edge vectors starting from the origin given by a = (xhi-xlo,0,0); b = (xy,yhi-ylo,0); c = (xz,yz,zhi-zlo).
xy,xz,yz can be 0.0 or positive or negative values and are called "tilt factors" because they are the amount of
displacement applied to faces of an originally orthogonal box to transform it into the parallelepiped. In
LAMMPS the triclinic simulation box edge vectors a, b, and c cannot be arbitrary vectors. As indicated, a
must lie on the positive x axis. b must lie in the xy plane, with strictly positive y component. c may have any
orientation with strictly positive z component. The requirement that a, b, and c have strictly positive x, y, and
z components, respectively, ensures that a, b, and c form a complete right-handed basis. These restrictions
impose no loss of generality, since it is possible to rotate/invert any set of 3 crystal basis vectors so that they
conform to the restrictions.

For example, assume that the 3 vectors A,B,C are the edge vectors of a general parallelepiped, where there is
no restriction on A,B,C other than they form a complete right-handed basis i.e. A x B . C > 0. The equivalent
LAMMPS a,b,c are a linear rotation of A, B, and C and can be computed as follows:

where A = |A| indicates the scalar length of A. The ^ hat symbol indicates the corresponding unit vector. beta
and gamma are angles between the vectors described below. Note that by construction, a, b, and c have

LIGGGHTS Users Manual

6.12 Triclinic (non-orthogonal) simulation boxes 1135

strictly positive x, y, and z components, respectively. If it should happen that A, B, and C form a left-handed
basis, then the above equations are not valid for c. In this case, it is necessary to first apply an inversion. This
can be achieved by interchanging two basis vectors or by changing the sign of one of them.

For consistency, the same rotation/inversion applied to the basis vectors must also be applied to atom
positions, velocities, and any other vector quantities. This can be conveniently achieved by first converting to
fractional coordinates in the old basis and then converting to distance coordinates in the new basis. The
transformation is given by the following equation:

where V is the volume of the box, X is the original vector quantity and x is the vector in the LAMMPS basis.

There is no requirement that a triclinic box be periodic in any dimension, though it typically should be in at
least the 2nd dimension of the tilt (y in xy) if you want to enforce a shift in periodic boundary conditions
across that boundary. Some commands that work with triclinic boxes, e.g. the fix deform and fix npt
commands, require periodicity or non-shrink-wrap boundary conditions in specific dimensions. See the
command doc pages for details.

The 9 parameters (xlo,xhi,ylo,yhi,zlo,zhi,xy,xz,yz) are defined at the time the simluation box is created. This
happens in one of 3 ways. If the create_box command is used with a region of style prism, then a triclinic box
is setup. See the region command for details. If the read_data command is used to define the simulation box,
and the header of the data file contains a line with the "xy xz yz" keyword, then a triclinic box is setup. See
the read_data command for details. Finally, if the read_restart command reads a restart file which was written
from a simulation using a triclinic box, then a triclinic box will be setup for the restarted simulation.

Note that you can define a triclinic box with all 3 tilt factors = 0.0, so that it is initially orthogonal. This is
necessary if the box will become non-orthogonal, e.g. due to the fix npt or fix deform commands.
Alternatively, you can use the change_box command to convert a simulation box from orthogonal to triclinic
and vice versa.

As with orthogonal boxes, LAMMPS defines triclinic box size parameters lx,ly,lz where lx = xhi-xlo, and
similarly in the y and z dimensions. The 9 parameters, as well as lx,ly,lz, can be output via the thermo_style
custom command.

To avoid extremely tilted boxes (which would be computationally inefficient), LAMMPS normally requires
that no tilt factor can skew the box more than half the distance of the parallel box length, which is the 1st
dimension in the tilt factor (x for xz). This is required both when the simulation box is created, e.g. via the
create_box or read_data commands, as well as when the box shape changes dynamically during a simulation,
e.g. via the fix deform or fix npt commands.

For example, if xlo = 2 and xhi = 12, then the x box length is 10 and the xy tilt factor must be between -5 and
5. Similarly, both xz and yz must be between -(xhi-xlo)/2 and +(yhi-ylo)/2. Note that this is not a limitation,
since if the maximum tilt factor is 5 (as in this example), then configurations with tilt = ..., -15, -5, 5, 15, 25,
... are geometrically all equivalent. If the box tilt exceeds this limit during a dynamics run (e.g. via the fix
deform command), then the box is "flipped" to an equivalent shape with a tilt factor within the bounds, so the
run can continue. See the fix deform doc page for further details.

LIGGGHTS Users Manual

6.12 Triclinic (non-orthogonal) simulation boxes 1136

One exception to this rule is if the 1st dimension in the tilt factor (x for xy) is non-periodic. In that case, the
limits on the tilt factor are not enforced, since flipping the box in that dimension does not change the atom
positions due to non-periodicity. In this mode, if you tilt the system to extreme angles, the simulation will
simply become inefficient, due to the highly skewed simulation box.

The limitation on not creating a simulation box with a tilt factor skewing the box more than half the distance
of the parallel box length can be overridden via the box command. Setting the tilt keyword to large allows any
tilt factors to be specified.

Box flips that may occur using the fix deform or fix npt commands can be turned off using the flip no option
with either of the commands.

Note that if a simulation box has a large tilt factor, LAMMPS will run less efficiently, due to the large volume
of communication needed to acquire ghost atoms around a processor's irregular-shaped sub-domain. For
extreme values of tilt, LAMMPS may also lose atoms and generate an error.

Triclinic crystal structures are often defined using three lattice constants a, b, and c, and three angles alpha,
beta and gamma. Note that in this nomenclature, the a, b, and c lattice constants are the scalar lengths of the
edge vectors a, b, and c defined above. The relationship between these 6 quantities (a,b,c,alpha,beta,gamma)
and the LAMMPS box sizes (lx,ly,lz) = (xhi-xlo,yhi-ylo,zhi-zlo) and tilt factors (xy,xz,yz) is as follows:

The inverse relationship can be written as follows:

LIGGGHTS Users Manual

6.12 Triclinic (non-orthogonal) simulation boxes 1137

The values of a, b, c , alpha, beta , and gamma can be printed out or accessed by computes using the
thermo_style custom keywords cella, cellb, cellc, cellalpha, cellbeta, cellgamma, respectively.

As discussed on the dump command doc page, when the BOX BOUNDS for a snapshot is written to a dump
file for a triclinic box, an orthogonal bounding box which encloses the triclinic simulation box is output, along
with the 3 tilt factors (xy, xz, yz) of the triclinic box, formatted as follows:

ITEM: BOX BOUNDS xy xz yz
xlo_bound xhi_bound xy
ylo_bound yhi_bound xz
zlo_bound zhi_bound yz

This bounding box is convenient for many visualization programs and is calculated from the 9 triclinic box
parameters (xlo,xhi,ylo,yhi,zlo,zhi,xy,xz,yz) as follows:

xlo_bound = xlo + MIN(0.0,xy,xz,xy+xz)
xhi_bound = xhi + MAX(0.0,xy,xz,xy+xz)
ylo_bound = ylo + MIN(0.0,yz)
yhi_bound = yhi + MAX(0.0,yz)
zlo_bound = zlo
zhi_bound = zhi

These formulas can be inverted if you need to convert the bounding box back into the triclinic box parameters,
e.g. xlo = xlo_bound - MIN(0.0,xy,xz,xy+xz).

One use of triclinic simulation boxes is to model solid-state crystals with triclinic symmetry. The lattice
command can be used with non-orthogonal basis vectors to define a lattice that will tile a triclinic simulation
box via the create_atoms command.

A second use is to run Parinello-Rahman dyanamics via the fix npt command, which will adjust the xy, xz, yz
tilt factors to compensate for off-diagonal components of the pressure tensor. The analalog for an energy
minimization is the fix box/relax command.

A third use is to shear a bulk solid to study the response of the material. The fix deform command can be used
for this purpose. It allows dynamic control of the xy, xz, yz tilt factors as a simulation runs. This is discussed
in the next section on non-equilibrium MD (NEMD) simulations.

LIGGGHTS Users Manual

6.12 Triclinic (non-orthogonal) simulation boxes 1138

6.13 NEMD simulations

Non-equilibrium molecular dynamics or NEMD simulations are typically used to measure a fluid's rheological
properties such as viscosity. In LAMMPS, such simulations can be performed by first setting up a
non-orthogonal simulation box (see the preceding Howto section).

A shear strain can be applied to the simulation box at a desired strain rate by using the fix deform command.
The fix nvt/sllod command can be used to thermostat the sheared fluid and integrate the SLLOD equations of
motion for the system. Fix nvt/sllod uses compute temp/deform to compute a thermal temperature by
subtracting out the streaming velocity of the shearing atoms. The velocity profile or other properties of the
fluid can be monitored via the fix ave/spatial command.

As discussed in the previous section on non-orthogonal simulation boxes, the amount of tilt or skew that can
be applied is limited by LAMMPS for computational efficiency to be 1/2 of the parallel box length. However,
fix deform can continuously strain a box by an arbitrary amount. As discussed in the fix deform command,
when the tilt value reaches a limit, the box is flipped to the opposite limit which is an equivalent tiling of
periodic space. The strain rate can then continue to change as before. In a long NEMD simulation these box
re-shaping events may occur many times.

In a NEMD simulation, the "remap" option of fix deform should be set to "remap v", since that is what fix
nvt/sllod assumes to generate a velocity profile consistent with the applied shear strain rate.

An alternative method for calculating viscosities is provided via the fix viscosity command.

6.14 Finite-size spherical and aspherical particles

Typical MD models treat atoms or particles as point masses. Sometimes it is desirable to have a model with
finite-size particles such as spheroids or ellipsoids or generalized aspherical bodies. The difference is that such
particles have a moment of inertia, rotational energy, and angular momentum. Rotation is induced by torque
coming from interactions with other particles.

LAMMPS has several options for running simulations with these kinds of particles. The following aspects are
discussed in turn:

atom styles•
pair potentials•
time integration•
computes, thermodynamics, and dump output•
rigid bodies composed of finite-size particles•

Example input scripts for these kinds of models are in the body, colloid, dipole, ellipse, line, peri, pour, and tri
directories of the examples directory in the LAMMPS distribution.

Atom styles

There are several atom styles that allow for definition of finite-size particles: sphere, dipole, ellipsoid, line, tri,
peri, and body.

The sphere style defines particles that are spheriods and each particle can have a unique diameter and mass (or
density). These particles store an angular velocity (omega) and can be acted upon by torque. The "set"
command can be used to modify the diameter and mass of individual particles, after then are created.

The dipole style does not actually define finite-size particles, but is often used in conjunction with spherical
particles, via a command like

LIGGGHTS Users Manual

6.13 NEMD simulations 1139

atom_style hybrid sphere dipole

This is because when dipoles interact with each other, they induce torques, and a particle must be finite-size
(i.e. have a moment of inertia) in order to respond and rotate. See the atom_style dipole command for details.
The "set" command can be used to modify the orientation and length of the dipole moment of individual
particles, after then are created.

The ellipsoid style defines particles that are ellipsoids and thus can be aspherical. Each particle has a shape,
specified by 3 diameters, and mass (or density). These particles store an angular momentum and their
orientation (quaternion), and can be acted upon by torque. They do not store an angular velocity (omega),
which can be in a different direction than angular momentum, rather they compute it as needed. The "set"
command can be used to modify the diameter, orientation, and mass of individual particles, after then are
created. It also has a brief explanation of what quaternions are.

The line style defines line segment particles with two end points and a mass (or density). They can be used in
2d simulations, and they can be joined together to form rigid bodies which represent arbitrary polygons.

The tri style defines triangular particles with three corner points and a mass (or density). They can be used in
3d simulations, and they can be joined together to form rigid bodies which represent arbitrary particles with a
triangulated surface.

The peri style is used with Peridynamic models and defines particles as having a volume, that is used
internally in the pair_style peri potentials.

The body style allows for definition of particles which can represent complex entities, such as surface meshes
of discrete points, collections of sub-particles, deformable objects, etc. The body style is discussed in more
detail on the body doc page.

Note that if one of these atom styles is used (or multiple styles via the atom_style hybrid command), not all
particles in the system are required to be finite-size or aspherical.

For example, in the ellipsoid style, if the 3 shape parameters are set to the same value, the particle will be a
sphere rather than an ellipsoid. If the 3 shape parameters are all set to 0.0 or if the diameter is set to 0.0, it will
be a point particle. In the line or tri style, if the lineflag or triflag is specified as 0, then it will be a point
particle.

Some of the pair styles used to compute pairwise interactions between finite-size particles also compute the
correct interaction with point particles as well, e.g. the interaction between a point particle and a finite-size
particle or between two point particles. If necessary, pair_style hybrid can be used to insure the correct
interactions are computed for the appropriate style of interactions. Likewise, using groups to partition particles
(ellipsoids versus spheres versus point particles) will allow you to use the appropriate time integrators and
temperature computations for each class of particles. See the doc pages for various commands for details.

Also note that for 2d simulations, atom styles sphere and ellipsoid still use 3d particles, rather than as circular
disks or ellipses. This means they have the same moment of inertia as the 3d object. When temperature is
computed, the correct degrees of freedom are used for rotation in a 2d versus 3d system.

Pair potentials

When a system with finite-size particles is defined, the particles will only rotate and experience torque if the
force field computes such interactions. These are the various pair styles that generate torque:

pair_style gran/history•
pair_style gran/hertzian•
pair_style gran/no_history•

LIGGGHTS Users Manual

Atom styles 1140

pair_style dipole/cut•
pair_style gayberne•
pair_style resquared•
pair_style brownian•
pair_style lubricate•
pair_style line/lj•
pair_style tri/lj•
pair_style body•

The granular pair styles are used with spherical particles. The dipole pair style is used with the dipole atom
style, which could be applied to spherical or ellipsoidal particles. The GayBerne and REsquared potentials
require ellipsoidal particles, though they will also work if the 3 shape parameters are the same (a sphere). The
Brownian and lubrication potentials are used with spherical particles. The line, tri, and body potentials are
used with line segment, triangular, and body particles respectively.

Time integration

There are several fixes that perform time integration on finite-size spherical particles, meaning the integrators
update the rotational orientation and angular velocity or angular momentum of the particles:

fix nve/sphere•
fix nvt/sphere•
fix npt/sphere•

Likewise, there are 3 fixes that perform time integration on ellipsoidal particles:

fix nve/asphere•
fix nvt/asphere•
fix npt/asphere•

The advantage of these fixes is that those which thermostat the particles include the rotational degrees of
freedom in the temperature calculation and thermostatting. The fix langevin command can also be used with
its omgea or angmom options to thermostat the rotational degrees of freedom for spherical or ellipsoidal
particles. Other thermostatting fixes only operate on the translational kinetic energy of finite-size particles.

These fixes perform constant NVE time integration on line segment, triangular, and body particles:

fix nve/line•
fix nve/tri•
fix nve/body•

Note that for mixtures of point and finite-size particles, these integration fixes can only be used with groups
which contain finite-size particles.

Computes, thermodynamics, and dump output

There are several computes that calculate the temperature or rotational energy of spherical or ellipsoidal
particles:

compute temp/sphere•
compute temp/asphere•
compute erotate/sphere•
compute erotate/asphere•

LIGGGHTS Users Manual

Pair potentials 1141

These include rotational degrees of freedom in their computation. If you wish the thermodynamic output of
temperature or pressure to use one of these computes (e.g. for a system entirely composed of finite-size
particles), then the compute can be defined and the thermo_modify command used. Note that by default
thermodynamic quantities will be calculated with a temperature that only includes translational degrees of
freedom. See the thermo_style command for details.

These commands can be used to output various attributes of finite-size particles:

dump custom•
compute property/atom•
dump local•
compute body/local•

Attributes include the dipole moment, the angular velocity, the angular momentum, the quaternion, the torque,
the end-point and corner-point coordinates (for line and tri particles), and sub-particle attributes of body
particles.

Rigid bodies composed of finite-size particles

The fix rigid command treats a collection of particles as a rigid body, computes its inertia tensor, sums the
total force and torque on the rigid body each timestep due to forces on its constituent particles, and integrates
the motion of the rigid body.

If any of the constituent particles of a rigid body are finite-size particles (spheres or ellipsoids or line segments
or triangles), then their contribution to the inertia tensor of the body is different than if they were point
particles. This means the rotational dynamics of the rigid body will be different. Thus a model of a dimer is
different if the dimer consists of two point masses versus two spheroids, even if the two particles have the
same mass. Finite-size particles that experience torque due to their interaction with other particles will also
impart that torque to a rigid body they are part of.

See the "fix rigid" command for example of complex rigid-body models it is possible to define in LAMMPS.

Note that the fix shake command can also be used to treat 2, 3, or 4 particles as a rigid body, but it always
assumes the particles are point masses.

Also note that body particles cannot be modeled with the fix rigid command. Body particles are treated by
LAMMPS as single particles, though they can store internal state, such as a list of sub-particles. Individual
body partices are typically treated as rigid bodies, and their motion integrated with a command like fix
nve/body. Interactions between pairs of body particles are computed via a command like pair_style body.

6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)

There are four basic kinds of LAMMPS output:

Thermodynamic output, which is a list of quantities printed every few timesteps to the screen and
logfile.

•

Dump files, which contain snapshots of atoms and various per-atom values and are written at a
specified frequency.

•

Certain fixes can output user-specified quantities to files: fix ave/time for time averaging, fix
ave/spatial for spatial averaging, and fix print for single-line output of variables. Fix print can also
output to the screen.

•

Restart files.•

LIGGGHTS Users Manual

Computes, thermodynamics, and dump output 1142

A simulation prints one set of thermodynamic output and (optionally) restart files. It can generate any number
of dump files and fix output files, depending on what dump and fix commands you specify.

As discussed below, LAMMPS gives you a variety of ways to determine what quantities are computed and
printed when the thermodynamics, dump, or fix commands listed above perform output. Throughout this
discussion, note that users can also add their own computes and fixes to LAMMPS which can then generate
values that can then be output with these commands.

The following sub-sections discuss different LAMMPS command related to output and the kind of data they
operate on and produce:

Global/per-atom/local data•
Scalar/vector/array data•
Thermodynamic output•
Dump file output•
Fixes that write output files•
Computes that process output quantities•
Fixes that process output quantities•
Computes that generate values to output•
Fixes that generate values to output•
Variables that generate values to output•
Summary table of output options and data flow between commands•

Global/per-atom/local data

Various output-related commands work with three different styles of data: global, per-atom, or local. A global
datum is one or more system-wide values, e.g. the temperature of the system. A per-atom datum is one or
more values per atom, e.g. the kinetic energy of each atom. Local datums are calculated by each processor
based on the atoms it owns, but there may be zero or more per atom, e.g. a list of bond distances.

Scalar/vector/array data

Global, per-atom, and local datums can each come in three kinds: a single scalar value, a vector of values, or a
2d array of values. The doc page for a "compute" or "fix" or "variable" that generates data will specify both
the style and kind of data it produces, e.g. a per-atom vector.

When a quantity is accessed, as in many of the output commands discussed below, it can be referenced via the
following bracket notation, where ID in this case is the ID of a compute. The leading "c_" would be replaced
by "f_" for a fix, or "v_" for a variable:

c_ID entire scalar, vector, or array
c_ID[I] one element of vector, one column of array
c_ID[I][J] one element of array

In other words, using one bracket reduces the dimension of the data once (vector -> scalar, array -> vector).
Using two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar values as
input can typically also process elements of a vector or array.

Thermodynamic output

The frequency and format of thermodynamic output is set by the thermo, thermo_style, and thermo_modify
commands. The thermo_style command also specifies what values are calculated and written out. Pre-defined
keywords can be specified (e.g. press, etotal, etc). Three additional kinds of keywords can also be specified
(c_ID, f_ID, v_name), where a compute or fix or variable provides the value to be output. In each case, the
compute, fix, or variable must generate global values for input to the thermo_style custom command.

LIGGGHTS Users Manual

6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables) 1143

Note that thermodynamic output values can be "extensive" or "intensive". The former scale with the number
of atoms in the system (e.g. total energy), the latter do not (e.g. temperature). The setting for thermo_modify
norm determines whether extensive quantities are normalized or not. Computes and fixes produce either
extensive or intensive values; see their individual doc pages for details. Equal-style variables produce only
intensive values; you can include a division by "natoms" in the formula if desired, to make an extensive
calculation produce an intensive result.

Dump file output

Dump file output is specified by the dump and dump_modify commands. There are several pre-defined
formats (dump atom, dump xtc, etc).

There is also a dump custom format where the user specifies what values are output with each atom.
Pre-defined atom attributes can be specified (id, x, fx, etc). Three additional kinds of keywords can also be
specified (c_ID, f_ID, v_name), where a compute or fix or variable provides the values to be output. In each
case, the compute, fix, or variable must generate per-atom values for input to the dump custom command.

There is also a dump local format where the user specifies what local values to output. A pre-defined index
keyword can be specified to enumuerate the local values. Two additional kinds of keywords can also be
specified (c_ID, f_ID), where a compute or fix or variable provides the values to be output. In each case, the
compute or fix must generate local values for input to the dump local command.

Fixes that write output files

Several fixes take various quantities as input and can write output files: fix ave/time, fix ave/spatial, fix
ave/histo, fix ave/correlate, and fix print.

The fix ave/time command enables direct output to a file and/or time-averaging of global scalars or vectors.
The user specifies one or more quantities as input. These can be global compute values, global fix values, or
variables of any style except the atom style which produces per-atom values. Since a variable can refer to
keywords used by the thermo_style custom command (like temp or press) and individual per-atom values, a
wide variety of quantities can be time averaged and/or output in this way. If the inputs are one or more scalar
values, then the fix generate a global scalar or vector of output. If the inputs are one or more vector values,
then the fix generates a global vector or array of output. The time-averaged output of this fix can also be used
as input to other output commands.

The fix ave/spatial command enables direct output to a file of spatial-averaged per-atom quantities like those
output in dump files, within 1d layers of the simulation box. The per-atom quantities can be atom density
(mass or number) or atom attributes such as position, velocity, force. They can also be per-atom quantities
calculated by a compute, by a fix, or by an atom-style variable. The spatial-averaged output of this fix can also
be used as input to other output commands.

The fix ave/histo command enables direct output to a file of histogrammed quantities, which can be global or
per-atom or local quantities. The histogram output of this fix can also be used as input to other output
commands.

The fix ave/correlate command enables direct output to a file of time-correlated quantities, which can be
global scalars. The correlation matrix output of this fix can also be used as input to other output commands.

The fix print command can generate a line of output written to the screen and log file or to a separate file,
periodically during a running simulation. The line can contain one or more variable values for any style
variable except the atom style). As explained above, variables themselves can contain references to global
values generated by thermodynamic keywords, computes, fixes, or other variables, or to per-atom values for a
specific atom. Thus the fix print command is a means to output a wide variety of quantities separate from
normal thermodynamic or dump file output.

LIGGGHTS Users Manual

Thermodynamic output 1144

Computes that process output quantities

The compute reduce and compute reduce/region commands take one or more per-atom or local vector
quantities as inputs and "reduce" them (sum, min, max, ave) to scalar quantities. These are produced as output
values which can be used as input to other output commands.

The compute slice command take one or more global vector or array quantities as inputs and extracts a subset
of their values to create a new vector or array. These are produced as output values which can be used as input
to other output commands.

The compute property/atom command takes a list of one or more pre-defined atom attributes (id, x, fx, etc)
and stores the values in a per-atom vector or array. These are produced as output values which can be used as
input to other output commands. The list of atom attributes is the same as for the dump custom command.

The compute property/local command takes a list of one or more pre-defined local attributes (bond info, angle
info, etc) and stores the values in a local vector or array. These are produced as output values which can be
used as input to other output commands.

The compute atom/molecule command takes a list of one or more per-atom quantities (from a compute, fix,
per-atom variable) and sums the quantities on a per-molecule basis. It produces a global vector or array as
output values which can be used as input to other output commands.

Fixes that process output quantities

The fix ave/atom command performs time-averaging of per-atom vectors. The per-atom quantities can be
atom attributes such as position, velocity, force. They can also be per-atom quantities calculated by a
compute, by a fix, or by an atom-style variable. The time-averaged per-atom output of this fix can be used as
input to other output commands.

The fix store/state command can archive one or more per-atom attributes at a particular time, so that the old
values can be used in a future calculation or output. The list of atom attributes is the same as for the dump
custom command, including per-atom quantities calculated by a compute, by a fix, or by an atom-style
variable. The output of this fix can be used as input to other output commands.

Computes that generate values to output

Every compute in LAMMPS produces either global or per-atom or local values. The values can be scalars or
vectors or arrays of data. These values can be output using the other commands described in this section. The
doc page for each compute command describes what it produces. Computes that produce per-atom or local
values have the word "atom" or "local" in their style name. Computes without the word "atom" or "local"
produce global values.

Fixes that generate values to output

Some fixes in LAMMPS produces either global or per-atom or local values which can be accessed by other
commands. The values can be scalars or vectors or arrays of data. These values can be output using the other
commands described in this section. The doc page for each fix command tells whether it produces any output
quantities and describes them.

Variables that generate values to output

Every variables defined in an input script generates either a global scalar value or a per-atom vector (only
atom-style variables) when it is accessed. The formulas used to define equal- and atom-style variables can
contain references to the thermodynamic keywords and to global and per-atom data generated by computes,
fixes, and other variables. The values generated by variables can be output using the other commands

LIGGGHTS Users Manual

Computes that process output quantities 1145

described in this section.

Summary table of output options and data flow between commands

This table summarizes the various commands that can be used for generating output from LAMMPS. Each
command produces output data of some kind and/or writes data to a file. Most of the commands can take data
from other commands as input. Thus you can link many of these commands together in pipeline form, where
data produced by one command is used as input to another command and eventually written to the screen or to
a file. Note that to hook two commands together the output and input data types must match, e.g.
global/per-atom/local data and scalar/vector/array data.

Also note that, as described above, when a command takes a scalar as input, that could be an element of a
vector or array. Likewise a vector input could be a column of an array.

Command Input Output
thermo_style custom global scalars screen, log file
dump custom per-atom vectors dump file
dump local local vectors dump file
fix print global scalar from variable screen, file
print global scalar from variable screen
computes N/A global/per-atom/local scalar/vector/array
fixes N/A global/per-atom/local scalar/vector/array
variables global scalars, per-atom vectors global scalar, per-atom vector
compute reduce per-atom/local vectors global scalar/vector
compute slice global vectors/arrays global vector/array
compute property/atom per-atom vectors per-atom vector/array
compute property/local local vectors local vector/array
compute atom/molecule per-atom vectors global vector/array
fix ave/atom per-atom vectors per-atom vector/array
fix ave/time global scalars/vectors global scalar/vector/array, file
fix ave/spatial per-atom vectors global array, file
fix ave/histo global/per-atom/local scalars and vectors global array, file
fix ave/correlate global scalars global array, file
fix store/state per-atom vectors per-atom vector/array

6.16 Thermostatting, barostatting, and computing temperature

Thermostatting means controlling the temperature of particles in an MD simulation. Barostatting means
controlling the pressure. Since the pressure includes a kinetic component due to particle velocities, both these
operations require calculation of the temperature. Typically a target temperature (T) and/or pressure (P) is
specified by the user, and the thermostat or barostat attempts to equilibrate the system to the requested T
and/or P.

Temperature is computed as kinetic energy divided by some number of degrees of freedom (and the
Boltzmann constant). Since kinetic energy is a function of particle velocity, there is often a need to distinguish
between a particle's advection velocity (due to some aggregate motiion of particles) and its thermal velocity.
The sum of the two is the particle's total velocity, but the latter is often what is wanted to compute a
temperature.

LIGGGHTS Users Manual

Variables that generate values to output 1146

LAMMPS has several options for computing temperatures, any of which can be used in thermostatting and
barostatting. These compute commands calculate temperature, and the compute pressure command calculates
pressure.

compute temp•
compute temp/sphere•
compute temp/asphere•
compute temp/com•
compute temp/deform•
compute temp/partial•
compute temp/profile•
compute temp/ramp•
compute temp/region•

All but the first 3 calculate velocity biases (i.e. advection velocities) that are removed when computing the
thermal temperature. Compute temp/sphere and compute temp/asphere compute kinetic energy for finite-size
particles that includes rotational degrees of freedom. They both allow, as an extra argument, which is another
temperature compute that subtracts a velocity bias. This allows the translational velocity of spherical or
aspherical particles to be adjusted in prescribed ways.

Thermostatting in LAMMPS is performed by fixes, or in one case by a pair style. Four thermostatting fixes
are currently available: Nose-Hoover (nvt), Berendsen, Langevin, and direct rescaling (temp/rescale).
Dissipative particle dynamics (DPD) thermostatting can be invoked via the dpd/tstat pair style:

fix nvt•
fix nvt/sphere•
fix nvt/asphere•
fix nvt/sllod•
fix temp/berendsen•
fix langevin•
fix temp/rescale•
pair_style dpd/tstat•

Fix nvt only thermostats the translational velocity of particles. Fix nvt/sllod also does this, except that it
subtracts out a velocity bias due to a deforming box and integrates the SLLOD equations of motion. See the
NEMD simulations section of this page for further details. Fix nvt/sphere and fix nvt/asphere thermostat not
only translation velocities but also rotational velocities for spherical and aspherical particles.

DPD thermostatting alters pairwise interactions in a manner analagous to the per-particle thermostatting of fix
langevin.

Any of the thermostatting fixes can use temperature computes that remove bias for two purposes: (a)
computing the current temperature to compare to the requested target temperature, and (b) adjusting only the
thermal temperature component of the particle's velocities. See the doc pages for the individual fixes and for
the fix_modify command for instructions on how to assign a temperature compute to a thermostatting fix. For
example, you can apply a thermostat to only the x and z components of velocity by using it in conjunction
with compute temp/partial.

IMPORTANT NOTE: Only the nvt fixes perform time integration, meaning they update the velocities and
positions of particles due to forces and velocities respectively. The other thermostat fixes only adjust
velocities; they do NOT perform time integration updates. Thus they should be used in conjunction with a
constant NVE integration fix such as these:

fix nve•

LIGGGHTS Users Manual

6.16 Thermostatting, barostatting, and computing temperature 1147

fix nve/sphere•
fix nve/asphere•

Barostatting in LAMMPS is also performed by fixes. Two barosttating methods are currently available:
Nose-Hoover (npt and nph) and Berendsen:

fix npt•
fix npt/sphere•
fix npt/asphere•
fix nph•
fix press/berendsen•

The fix npt commands include a Nose-Hoover thermostat and barostat. Fix nph is just a Nose/Hoover
barostat; it does no thermostatting. Both fix nph and fix press/bernendsen can be used in conjunction with any
of the thermostatting fixes.

As with the thermostats, fix npt and fix nph only use translational motion of the particles in computing T and
P and performing thermo/barostatting. Fix npt/sphere and fix npt/asphere thermo/barostat using not only
translation velocities but also rotational velocities for spherical and aspherical particles.

All of the barostatting fixes use the compute pressure compute to calculate a current pressure. By default, this
compute is created with a simple compute temp (see the last argument of the compute pressure command),
which is used to calculated the kinetic componenet of the pressure. The barostatting fixes can also use
temperature computes that remove bias for the purpose of computing the kinetic componenet which
contributes to the current pressure. See the doc pages for the individual fixes and for the fix_modify command
for instructions on how to assign a temperature or pressure compute to a barostatting fix.

IMPORTANT NOTE: As with the thermostats, the Nose/Hoover methods (fix npt and fix nph) perform time
integration. Fix press/berendsen does NOT, so it should be used with one of the constant NVE fixes or with
one of the NVT fixes.

Finally, thermodynamic output, which can be setup via the thermo_style command, often includes
temperature and pressure values. As explained on the doc page for the thermo_style command, the default T
and P are setup by the thermo command itself. They are NOT the ones associated with any thermostatting or
barostatting fix you have defined or with any compute that calculates a temperature or pressure. Thus if you
want to view these values of T and P, you need to specify them explicitly via a thermo_style custom
command. Or you can use the thermo_modify command to re-define what temperature or pressure compute is
used for default thermodynamic output.

6.17 Walls

Walls in an MD simulation are typically used to bound particle motion, i.e. to serve as a boundary condition.

Walls in LAMMPS can be of rough (made of particles) or idealized surfaces. Ideal walls can be smooth,
generating forces only in the normal direction, or frictional, generating forces also in the tangential direction.

Rough walls, built of particles, can be created in various ways. The particles themselves can be generated like
any other particle, via the lattice and create_atoms commands, or read in via the read_data command.

Their motion can be constrained by many different commands, so that they do not move at all, move together
as a group at constant velocity or in response to a net force acting on them, move in a prescribed fashion (e.g.
rotate around a point), etc. Note that if a time integration fix like fix nve or fix nvt is not used with the group
that contains wall particles, their positions and velocities will not be updated.

LIGGGHTS Users Manual

6.17 Walls 1148

fix aveforce - set force on particles to average value, so they move together•
fix setforce - set force on particles to a value, e.g. 0.0•
fix freeze - freeze particles for use as granular walls•
fix nve/noforce - advect particles by their velocity, but without force•
fix move - prescribe motion of particles by a linear velocity, oscillation, rotation, variable•

The fix move command offers the most generality, since the motion of individual particles can be specified
with variable formula which depends on time and/or the particle position.

For rough walls, it may be useful to turn off pairwise interactions between wall particles via the neigh_modify
exclude command.

Rough walls can also be created by specifying frozen particles that do not move and do not interact with
mobile particles, and then tethering other particles to the fixed particles, via a bond. The bonded particles do
interact with other mobile particles.

Idealized walls can be specified via several fix commands. Fix wall/gran creates frictional walls for use with
granular particles; all the other commands create smooth walls.

fix wall/reflect - reflective flat walls•
fix wall/lj93 - flat walls, with Lennard-Jones 9/3 potential•
fix wall/lj126 - flat walls, with Lennard-Jones 12/6 potential•
fix wall/colloid - flat walls, with pair_style colloid potential•
fix wall/harmonic - flat walls, with repulsive harmonic spring potential•
fix wall/region - use region surface as wall•
fix wall/gran - flat or curved walls with pair_style granular potential•

The lj93, lj126, colloid, and harmonic styles all allow the flat walls to move with a constant velocity, or
oscillate in time. The fix wall/region command offers the most generality, since the region surface is treated as
a wall, and the geometry of the region can be a simple primitive volume (e.g. a sphere, or cube, or plane), or a
complex volume made from the union and intersection of primitive volumes. Regions can also specify a
volume "interior" or "exterior" to the specified primitive shape or union or intersection. Regions can also be
"dynamic" meaning they move with constant velocity, oscillate, or rotate.

The only frictional idealized walls currently in LAMMPS are flat or curved surfaces specified by the fix
wall/gran command. At some point we plan to allow regoin surfaces to be used as frictional walls, as well as
triangulated surfaces.

6.18 Elastic constants

Elastic constants characterize the stiffness of a material. The formal definition is provided by the linear
relation that holds between the stress and strain tensors in the limit of infinitesimal deformation. In tensor
notation, this is expressed as s_ij = C_ijkl * e_kl, where the repeated indices imply summation. s_ij are the
elements of the symmetric stress tensor. e_kl are the elements of the symmetric strain tensor. C_ijkl are the
elements of the fourth rank tensor of elastic constants. In three dimensions, this tensor has 3^4=81 elements.
Using Voigt notation, the tensor can be written as a 6x6 matrix, where C_ij is now the derivative of s_i w.r.t.
e_j. Because s_i is itself a derivative w.r.t. e_i, it follows that C_ij is also symmetric, with at most 7*6/2 = 21
distinct elements.

At zero temperature, it is easy to estimate these derivatives by deforming the simulation box in one of the six
directions using the change_box command and measuring the change in the stress tensor. A general-purpose
script that does this is given in the examples/elastic directory described in this section.

LIGGGHTS Users Manual

6.18 Elastic constants 1149

Calculating elastic constants at finite temperature is more challenging, because it is necessary to run a
simulation that perfoms time averages of differential properties. One way to do this is to measure the change
in average stress tensor in an NVT simulations when the cell volume undergoes a finite deformation. In order
to balance the systematic and statistical errors in this method, the magnitude of the deformation must be
chosen judiciously, and care must be taken to fully equilibrate the deformed cell before sampling the stress
tensor. Another approach is to sample the triclinic cell fluctuations that occur in an NPT simulation. This
method can also be slow to converge and requires careful post-processing (Shinoda)

6.19 Library interface to LAMMPS

As described in Section_start 5, LAMMPS can be built as a library, so that it can be called by another code,
used in a coupled manner with other codes, or driven through a Python interface.

All of these methodologies use a C-style interface to LAMMPS that is provided in the files src/library.cpp and
src/library.h. The functions therein have a C-style argument list, but contain C++ code you could write
yourself in a C++ application that was invoking LAMMPS directly. The C++ code in the functions illustrates
how to invoke internal LAMMPS operations. Note that LAMMPS classes are defined within a LAMMPS
namespace (LAMMPS_NS) if you use them from another C++ application.

Library.cpp contains these 4 functions:

void lammps_open(int, char **, MPI_Comm, void **);
void lammps_close(void *);
void lammps_file(void *, char *);
char *lammps_command(void *, char *);

The lammps_open() function is used to initialize LAMMPS, passing in a list of strings as if they were
command-line arguments when LAMMPS is run in stand-alone mode from the command line, and a MPI
communicator for LAMMPS to run under. It returns a ptr to the LAMMPS object that is created, and which is
used in subsequent library calls. The lammps_open() function can be called multiple times, to create multiple
instances of LAMMPS.

LAMMPS will run on the set of processors in the communicator. This means the calling code can run
LAMMPS on all or a subset of processors. For example, a wrapper script might decide to alternate between
LAMMPS and another code, allowing them both to run on all the processors. Or it might allocate half the
processors to LAMMPS and half to the other code and run both codes simultaneously before syncing them up
periodically. Or it might instantiate multiple instances of LAMMPS to perform different calculations.

The lammps_close() function is used to shut down an instance of LAMMPS and free all its memory.

The lammps_file() and lammps_command() functions are used to pass a file or string to LAMMPS as if it
were an input script or single command in an input script. Thus the calling code can read or generate a series
of LAMMPS commands one line at a time and pass it thru the library interface to setup a problem and then
run it, interleaving the lammps_command() calls with other calls to extract information from LAMMPS,
perform its own operations, or call another code's library.

Other useful functions are also included in library.cpp. For example:

void *lammps_extract_global(void *, char *)
void *lammps_extract_atom(void *, char *)
void *lammps_extract_compute(void *, char *, int, int)
void *lammps_extract_fix(void *, char *, int, int, int, int)
void *lammps_extract_variable(void *, char *, char *)
int lammps_get_natoms(void *)
void lammps_get_coords(void *, double *)
void lammps_put_coords(void *, double *)

LIGGGHTS Users Manual

6.19 Library interface to LAMMPS 1150

These can extract various global or per-atom quantities from LAMMPS as well as values calculated by a
compute, fix, or variable. The "get" and "put" operations can retrieve and reset atom coordinates. See the
library.cpp file and its associated header file library.h for details.

The key idea of the library interface is that you can write any functions you wish to define how your code
talks to LAMMPS and add them to src/library.cpp and src/library.h, as well as to the Python interface. The
routines you add can access or change any LAMMPS data you wish. The examples/COUPLE and python
directories have example C++ and C and Python codes which show how a driver code can link to LAMMPS
as a library, run LAMMPS on a subset of processors, grab data from LAMMPS, change it, and put it back into
LAMMPS.

6.20 Calculating thermal conductivity

The thermal conductivity kappa of a material can be measured in at least 4 ways using various options in
LAMMPS. See the examples/KAPPA directory for scripts that implement the 4 methods discussed here for a
simple Lennard-Jones fluid model. Also, see this section of the manual for an analogous discussion for
viscosity.

The thermal conducitivity tensor kappa is a measure of the propensity of a material to transmit heat energy in
a diffusive manner as given by Fourier's law

J = -kappa grad(T)

where J is the heat flux in units of energy per area per time and grad(T) is the spatial gradient of temperature.
The thermal conductivity thus has units of energy per distance per time per degree K and is often
approximated as an isotropic quantity, i.e. as a scalar.

The first method is to setup two thermostatted regions at opposite ends of a simulation box, or one in the
middle and one at the end of a periodic box. By holding the two regions at different temperatures with a
thermostatting fix, the energy added to the hot region should equal the energy subtracted from the cold region
and be proportional to the heat flux moving between the regions. See the paper by Ikeshoji and Hafskjold for
details of this idea. Note that thermostatting fixes such as fix nvt, fix langevin, and fix temp/rescale store the
cumulative energy they add/subtract.

Alternatively, as a second method, the fix heat command can used in place of thermostats on each of two
regions to add/subtract specified amounts of energy to both regions. In both cases, the resulting temperatures
of the two regions can be monitored with the "compute temp/region" command and the temperature profile of
the intermediate region can be monitored with the fix ave/spatial and compute ke/atom commands.

The third method is to perform a reverse non-equilibrium MD simulation using the fix thermal/conductivity
command which implements the rNEMD algorithm of Muller-Plathe. Kinetic energy is swapped between
atoms in two different layers of the simulation box. This induces a temperature gradient between the two
layers which can be monitored with the fix ave/spatial and compute ke/atom commands. The fix tallies the
cumulative energy transfer that it performs. See the fix thermal/conductivity command for details.

The fourth method is based on the Green-Kubo (GK) formula which relates the ensemble average of the
auto-correlation of the heat flux to kappa. The heat flux can be calculated from the fluctuations of per-atom
potential and kinetic energies and per-atom stress tensor in a steady-state equilibrated simulation. This is in
contrast to the two preceding non-equilibrium methods, where energy flows continuously between hot and
cold regions of the simulation box.

The compute heat/flux command can calculate the needed heat flux and describes how to implement the
Green_Kubo formalism using additional LAMMPS commands, such as the fix ave/correlate command to

LIGGGHTS Users Manual

6.20 Calculating thermal conductivity 1151

calculate the needed auto-correlation. See the doc page for the compute heat/flux command for an example
input script that calculates the thermal conductivity of solid Ar via the GK formalism.

6.21 Calculating viscosity

The shear viscosity eta of a fluid can be measured in at least 4 ways using various options in LAMMPS. See
the examples/VISCOSITY directory for scripts that implement the 4 methods discussed here for a simple
Lennard-Jones fluid model. Also, see this section of the manual for an analogous discussion for thermal
conductivity.

Eta is a measure of the propensity of a fluid to transmit momentum in a direction perpendicular to the
direction of velocity or momentum flow. Alternatively it is the resistance the fluid has to being sheared. It is
given by

J = -eta grad(Vstream)

where J is the momentum flux in units of momentum per area per time. and grad(Vstream) is the spatial
gradient of the velocity of the fluid moving in another direction, normal to the area through which the
momentum flows. Viscosity thus has units of pressure-time.

The first method is to perform a non-equlibrium MD (NEMD) simulation by shearing the simulation box via
the fix deform command, and using the fix nvt/sllod command to thermostat the fluid via the SLLOD
equations of motion. Alternatively, as a second method, one or more moving walls can be used to shear the
fluid in between them, again with some kind of thermostat that modifies only the thermal (non-shearing)
components of velocity to prevent the fluid from heating up.

In both cases, the velocity profile setup in the fluid by this procedure can be monitored by the fix ave/spatial
command, which determines grad(Vstream) in the equation above. E.g. the derivative in the y-direction of the
Vx component of fluid motion or grad(Vstream) = dVx/dy. The Pxy off-diagonal component of the pressure
or stress tensor, as calculated by the compute pressure command, can also be monitored, which is the J term in
the equation above. See this section of the manual for details on NEMD simulations.

The third method is to perform a reverse non-equilibrium MD simulation using the fix viscosity command
which implements the rNEMD algorithm of Muller-Plathe. Momentum in one dimension is swapped between
atoms in two different layers of the simulation box in a different dimension. This induces a velocity gradient
which can be monitored with the fix ave/spatial command. The fix tallies the cummulative momentum
transfer that it performs. See the fix viscosity command for details.

The fourth method is based on the Green-Kubo (GK) formula which relates the ensemble average of the
auto-correlation of the stress/pressure tensor to eta. This can be done in a steady-state equilibrated simulation
which is in contrast to the two preceding non-equilibrium methods, where momentum flows continuously
through the simulation box.

Here is an example input script that calculates the viscosity of liquid Ar via the GK formalism:

Sample LAMMPS input script for viscosity of liquid Ar

units real
variable T equal 86.4956
variable V equal vol
variable dt equal 4.0
variable p equal 400 # correlation length
variable s equal 5 # sample interval
variable d equal $p*$s # dump interval

LIGGGHTS Users Manual

6.21 Calculating viscosity 1152

convert from LAMMPS real units to SI

variable kB equal 1.3806504e-23 # [J/K/ Boltzmann
variable atm2Pa equal 101325.0
variable A2m equal 1.0e-10
variable fs2s equal 1.0e-15
variable convert equal ${atm2Pa}*${atm2Pa}*${fs2s}*${A2m}*${A2m}*${A2m}

setup problem

dimension 3
boundary p p p
lattice fcc 5.376 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1
region box block 0 4 0 4 0 4
create_box 1 box
create_atoms 1 box
mass 1 39.948
pair_style lj/cut 13.0
pair_coeff * * 0.2381 3.405
timestep ${dt}
thermo $d

equilibration and thermalization

velocity all create $T 102486 mom yes rot yes dist gaussian
fix NVT all nvt temp $T $T 10 drag 0.2
run 8000

viscosity calculation, switch to NVE if desired

#unfix NVT
#fix NVE all nve

reset_timestep 0
variable pxy equal pxy
variable pxz equal pxz
variable pyz equal pyz
fix SS all ave/correlate $s $p $d &
 v_pxy v_pxz v_pyz type auto file S0St.dat ave running
variable scale equal ${convert}/(${kB}*$T)*$V*$s*${dt}
variable v11 equal trap(f_SS[3])*${scale}
variable v22 equal trap(f_SS[4])*${scale}
variable v33 equal trap(f_SS[5])*${scale}
thermo_style custom step temp press v_pxy v_pxz v_pyz v_v11 v_v22 v_v33
run 100000
variable v equal (v_v11+v_v22+v_v33)/3.0
variable ndens equal count(all)/vol
print "average viscosity: $v [Pa.s/ @ $T K, ${ndens} /A^3"

(Berendsen) Berendsen, Grigera, Straatsma, J Phys Chem, 91, 6269-6271 (1987).

(Cornell) Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman, JACS 117,
5179-5197 (1995).

(Horn) Horn, Swope, Pitera, Madura, Dick, Hura, and Head-Gordon, J Chem Phys, 120, 9665 (2004).

LIGGGHTS Users Manual

6.21 Calculating viscosity 1153

(Ikeshoji) Ikeshoji and Hafskjold, Molecular Physics, 81, 251-261 (1994).

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

(Mayo) Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909 (1990).

(Jorgensen) Jorgensen, Chandrasekhar, Madura, Impey, Klein, J Chem Phys, 79, 926 (1983).

(Price) Price and Brooks, J Chem Phys, 121, 10096 (2004).

(Shinoda) Shinoda, Shiga, and Mikami, Phys Rev B, 69, 134103 (2004).

LIGGGHTS Users Manual

6.21 Calculating viscosity 1154

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

1. Introduction

This section provides an overview of what LAMMPS can and can't do, describes what it means for LAMMPS
to be an open-source code, and acknowledges the funding and people who have contributed to LAMMPS over
the years.

1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non-features
1.4 Open source distribution
1.5 Acknowledgments and citations

1.1 What is LAMMPS

LAMMPS is a classical molecular dynamics code that models an ensemble of particles in a liquid, solid, or
gaseous state. It can model atomic, polymeric, biological, metallic, granular, and coarse-grained systems using
a variety of force fields and boundary conditions.

For examples of LAMMPS simulations, see the Publications page of the LAMMPS WWW Site.

LAMMPS runs efficiently on single-processor desktop or laptop machines, but is designed for parallel
computers. It will run on any parallel machine that compiles C++ and supports the MPI message-passing
library. This includes distributed- or shared-memory parallel machines and Beowulf-style clusters.

LAMMPS can model systems with only a few particles up to millions or billions. See Section_perf for
information on LAMMPS performance and scalability, or the Benchmarks section of the LAMMPS WWW
Site.

LAMMPS is a freely-available open-source code, distributed under the terms of the GNU Public License,
which means you can use or modify the code however you wish. See this section for a brief discussion of the
open-source philosophy.

LAMMPS is designed to be easy to modify or extend with new capabilities, such as new force fields, atom
types, boundary conditions, or diagnostics. See Section_modify for more details.

The current version of LAMMPS is written in C++. Earlier versions were written in F77 and F90. See
Section_history for more information on different versions. All versions can be downloaded from the
LAMMPS WWW Site.

LAMMPS was originally developed under a US Department of Energy CRADA (Cooperative Research and
Development Agreement) between two DOE labs and 3 companies. It is distributed by Sandia National Labs.
See this section for more information on LAMMPS funding and individuals who have contributed to
LAMMPS.

In the most general sense, LAMMPS integrates Newton's equations of motion for collections of atoms,
molecules, or macroscopic particles that interact via short- or long-range forces with a variety of initial and/or
boundary conditions. For computational efficiency LAMMPS uses neighbor lists to keep track of nearby
particles. The lists are optimized for systems with particles that are repulsive at short distances, so that the
local density of particles never becomes too large. On parallel machines, LAMMPS uses
spatial-decomposition techniques to partition the simulation domain into small 3d sub-domains, one of which

LIGGGHTS Users Manual

1. Introduction 1155

http://lammps.sandia.gov
http://lammps.sandia.gov
http://www-unix.mcs.anl.gov/mpi
http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.gnu.org/copyleft/gpl.html
http://lammps.sandia.gov
http://www.sandia.gov

is assigned to each processor. Processors communicate and store "ghost" atom information for atoms that
border their sub-domain. LAMMPS is most efficient (in a parallel sense) for systems whose particles fill a 3d
rectangular box with roughly uniform density. Papers with technical details of the algorithms used in
LAMMPS are listed in this section.

1.2 LAMMPS features

This section highlights LAMMPS features, with pointers to specific commands which give more details. If
LAMMPS doesn't have your favorite interatomic potential, boundary condition, or atom type, see
Section_modify, which describes how you can add it to LAMMPS.

General features

runs on a single processor or in parallel•
distributed-memory message-passing parallelism (MPI)•
spatial-decomposition of simulation domain for parallelism•
open-source distribution•
highly portable C++•
optional libraries used: MPI and single-processor FFT•
GPU (CUDA and OpenCL) and OpenMP support for many code features•
easy to extend with new features and functionality•
runs from an input script•
syntax for defining and using variables and formulas•
syntax for looping over runs and breaking out of loops•
run one or multiple simulations simultaneously (in parallel) from one script•
build as library, invoke LAMMPS thru library interface or provided Python wrapper•
couple with other codes: LAMMPS calls other code, other code calls LAMMPS, umbrella code calls
both

•

Particle and model types

(atom style command)

atoms•
coarse-grained particles (e.g. bead-spring polymers)•
united-atom polymers or organic molecules•
all-atom polymers, organic molecules, proteins, DNA•
metals•
granular materials•
coarse-grained mesoscale models•
finite-size spherical and ellipsoidal particles•
finite-size line segment (2d) and triangle (3d) particles•
point dipole particles•
rigid collections of particles•
hybrid combinations of these•

Force fields

(pair style, bond style, angle style, dihedral style, improper style, kspace style commands)

pairwise potentials: Lennard-Jones, Buckingham, Morse, Born-Mayer-Huggins, Yukawa, soft, class 2
(COMPASS), hydrogen bond, tabulated

•

charged pairwise potentials: Coulombic, point-dipole•

LIGGGHTS Users Manual

1.1 What is LAMMPS 1156

manybody potentials: EAM, Finnis/Sinclair EAM, modified EAM (MEAM), embedded ion method
(EIM), EDIP, ADP, Stillinger-Weber, Tersoff, REBO, AIREBO, ReaxFF, COMB

•

electron force field (eFF, AWPMD)•
coarse-grained potentials: DPD, GayBerne, REsquared, colloidal, DLVO•
mesoscopic potentials: granular, Peridynamics, SPH•
bond potentials: harmonic, FENE, Morse, nonlinear, class 2, quartic (breakable)•
angle potentials: harmonic, CHARMM, cosine, cosine/squared, cosine/periodic, class 2 (COMPASS)•
dihedral potentials: harmonic, CHARMM, multi-harmonic, helix, class 2 (COMPASS), OPLS•
improper potentials: harmonic, cvff, umbrella, class 2 (COMPASS)•
polymer potentials: all-atom, united-atom, bead-spring, breakable•
water potentials: TIP3P, TIP4P, SPC•
implicit solvent potentials: hydrodynamic lubrication, Debye•
KIM archive of potentials•
long-range interactions for charge, point-dipoles, and LJ dispersion: Ewald, Wolf, PPPM (similar to
particle-mesh Ewald)

•

force-field compatibility with common CHARMM, AMBER, DREIDING, OPLS, GROMACS,
COMPASS options

•

handful of GPU-enabled pair styles•
hybrid potentials: multiple pair, bond, angle, dihedral, improper potentials can be used in one
simulation

•

overlaid potentials: superposition of multiple pair potentials•

Atom creation

(read_data, lattice, create_atoms, delete_atoms, displace_atoms, replicate commands)

read in atom coords from files•
create atoms on one or more lattices (e.g. grain boundaries)•
delete geometric or logical groups of atoms (e.g. voids)•
replicate existing atoms multiple times•
displace atoms•

Ensembles, constraints, and boundary conditions

(fix command)

2d or 3d systems•
orthogonal or non-orthogonal (triclinic symmetry) simulation domains•
constant NVE, NVT, NPT, NPH, Parinello/Rahman integrators•
thermostatting options for groups and geometric regions of atoms•
pressure control via Nose/Hoover or Berendsen barostatting in 1 to 3 dimensions•
simulation box deformation (tensile and shear)•
harmonic (umbrella) constraint forces•
rigid body constraints•
SHAKE bond and angle constraints•
bond breaking, formation, swapping•
walls of various kinds•
non-equilibrium molecular dynamics (NEMD)•
variety of additional boundary conditions and constraints•

Integrators

(run, run_style, minimize commands)

LIGGGHTS Users Manual

Force fields 1157

http://openkim.org

velocity-Verlet integrator•
Brownian dynamics•
rigid body integration•
energy minimization via conjugate gradient or steepest descent relaxation•
rRESPA hierarchical timestepping•
rerun command for post-processing of dump files•

Diagnostics

see the various flavors of the fix and compute commands•

Output

(dump, restart commands)

log file of thermodynamic info•
text dump files of atom coords, velocities, other per-atom quantities•
binary restart files•
parallel I/O of dump and restart files•
per-atom quantities (energy, stress, centro-symmetry parameter, CNA, etc)•
user-defined system-wide (log file) or per-atom (dump file) calculations•
spatial and time averaging of per-atom quantities•
time averaging of system-wide quantities•
atom snapshots in native, XYZ, XTC, DCD, CFG formats•

Multi-replica models

nudged elastic band parallel replica dynamics temperature accelerated dynamics parallel tempering

Pre- and post-processing

Various pre- and post-processing serial tools are packaged with LAMMPS; see these doc pages.•
Our group has also written and released a separate toolkit called Pizza.py which provides tools for
doing setup, analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in
Python and is available for download from the Pizza.py WWW site.

•

Specialized features

These are LAMMPS capabilities which you may not think of as typical molecular dynamics options:

generalized aspherical particles•
stochastic rotation dynamics (SRD)•
real-time visualization and interactive MD•
atom-to-continuum coupling with finite elements•
coupled rigid body integration via the POEMS library•
grand canonical Monte Carlo insertions/deletions•
Direct Simulation Monte Carlo for low-density fluids•
Peridynamics mesoscale modeling•
targeted and steered molecular dynamics•
two-temperature electron model•

LIGGGHTS Users Manual

Integrators 1158

http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html

1.3 LAMMPS non-features

LAMMPS is designed to efficiently compute Newton's equations of motion for a system of interacting
particles. Many of the tools needed to pre- and post-process the data for such simulations are not included in
the LAMMPS kernel for several reasons:

the desire to keep LAMMPS simple•
they are not parallel operations•
other codes already do them•
limited development resources•

Specifically, LAMMPS itself does not:

run thru a GUI•
build molecular systems•
assign force-field coefficients automagically•
perform sophisticated analyses of your MD simulation•
visualize your MD simulation•
plot your output data•

A few tools for pre- and post-processing tasks are provided as part of the LAMMPS package; they are
described in this section. However, many people use other codes or write their own tools for these tasks.

As noted above, our group has also written and released a separate toolkit called Pizza.py which addresses
some of the listed bullets. It provides tools for doing setup, analysis, plotting, and visualization for LAMMPS
simulations. Pizza.py is written in Python and is available for download from the Pizza.py WWW site.

LAMMPS requires as input a list of initial atom coordinates and types, molecular topology information, and
force-field coefficients assigned to all atoms and bonds. LAMMPS will not build molecular systems and
assign force-field parameters for you.

For atomic systems LAMMPS provides a create_atoms command which places atoms on solid-state lattices
(fcc, bcc, user-defined, etc). Assigning small numbers of force field coefficients can be done via the pair
coeff, bond coeff, angle coeff, etc commands. For molecular systems or more complicated simulation
geometries, users typically use another code as a builder and convert its output to LAMMPS input format, or
write their own code to generate atom coordinate and molecular topology for LAMMPS to read in.

For complicated molecular systems (e.g. a protein), a multitude of topology information and hundreds of
force-field coefficients must typically be specified. We suggest you use a program like CHARMM or
AMBER or other molecular builders to setup such problems and dump its information to a file. You can then
reformat the file as LAMMPS input. Some of the tools in this section can assist in this process.

Similarly, LAMMPS creates output files in a simple format. Most users post-process these files with their
own analysis tools or re-format them for input into other programs, including visualization packages. If you
are convinced you need to compute something on-the-fly as LAMMPS runs, see Section_modify for a
discussion of how you can use the dump and compute and fix commands to print out data of your choosing.
Keep in mind that complicated computations can slow down the molecular dynamics timestepping,
particularly if the computations are not parallel, so it is often better to leave such analysis to post-processing
codes.

A very simple (yet fast) visualizer is provided with the LAMMPS package - see the xmovie tool in this
section. It creates xyz projection views of atomic coordinates and animates them. We find it very useful for
debugging purposes. For high-quality visualization we recommend the following packages:

LIGGGHTS Users Manual

1.3 LAMMPS non-features 1159

http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html
http://www.scripps.edu/brooks
http://amber.scripps.edu

VMD•
AtomEye•
PyMol•
Raster3d•
RasMol•

Other features that LAMMPS does not yet (and may never) support are discussed in Section_history.

Finally, these are freely-available molecular dynamics codes, most of them parallel, which may be well-suited
to the problems you want to model. They can also be used in conjunction with LAMMPS to perform
complementary modeling tasks.

CHARMM•
AMBER•
NAMD•
NWCHEM•
DL_POLY•
Tinker•

CHARMM, AMBER, NAMD, NWCHEM, and Tinker are designed primarily for modeling biological
molecules. CHARMM and AMBER use atom-decomposition (replicated-data) strategies for parallelism;
NAMD and NWCHEM use spatial-decomposition approaches, similar to LAMMPS. Tinker is a serial code.
DL_POLY includes potentials for a variety of biological and non-biological materials; both a replicated-data
and spatial-decomposition version exist.

1.4 Open source distribution

LAMMPS comes with no warranty of any kind. As each source file states in its header, it is a copyrighted
code that is distributed free-of- charge, under the terms of the GNU Public License (GPL). This is often
referred to as open-source distribution - see www.gnu.org or www.opensource.org for more details. The legal
text of the GPL is in the LICENSE file that is included in the LAMMPS distribution.

Here is a summary of what the GPL means for LAMMPS users:

(1) Anyone is free to use, modify, or extend LAMMPS in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of LAMMPS, it must remain open-source, meaning you distribute it
under the terms of the GPL. You should clearly annotate such a code as a derivative version of LAMMPS.

(3) If you release any code that includes LAMMPS source code, then it must also be open-sourced, meaning
you distribute it under the terms of the GPL.

(4) If you give LAMMPS files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

In the spirit of an open-source code, these are various ways you can contribute to making LAMMPS better.
You can send email to the developers on any of these items.

Point prospective users to the LAMMPS WWW Site. Mention it in talks or link to it from your
WWW site.

•

If you find an error or omission in this manual or on the LAMMPS WWW Site, or have a suggestion
for something to clarify or include, send an email to the developers.

•

LIGGGHTS Users Manual

1.4 Open source distribution 1160

http://www.ks.uiuc.edu/Research/vmd
http://mt.seas.upenn.edu/Archive/Graphics/A
http://pymol.sourceforge.net
http://www.bmsc.washington.edu/raster3d/raster3d.html
http://www.openrasmol.org
http://www.scripps.edu/brooks
http://amber.scripps.edu
http://www.ks.uiuc.edu/Research/namd/
http://www.emsl.pnl.gov/docs/nwchem/nwchem.html
http://www.cse.clrc.ac.uk/msi/software/DL_POLY
http://dasher.wustl.edu/tinker
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org
http://www.opensource.org
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html

If you find a bug, Section_errors 2 describes how to report it.•
If you publish a paper using LAMMPS results, send the citation (and any cool pictures or movies if
you like) to add to the Publications, Pictures, and Movies pages of the LAMMPS WWW Site, with
links and attributions back to you.

•

Create a new Makefile.machine that can be added to the src/MAKE directory.•
The tools sub-directory of the LAMMPS distribution has various stand-alone codes for pre- and
post-processing of LAMMPS data. More details are given in Section_tools. If you write a new tool
that users will find useful, it can be added to the LAMMPS distribution.

•

LAMMPS is designed to be easy to extend with new code for features like potentials, boundary
conditions, diagnostic computations, etc. This section gives details. If you add a feature of general
interest, it can be added to the LAMMPS distribution.

•

The Benchmark page of the LAMMPS WWW Site lists LAMMPS performance on various platforms.
The files needed to run the benchmarks are part of the LAMMPS distribution. If your machine is
sufficiently different from those listed, your timing data can be added to the page.

•

You can send feedback for the User Comments page of the LAMMPS WWW Site. It might be added
to the page. No promises.

•

Cash. Small denominations, unmarked bills preferred. Paper sack OK. Leave on desk. VISA also
accepted. Chocolate chip cookies encouraged.

•

1.5 Acknowledgments and citations

LAMMPS development has been funded by the US Department of Energy (DOE), through its CRADA,
LDRD, ASCI, and Genomes-to-Life programs and its OASCR and OBER offices.

Specifically, work on the latest version was funded in part by the US Department of Energy's Genomics:GTL
program (www.doegenomestolife.org) under the project, "Carbon Sequestration in Synechococcus Sp.: From
Molecular Machines to Hierarchical Modeling".

The following paper describe the basic parallel algorithms used in LAMMPS. If you use LAMMPS results in
your published work, please cite this paper and include a pointer to the LAMMPS WWW Site
(http://lammps.sandia.gov):

S. J. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19
(1995).

Other papers describing specific algorithms used in LAMMPS are listed under the Citing LAMMPS link of
the LAMMPS WWW page.

The Publications link on the LAMMPS WWW page lists papers that have cited LAMMPS. If your paper is
not listed there for some reason, feel free to send us the info. If the simulations in your paper produced cool
pictures or animations, we'll be pleased to add them to the Pictures or Movies pages of the LAMMPS WWW
site.

The core group of LAMMPS developers is at Sandia National Labs:

Steve Plimpton, sjplimp at sandia.gov•
Aidan Thompson, athomps at sandia.gov•
Paul Crozier, pscrozi at sandia.gov•

The following folks are responsible for significant contributions to the code, or other aspects of the LAMMPS
development effort. Many of the packages they have written are somewhat unique to LAMMPS and the code
would not be as general-purpose as it is without their expertise and efforts.

Axel Kohlmeyer (Temple U), akohlmey at gmail.com, SVN and Git repositories, indefatigable mail•

LIGGGHTS Users Manual

1.5 Acknowledgments and citations 1161

http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.doe.gov
http://www.sc.doe.gov/ascr/home.html
http://www.er.doe.gov/production/ober/ober_top.html
http://www.doegenomestolife.org
http://www.genomes2life.org
http://lammps.sandia.gov
http://lammps.sandia.gov/cite.html
http://lammps.sandia.gov/papers.html
http://lammps.sandia.gov/pictures.html
http://lammps.sandia.gov/movies.html

list responder, USER-CG-CMM and USER-OMP packages
Roy Pollock (LLNL), Ewald and PPPM solvers•
Mike Brown (ORNL), brownw at ornl.gov, GPU package•
Greg Wagner (Sandia), gjwagne at sandia.gov, MEAM package for MEAM potential•
Mike Parks (Sandia), mlparks at sandia.gov, PERI package for Peridynamics•
Rudra Mukherjee (JPL), Rudranarayan.M.Mukherjee at jpl.nasa.gov, POEMS package for articulated
rigid body motion

•

Reese Jones (Sandia) and collaborators, rjones at sandia.gov, USER-ATC package for
atom/continuum coupling

•

Ilya Valuev (JIHT), valuev at physik.hu-berlin.de, USER-AWPMD package for wave-packet MD•
Christian Trott (U Tech Ilmenau), christian.trott at tu-ilmenau.de, USER-CUDA package•
Andres Jaramillo-Botero (Caltech), ajaramil at wag.caltech.edu, USER-EFF package for electron
force field

•

Christoph Kloss (JKU), Christoph.Kloss at jku.at, USER-LIGGGHTS package for granular models
and granular/fluid coupling

•

Metin Aktulga (LBL), hmaktulga at lbl.gov, USER-REAXC package for C version of ReaxFF•
Georg Gunzenmuller (EMI), georg.ganzenmueller at emi.fhg.de, USER-SPH package•

As discussed in Section_history, LAMMPS originated as a cooperative project between DOE labs and
industrial partners. Folks involved in the design and testing of the original version of LAMMPS were the
following:

John Carpenter (Mayo Clinic, formerly at Cray Research)•
Terry Stouch (Lexicon Pharmaceuticals, formerly at Bristol Myers Squibb)•
Steve Lustig (Dupont)•
Jim Belak (LLNL)•

LIGGGHTS Users Manual

1.5 Acknowledgments and citations 1162

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

10. Modifying & extending LAMMPS

This section describes how to customize LAMMPS by modifying and extending its source code.

10.1 Atom styles
10.2 Bond, angle, dihedral, improper potentials
10.3 Compute styles
10.4 Dump styles
10.5 Dump custom output options
10.6 Fix styles which include integrators, temperature and pressure control, force constraints, boundary
conditions, diagnostic output, etc
10.7 Input script commands
10.8 Kspace computations
10.9 Minimization styles
10.10 Pairwise potentials
10.11 Region styles
10.12 Body styles
10.13 Thermodynamic output options
10.14 Variable options
10.15 Submitting new features for inclusion in LAMMPS

LAMMPS is designed in a modular fashion so as to be easy to modify and extend with new functionality. In
fact, about 75% of its source code is files added in this fashion.

In this section, changes and additions users can make are listed along with minimal instructions. If you add a
new feature to LAMMPS and think it will be of interest to general users, we encourage you to submit it to the
developers for inclusion in the released version of LAMMPS. Information about how to do this is provided
below.

The best way to add a new feature is to find a similar feature in LAMMPS and look at the corresponding
source and header files to figure out what it does. You will need some knowledge of C++ to be able to
understand the hi-level structure of LAMMPS and its class organization, but functions (class methods) that do
actual computations are written in vanilla C-style code and operate on simple C-style data structures (vectors
and arrays).

Most of the new features described in this section require you to write a new C++ derived class (except for
exceptions described below, where you can make small edits to existing files). Creating a new class requires 2
files, a source code file (*.cpp) and a header file (*.h). The derived class must provide certain methods to
work as a new option. Depending on how different your new feature is compared to existing features, you can
either derive from the base class itself, or from a derived class that already exists. Enabling LAMMPS to
invoke the new class is as simple as putting the two source files in the src dir and re-building LAMMPS.

The advantage of C++ and its object-orientation is that all the code and variables needed to define the new
feature are in the 2 files you write, and thus shouldn't make the rest of LAMMPS more complex or cause
side-effect bugs.

Here is a concrete example. Suppose you write 2 files pair_foo.cpp and pair_foo.h that define a new class
PairFoo that computes pairwise potentials described in the classic 1997 paper by Foo, et al. If you wish to
invoke those potentials in a LAMMPS input script with a command like

pair_style foo 0.1 3.5

LIGGGHTS Users Manual

10. Modifying & extending LAMMPS 1163

http://lammps.sandia.gov

then your pair_foo.h file should be structured as follows:

#ifdef PAIR_CLASS
PairStyle(foo,PairFoo)
#else
...
(class definition for PairFoo)
...
#endif

where "foo" is the style keyword in the pair_style command, and PairFoo is the class name defined in your
pair_foo.cpp and pair_foo.h files.

When you re-build LAMMPS, your new pairwise potential becomes part of the executable and can be
invoked with a pair_style command like the example above. Arguments like 0.1 and 3.5 can be defined and
processed by your new class.

As illustrated by this pairwise example, many kinds of options are referred to in the LAMMPS documentation
as the "style" of a particular command.

The instructions below give the header file for the base class that these styles are derived from. Public
variables in that file are ones used and set by the derived classes which are also used by the base class.
Sometimes they are also used by the rest of LAMMPS. Virtual functions in the base class header file which
are set = 0 are ones you must define in your new derived class to give it the functionality LAMMPS expects.
Virtual functions that are not set to 0 are functions you can optionally define.

Additionally, new output options can be added directly to the thermo.cpp, dump_custom.cpp, and variable.cpp
files as explained below.

Here are additional guidelines for modifying LAMMPS and adding new functionality:

Think about whether what you want to do would be better as a pre- or post-processing step. Many
computations are more easily and more quickly done that way.

•

Don't do anything within the timestepping of a run that isn't parallel. E.g. don't accumulate a bunch of
data on a single processor and analyze it. You run the risk of seriously degrading the parallel
efficiency.

•

If your new feature reads arguments or writes output, make sure you follow the unit conventions
discussed by the units command.

•

If you add something you think is truly useful and doesn't impact LAMMPS performance when it isn't
used, send an email to the developers. We might be interested in adding it to the LAMMPS
distribution. See further details on this at the bottom of this page.

•

10.1 Atom styles

Classes that define an atom style are derived from the AtomVec class and managed by the Atom class. The
atom style determines what attributes are associated with an atom. A new atom style can be created if one of
the existing atom styles does not define all the attributes you need to store and communicate with atoms.

Atom_vec_atomic.cpp is a simple example of an atom style.

Here is a brief description of methods you define in your new derived class. See atom_vec.h for details.

init one time setup (optional)

LIGGGHTS Users Manual

10.1 Atom styles 1164

http://lammps.sandia.gov/authors.html

grow re-allocate atom arrays to longer lengths (required)
grow_reset make array pointers in Atom and AtomVec classes consistent (required)
copy copy info for one atom to another atom's array locations (required)
pack_comm store an atom's info in a buffer communicated every timestep (required)
pack_comm_vel add velocity info to communication buffer (required)
pack_comm_hybrid store extra info unique to this atom style (optional)
unpack_comm retrieve an atom's info from the buffer (required)
unpack_comm_vel also retrieve velocity info (required)
unpack_comm_hybrid retreive extra info unique to this atom style (optional)
pack_reverse store an atom's info in a buffer communicating partial forces (required)
pack_reverse_hybrid store extra info unique to this atom style (optional)
unpack_reverse retrieve an atom's info from the buffer (required)
unpack_reverse_hybrid retreive extra info unique to this atom style (optional)
pack_border store an atom's info in a buffer communicated on neighbor re-builds (required)
pack_border_vel add velocity info to buffer (required)
pack_border_hybrid store extra info unique to this atom style (optional)
unpack_border retrieve an atom's info from the buffer (required)
unpack_border_vel also retrieve velocity info (required)
unpack_border_hybrid retreive extra info unique to this atom style (optional)
pack_exchange store all an atom's info to migrate to another processor (required)
unpack_exchange retrieve an atom's info from the buffer (required)
size_restart number of restart quantities associated with proc's atoms (required)
pack_restart pack atom quantities into a buffer (required)
unpack_restart unpack atom quantities from a buffer (required)
create_atom create an individual atom of this style (required)
data_atom parse an atom line from the data file (required)
data_atom_hybrid parse additional atom info unique to this atom style (optional)
data_vel parse one line of velocity information from data file (optional)
data_vel_hybrid parse additional velocity data unique to this atom style (optional)
memory_usage tally memory allocated by atom arrays (required)

The constructor of the derived class sets values for several variables that you must set when defining a new
atom style, which are documented in atom_vec.h. New atom arrays are defined in atom.cpp. Search for the
word "customize" and you will find locations you will need to modify.

IMPORTANT NOTE: It is possible to add some attributes, such as a molecule ID, to atom styles that do not
have them via the fix property/atom command. This command also allows new custom attributes consisting of
extra integer or floating-point values to be added to atoms. See the fix property/atom doc page for examples of
cases where this is useful and details on how to initialize, access, and output the custom values.

New pair styles, fixes, or computes can be added to LAMMPS, as discussed below. The code for these classes
can use the per-atom properties defined by fix property/atom. The Atom class has a find_custom() method
that is useful in this context:

int index = atom->find_custom(char *name, int &flag);

The "name" of a custom attribute, as specified in the fix property/atom command, is checked to verify that it
exists and its index is returned. The method also sets flag = 0/1 depending on whether it is an integer or
floating-point attribute. The vector of values associated with the attribute can then be accessed using the

LIGGGHTS Users Manual

10.1 Atom styles 1165

returned index as

int *ivector = atom->ivector[index];
double *dvector = atom->dvector[index];

Ivector or dvector are vectors of length Nlocal = # of owned atoms, which store the attributes of individual
atoms.

10.2 Bond, angle, dihedral, improper potentials

Classes that compute molecular interactions are derived from the Bond, Angle, Dihedral, and Improper
classes. New styles can be created to add new potentials to LAMMPS.

Bond_harmonic.cpp is the simplest example of a bond style. Ditto for the harmonic forms of the angle,
dihedral, and improper style commands.

Here is a brief description of common methods you define in your new derived class. See bond.h, angle.h,
dihedral.h, and improper.h for details and specific additional methods.

init check if all coefficients are set, calls init_style (optional)
init_style check if style specific conditions are met (optional)
compute compute the molecular interactions (required)
settings apply global settings for all types (optional)
coeff set coefficients for one type (required)
equilibrium_distance length of bond, used by SHAKE (required, bond only)
equilibrium_angle opening of angle, used by SHAKE (required, angle only)
write & read_restart writes/reads coeffs to restart files (required)
single force and energy of a single bond or angle (required, bond or angle only)
memory_usage tally memory allocated by the style (optional)

10.3 Compute styles

Classes that compute scalar and vector quantities like temperature and the pressure tensor, as well as classes
that compute per-atom quantities like kinetic energy and the centro-symmetry parameter are derived from the
Compute class. New styles can be created to add new calculations to LAMMPS.

Compute_temp.cpp is a simple example of computing a scalar temperature. Compute_ke_atom.cpp is a
simple example of computing per-atom kinetic energy.

Here is a brief description of methods you define in your new derived class. See compute.h for details.

init perform one time setup (required)
init_list neighbor list setup, if needed (optional)
compute_scalar compute a scalar quantity (optional)
compute_vector compute a vector of quantities (optional)
compute_peratom compute one or more quantities per atom (optional)
compute_local compute one or more quantities per processor (optional)
pack_comm pack a buffer with items to communicate (optional)
unpack_comm unpack the buffer (optional)

LIGGGHTS Users Manual

10.2 Bond, angle, dihedral, improper potentials 1166

pack_reverse pack a buffer with items to reverse communicate (optional)
unpack_reverse unpack the buffer (optional)
remove_bias remove velocity bias from one atom (optional)
remove_bias_all remove velocity bias from all atoms in group (optional)
restore_bias restore velocity bias for one atom after remove_bias (optional)
restore_bias_all same as before, but for all atoms in group (optional)
memory_usage tally memory usage (optional)

10.4 Dump styles

10.5 Dump custom output options

Classes that dump per-atom info to files are derived from the Dump class. To dump new quantities or in a new
format, a new derived dump class can be added, but it is typically simpler to modify the DumpCustom class
contained in the dump_custom.cpp file.

Dump_atom.cpp is a simple example of a derived dump class.

Here is a brief description of methods you define in your new derived class. See dump.h for details.

write_header write the header section of a snapshot of atoms
count count the number of lines a processor will output
pack pack a proc's output data into a buffer
write_data write a proc's data to a file

See the dump command and its custom style for a list of keywords for atom information that can already be
dumped by DumpCustom. It includes options to dump per-atom info from Compute classes, so adding a new
derived Compute class is one way to calculate new quantities to dump.

Alternatively, you can add new keywords to the dump custom command. Search for the word "customize" in
dump_custom.cpp to see the half-dozen or so locations where code will need to be added.

10.6 Fix styles

In LAMMPS, a "fix" is any operation that is computed during timestepping that alters some property of the
system. Essentially everything that happens during a simulation besides force computation, neighbor list
construction, and output, is a "fix". This includes time integration (update of coordinates and velocities), force
constraints or boundary conditions (SHAKE or walls), and diagnostics (compute a diffusion coefficient). New
styles can be created to add new options to LAMMPS.

Fix_setforce.cpp is a simple example of setting forces on atoms to prescribed values. There are dozens of fix
options already in LAMMPS; choose one as a template that is similar to what you want to implement.

Here is a brief description of methods you can define in your new derived class. See fix.h for details.

setmask determines when the fix is called during the timestep (required)
init initialization before a run (optional)
setup_pre_exchange called before atom exchange in setup (optional)
setup_pre_force called before force computation in setup (optional)

LIGGGHTS Users Manual

10.3 Compute styles 1167

setup called immediately before the 1st timestep and after forces are computed (optional)
min_setup_pre_force like setup_pre_force, but for minimizations instead of MD runs (optional)
min_setup like setup, but for minimizations instead of MD runs (optional)
initial_integrate called at very beginning of each timestep (optional)
pre_exchange called before atom exchange on re-neighboring steps (optional)
pre_neighbor called before neighbor list build (optional)
pre_force called after pair & molecular forces are computed (optional)
post_force called after pair & molecular forces are computed and communicated (optional)
final_integrate called at end of each timestep (optional)
end_of_step called at very end of timestep (optional)
write_restart dumps fix info to restart file (optional)
restart uses info from restart file to re-initialize the fix (optional)
grow_arrays allocate memory for atom-based arrays used by fix (optional)
copy_arrays copy atom info when an atom migrates to a new processor (optional)
pack_exchange store atom's data in a buffer (optional)
unpack_exchange retrieve atom's data from a buffer (optional)
pack_restart store atom's data for writing to restart file (optional)
unpack_restart retrieve atom's data from a restart file buffer (optional)
size_restart size of atom's data (optional)
maxsize_restart max size of atom's data (optional)
setup_pre_force_respa same as setup_pre_force, but for rRESPA (optional)
initial_integrate_respa same as initial_integrate, but for rRESPA (optional)
post_integrate_respa called after the first half integration step is done in rRESPA (optional)
pre_force_respa same as pre_force, but for rRESPA (optional)
post_force_respa same as post_force, but for rRESPA (optional)
final_integrate_respa same as final_integrate, but for rRESPA (optional)
min_pre_force called after pair & molecular forces are computed in minimizer (optional)

min_post_force called after pair & molecular forces are computed and communicated in minmizer
(optional)

min_store store extra data for linesearch based minimization on a LIFO stack (optional)
min_pushstore push the minimization LIFO stack one element down (optional)
min_popstore pop the minimization LIFO stack one element up (optional)
min_clearstore clear minimization LIFO stack (optional)
min_step reset or move forward on line search minimization (optional)
min_dof report number of degrees of freedom added by this fix in minimization (optional)
max_alpha report maximum allowed step size during linesearch minimization (optional)
pack_comm pack a buffer to communicate a per-atom quantity (optional)
unpack_comm unpack a buffer to communicate a per-atom quantity (optional)
pack_reverse_comm pack a buffer to reverse communicate a per-atom quantity (optional)
unpack_reverse_comm unpack a buffer to reverse communicate a per-atom quantity (optional)
dof report number of degrees of freedom removed by this fix during MD (optional)
compute_scalar return a global scalar property that the fix computes (optional)
compute_vector return a component of a vector property that the fix computes (optional)
compute_array return a component of an array property that the fix computes (optional)
deform called when the box size is changed (optional)

LIGGGHTS Users Manual

10.6 Fix styles 1168

reset_target called when a change of the target temperature is requested during a run (optional)
reset_dt is called when a change of the time step is requested during a run (optional)
modify_param called when a fix_modify request is executed (optional)
memory_usage report memory used by fix (optional)
thermo compute quantities for thermodynamic output (optional)
Typically, only a small fraction of these methods are defined for a particular fix. Setmask is mandatory, as it
determines when the fix will be invoked during the timestep. Fixes that perform time integration (nve, nvt,
npt) implement initial_integrate() and final_integrate() to perform velocity Verlet updates. Fixes that constrain
forces implement post_force().

Fixes that perform diagnostics typically implement end_of_step(). For an end_of_step fix, one of your fix
arguments must be the variable "nevery" which is used to determine when to call the fix and you must set this
variable in the constructor of your fix. By convention, this is the first argument the fix defines (after the ID,
group-ID, style).

If the fix needs to store information for each atom that persists from timestep to timestep, it can manage that
memory and migrate the info with the atoms as they move from processors to processor by implementing the
grow_arrays, copy_arrays, pack_exchange, and unpack_exchange methods. Similarly, the pack_restart and
unpack_restart methods can be implemented to store information about the fix in restart files. If you wish an
integrator or force constraint fix to work with rRESPA (see the run_style command), the initial_integrate,
post_force_integrate, and final_integrate_respa methods can be implemented. The thermo method enables a
fix to contribute values to thermodynamic output, as printed quantities and/or to be summed to the potential
energy of the system.

10.7 Input script commands

New commands can be added to LAMMPS input scripts by adding new classes that have a "command"
method. For example, the create_atoms, read_data, velocity, and run commands are all implemented in this
fashion. When such a command is encountered in the LAMMPS input script, LAMMPS simply creates a class
with the corresponding name, invokes the "command" method of the class, and passes it the arguments from
the input script. The command method can perform whatever operations it wishes on LAMMPS data
structures.

The single method your new class must define is as follows:

command operations performed by the new command
Of course, the new class can define other methods and variables as needed.

10.8 Kspace computations

Classes that compute long-range Coulombic interactions via K-space representations (Ewald, PPPM) are
derived from the KSpace class. New styles can be created to add new K-space options to LAMMPS.

Ewald.cpp is an example of computing K-space interactions.

Here is a brief description of methods you define in your new derived class. See kspace.h for details.

init initialize the calculation before a run
setup computation before the 1st timestep of a run
compute every-timestep computation

LIGGGHTS Users Manual

10.7 Input script commands 1169

memory_usage tally of memory usage

10.9 Minimization styles

Classes that perform energy minimization derived from the Min class. New styles can be created to add new
minimization algorithms to LAMMPS.

Min_cg.cpp is an example of conjugate gradient minimization.

Here is a brief description of methods you define in your new derived class. See min.h for details.

init initialize the minimization before a run
run perform the minimization
memory_usage tally of memory usage

10.10 Pairwise potentials

Classes that compute pairwise interactions are derived from the Pair class. In LAMMPS, pairwise calculation
include manybody potentials such as EAM or Tersoff where particles interact without a static bond topology.
New styles can be created to add new pair potentials to LAMMPS.

Pair_lj_cut.cpp is a simple example of a Pair class, though it includes some optional methods to enable its use
with rRESPA.

Here is a brief description of the class methods in pair.h:

compute workhorse routine that computes pairwise interactions
settings reads the input script line with arguments you define
coeff set coefficients for one i,j type pair
init_one perform initialization for one i,j type pair
init_style initialization specific to this pair style
write & read_restart write/read i,j pair coeffs to restart files
write & read_restart_settings write/read global settings to restart files
single force and energy of a single pairwise interaction between 2 atoms
compute_inner/middle/outer versions of compute used by rRESPA

The inner/middle/outer routines are optional.

10.11 Region styles

Classes that define geometric regions are derived from the Region class. Regions are used elsewhere in
LAMMPS to group atoms, delete atoms to create a void, insert atoms in a specified region, etc. New styles
can be created to add new region shapes to LAMMPS.

Region_sphere.cpp is an example of a spherical region.

Here is a brief description of methods you define in your new derived class. See region.h for details.

match determine whether a point is in the region

LIGGGHTS Users Manual

10.8 Kspace computations 1170

10.11 Body styles

Classes that define body particles are derived from the Body class. Body particles can represent complex
entities, such as surface meshes of discrete points, collections of sub-particles, deformable objects, etc.

See Section_howto 14 of the manual for an overview of using body particles and the body doc page for details
on the various body styles LAMMPS supports. New styles can be created to add new kinds of body particles
to LAMMPS.

Body_nparticle.cpp is an example of a body particle that is treated as a rigid body containing N sub-particles.

Here is a brief description of methods you define in your new derived class. See body.h for details.

data_body process a line from the Bodies section of a data file
noutrow number of sub-particles output is generated for
noutcol number of values per-sub-particle output is generated for
output output values for the Mth sub-particle
pack_comm_body body attributes to communicate every timestep
unpack_comm_body unpacking of those attributes
pack_border_body body attributes to communicate when reneighboring is done
unpack_border_body unpacking of those attributes

10.13 Thermodynamic output options

There is one class that computes and prints thermodynamic information to the screen and log file; see the file
thermo.cpp.

There are two styles defined in thermo.cpp: "one" and "multi". There is also a flexible "custom" style which
allows the user to explicitly list keywords for quantities to print when thermodynamic info is output. See the
thermo_style command for a list of defined quantities.

The thermo styles (one, multi, etc) are simply lists of keywords. Adding a new style thus only requires
defining a new list of keywords. Search for the word "customize" with references to "thermo style" in
thermo.cpp to see the two locations where code will need to be added.

New keywords can also be added to thermo.cpp to compute new quantities for output. Search for the word
"customize" with references to "keyword" in thermo.cpp to see the several locations where code will need to
be added.

Note that the thermo_style custom command already allows for thermo output of quantities calculated by
fixes, computes, and variables. Thus, it may be simpler to compute what you wish via one of those constructs,
than by adding a new keyword to the thermo command.

10.14 Variable options

There is one class that computes and stores variable information in LAMMPS; see the file variable.cpp. The
value associated with a variable can be periodically printed to the screen via the print, fix print, or
thermo_style custom commands. Variables of style "equal" can compute complex equations that involve the

LIGGGHTS Users Manual

10.11 Region styles 1171

following types of arguments:

thermo keywords = ke, vol, atoms, ... other variables = v_a, v_myvar, ... math functions = div(x,y), mult(x,y),
add(x,y), ... group functions = mass(group), xcm(group,x), ... atom values = x123, y3, vx34, ... compute
values = c_mytemp0, c_thermo_press3, ...

Adding keywords for the thermo_style custom command (which can then be accessed by variables) was
discussed here on this page.

Adding a new math function of one or two arguments can be done by editing one section of the
Variable::evaulate() method. Search for the word "customize" to find the appropriate location.

Adding a new group function can be done by editing one section of the Variable::evaulate() method. Search
for the word "customize" to find the appropriate location. You may need to add a new method to the Group
class as well (see the group.cpp file).

Accessing a new atom-based vector can be done by editing one section of the Variable::evaulate() method.
Search for the word "customize" to find the appropriate location.

Adding new compute styles (whose calculated values can then be accessed by variables) was discussed here
on this page.

10.15 Submitting new features for inclusion in LAMMPS

We encourage users to submit new features that they add to LAMMPS to the developers, especially if you
think the features will be of interest to other users. If they are broadly useful we may add them as core files to
LAMMPS or as part of a standard package. Else we will add them as a user-contributed package or file.
Examples of user packages are in src sub-directories that start with USER. The USER-MISC package is
simply a collection of (mostly) unrelated single files, which is the simplest way to have your contribution
quickly added to the LAMMPS distribution. You can see a list of the both standard and user packages by
typing "make package" in the LAMMPS src directory.

With user packages and files, all we are really providing (aside from the fame and fortune that accompanies
having your name in the source code and on the Authors page of the LAMMPS WWW site), is a means for
you to distribute your work to the LAMMPS user community and a mechanism for others to easily try out
your new feature. This may help you find bugs or make contact with new collaborators. Note that you're also
implicitly agreeing to support your code which means answer questions, fix bugs, and maintain it if
LAMMPS changes.

The previous sections of this doc page describe how to add new features of various kinds to LAMMPS.
Packages are simply collections of one or more new class files which are invoked as a new "style" within a
LAMMPS input script. If designed correctly, these additions typically do not require changes to the main core
of LAMMPS; they are simply add-on files. If you think your new feature requires non-trivial changes in core
LAMMPS files, you'll need to communicate with the developers, since we may or may not want to make
those changes. An example of a trivial change is making a parent-class method "virtual" when you derive a
new child class from it.

Here is what you need to do to submit a user package or single file for our consideration. Following these
steps will save time for both you and us. See existing package files for examples.

All source files you provide must compile with the most current version of LAMMPS.•

LIGGGHTS Users Manual

10.14 Variable options 1172

http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html

If you want your file(s) to be added to main LAMMPS or one of its standard packages, then it needs
to be written in a style compatible with other LAMMPS source files. This is so the developers can
understand it and hopefully maintain it. This basically means that the code accesses data structures,
performs its operations, and is formatted similar to other LAMMPS source files, including the use of
the error class for error and warning messages.

•

If your contribution is a single file (actually a *.cpp and *.h file) it can most rapidly be added to the
USER-MISC directory. Send us the one-line entry to add to the USER-MISC/README file in that
dir, along with the 2 source files. You can do this multiple times if you wish to contribute several
individual features.

•

If your contribution is several related featues, it is probably best to make it a user package directory
with a name like USER-FOO. In addition to your new files, the directory should contain a README,
and Install.csh file. The README text file should contain your name and contact information and a
brief description of what your new package does. The Install.csh file enables LAMMPS to include
and exclude your package. See other README and Install.sh files in other USER directories as
examples. Send us a tarball of this USER-FOO directory.

•

Your new source files need to have the LAMMPS copyright, GPL notice, and your name at the top,
like other LAMMPS source files. They need to create a class that is inside the LAMMPS namespace.
If the file is for one of the USER packages, including USER-MISC, then we are not as picky about
the coding style (see above). I.e. they do not need to be in the same stylistic format and syntax as
other LAMMPS files, though that would be nice.

•

Finally, you must also send a documentation file for each new command or style you are adding to
LAMMPS. This will be one file for a single-file feature. For a package, it might be several files.
These are simple text files which we will convert to HTML. They must be in the same format as other
*.txt files in the lammps/doc directory for similar commands and styles. The "Restrictions" section of
the doc page should indicate that your command is only available if LAMMPS is built with the
appropriate USER-MISC or USER-FOO package. See other user package doc files for an example of
how to do this. The txt2html tool we use to do the conversion can be downloaded from this site, so
you can perform the HTML conversion yourself to proofread your doc page.

•

Note that the more clear and self-explanatory you make your doc and README files, the more likely it is that
users will try out your new feature.

(Foo) Foo, Morefoo, and Maxfoo, J of Classic Potentials, 75, 345 (1997).

LIGGGHTS Users Manual

10.15 Submitting new features for inclusion in LAMMPS 1173

http://www.sandia.gov/~sjplimp/download.html

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

4. Packages

This section gives a quick overview of the add-on packages that extend LAMMPS functionality.

4.1 Standard packages
4.2 User packages

LAMMPS includes many optional packages, which are groups of files that enable a specific set of features.
For example, force fields for molecular systems or granular systems are in packages. You can see the list of
all packages by typing "make package" from within the src directory of the LAMMPS distribution.

See Section_start 3 of the manual for details on how to include/exclude specific packages as part of the
LAMMPS build process, and for more details about the differences between standard packages and user
packages in LAMMPS.

Below, the packages currently availabe in LAMMPS are listed. For standard packages, just a one-line
description is given. For user packages, more details are provided.

4.1 Standard packages

The current list of standard packages is as follows:

Package Description Author(s) Doc page Example Library
ASPHERE aspherical particles - Section_howto ellipse -
CLASS2 class 2 force fields - pair_style lj/class2 - -
COLLOID colloidal particles - atom_style colloid colloid -

DIPOLE point dipole particles - pair_style
dipole/cut dipole -

FLD Fast Lubrication
Dynamics

Kumar & Bybee &
Higdon (1)

pair_style
lubricateU - -

GPU GPU-enabled
potentials Mike Brown (ORNL) Section accelerate gpu lib/gpu

GRANULAR granular systems - Section_howto pour -

KIM openKIM potentials Smirichinski & Elliot &
Tadmor (3) pair_style kim kim KIM

KSPACE long-range Coulombic
solvers - kspace_style peptide -

MANYBODY many-body potentials - pair_style tersoff shear -

MEAM modified EAM
potential Greg Wagner (Sandia) pair_style meam meam lib/meam

MC Monte Carlo options - fix gcmc - -

MOLECULE molecular system force
fields - Section_howto peptide -

OPT optimized pair
potentials

Fischer & Richie & Natoli
(2) Section accelerate - -

PERI Peridynamics models Mike Parks (Sandia) pair_style peri peri -
POEMS Rudra Mukherjee (JPL) fix poems rigid lib/poems

LIGGGHTS Users Manual

4. Packages 1174

http://lammps.sandia.gov

coupled rigid body
motion

REAX ReaxFF potential Aidan Thompson (Sandia) pair_style reax reax lib/reax
REPLICA multi-replica methods - Section_howto tad -
RIGID rigid bodies - fix rigid rigid -
SHOCK shock loading methods - fix msst - -

SRD stochastic rotation
dynamics - fix srd srd -

VORONOI Voronoi tesselations Daniel Schwen (LANL) compute
voronoi/atom - Voro++

XTC dumps in XTC format - dump - -

The "Authors" column lists a name(s) if a specific person is responible for creating and maintaining the
package.

(1) The FLD package was created by Amit Kumar and Michael Bybee from Jonathan Higdon's group at
UIUC.

(2) The OPT package was created by James Fischer (High Performance Technologies), David Richie, and
Vincent Natoli (Stone Ridge Technolgy).

(3) The KIM package was created by Valeriu Smirichinski, Ryan Elliott, and Ellad Tadmor (U Minn).

The "Doc page" column links to either a portion of the Section_howto of the manual, or an input script
command implemented as part of the package.

The "Example" column is a sub-directory in the examples directory of the distribution which has an input
script that uses the package. E.g. "peptide" refers to the examples/peptide directory.

The "Library" column lists an external library which must be built first and which LAMMPS links to when it
is built. If it is listed as lib/package, then the code for the library is under the lib directory of the LAMMPS
distribution. See the lib/package/README file for info on how to build the library. If it is not listed as
lib/package, then it is a third-party library not included in the LAMMPS distribution. See the
src/package/README or src/package/Makefile.lammps file for info on where to download the library.
Section start of the manual also gives details on how to build LAMMPS with both kinds of auxiliary libraries.

4.2 User packages

The current list of user-contributed packages is as follows:

Package Description Author(s) Doc page Example Pic/movie Library

USER-ATC atom-to-continuum
coupling

Jones & Templeton &
Zimmerman (2) fix atc USER/atc atc lib/atc

USER-AWPMD wave-packet MD Ilya Valuev (JIHT) pair_style awpmd/cut USER/awpmd - lib/awpmd

USER-CG-CMM coarse-graining
model

Axel Kohlmeyer
(Temple U) pair_style lj/sdk USER/cg-cmm cg -

USER-COLVARS collective variables Fiorin & Henin &
Kohlmeyer (3) fix colvars USER/colvars colvars lib/colvars

USER-CUDA NVIDIA GPU
styles

Christian Trott (U Tech
Ilmenau) Section accelerate USER/cuda - lib/cuda

USER-EFF electron force field pair_style eff/cut USER/eff eff -

LIGGGHTS Users Manual

4.1 Standard packages 1175

http://lammps.sandia.gov/pictures.html#atc
http://lammps.sandia.gov/pictures.html#cg
http://lammps.sandia.gov/movies.html#eff

Andres Jaramillo-Botero
(Caltech)

USER-LB Lattice Boltzmann
fluid

Colin Denniston (U
Western Ontario) fix lb/fluid USER/lb - -

USER-MISC single-file
contributions USER-MISC/README USER-MISC/README - - -

USER-MOLFILE VMD molfile
plug-ins

Axel Kohlmeyer
(Temple U) dump molfile - - VMD-MOLFILE

USER-OMP OpenMP threaded
styles

Axel Kohlmeyer
(Temple U) Section accelerate - - -

USER-REAXC C version of
ReaxFF Metin Aktulga (LBNL) pair_style reaxc reax - -

USER-SPH smoothed particle
hydrodynamics

Georg Ganzenmuller
(EMI) userguide.pdf USER/sph sph -

The "Authors" column lists a name(s) if a specific person is responible for creating and maintaining the
package.

If the Library is not listed as lib/package, then it is a third-party library not included in the LAMMPS
distribution. See the src/package/Makefile.lammps file for info on where to download the library from.

(2) The ATC package was created by Reese Jones, Jeremy Templeton, and Jon Zimmerman (Sandia).

(3) The COLVARS package was created by Axel Kohlmeyer (Temple U) using the colvars module library
written by Giacomo Fiorin (Temple U) and Jerome Henin (LISM, Marseille, France).

The "Doc page" column links to either a portion of the Section_howto of the manual, or an input script
command implemented as part of the package, or to additional documentation provided witht he package.

The "Example" column is a sub-directory in the examples directory of the distribution which has an input
script that uses the package. E.g. "peptide" refers to the examples/peptide directory. USER/cuda refers to the
examples/USER/cuda directory.

The "Library" column lists an external library which must be built first and which LAMMPS links to when it
is built. If it is listed as lib/package, then the code for the library is under the lib directory of the LAMMPS
distribution. See the lib/package/README file for info on how to build the library. If it is not listed as
lib/package, then it is a third-party library not included in the LAMMPS distribution. See the
src/package/Makefile.lammps file for info on where to download the library. Section start of the manual also
gives details on how to build LAMMPS with both kinds of auxiliary libraries.

More details on each package, from the USER-*/README file is given below.

USER-MISC package

The files in this package are a potpourri of (mostly) unrelated features contributed to LAMMPS by users.
Each feature is a single pair of files (*.cpp and *.h).

More information about each feature can be found by reading its doc page in the LAMMPS doc directory. The
doc page which lists all LAMMPS input script commands is as follows:

Section_commands

User-contributed features are listed at the bottom of the fix, compute, pair, etc sections.

LIGGGHTS Users Manual

4.2 User packages 1176

http://www.ks.uiuc.edu/Research/vmd
http://lammps.sandia.gov/movies.html#sph

The list of features and author of each is given in the src/USER-MISC/README file.

You should contact the author directly if you have specific questions about the feature or its coding.

USER-ATC package

This package implements a "fix atc" command which can be used in a LAMMPS input script. This fix can be
employed to either do concurrent coupling of MD with FE-based physics surrogates or on-the-fly
post-processing of atomic information to continuum fields.

See the doc page for the fix atc command to get started. At the bottom of the doc page are many links to
additional documentation contained in the doc/USER/atc directory.

There are example scripts for using this package in examples/USER/atc.

This package uses an external library in lib/atc which must be compiled before making LAMMPS. See the
lib/atc/README file and the LAMMPS manual for information on building LAMMPS with external
libraries.

The primary people who created this package are Reese Jones (rjones at sandia.gov), Jeremy Templeton
(jatempl at sandia.gov) and Jon Zimmerman (jzimmer at sandia.gov) at Sandia. Contact them directly if you
have questions.

USER-AWPMD package

This package contains a LAMMPS implementation of the Antisymmetrized Wave Packet Molecular
Dynamics (AWPMD) method.

See the doc page for the pair_style awpmd/cut command to get started.

There are example scripts for using this package in examples/USER/awpmd.

This package uses an external library in lib/awpmd which must be compiled before making LAMMPS. See
the lib/awpmd/README file and the LAMMPS manual for information on building LAMMPS with external
libraries.

The person who created this package is Ilya Valuev at the JIHT in Russia (valuev at physik.hu-berlin.de).
Contact him directly if you have questions.

USER-COLVARS package

This package implements the "fix colvars" command which can be used in a LAMMPS input script.

This fix allows to use "collective variables" to implement Adaptive Biasing Force, Metadynamics, Steered
MD, Umbrella Sampling and Restraints. This code consists of two parts:

A portable collective variable module library written and maintained by Giacomo Fiorin (ICMS,
Temple University, Philadelphia, PA, USA) and Jerome Henin (LISM, CNRS, Marseille, France).
This code is located in the directory lib/colvars and needs to be compiled first.

•

The colvars fix and an interface layer, exchanges information between LAMMPS and the collective
variable module.

•

See the doc page of fix colvars for more details.

LIGGGHTS Users Manual

USER-MISC package 1177

There are example scripts for using this package in examples/USER/colvars

This is a very new interface that does not yet support all features in the module and will see future
optimizations and improvements. The colvars module library is also available in NAMD has been thoroughly
used and tested there. Bugs and problems are likely due to the interface layers code. Thus the current version
of this package should be considered beta quality.

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

USER-CG-CMM package

This package implements 3 commands which can be used in a LAMMPS input script:

pair_style lj/sdk•
pair_style lj/sdk/coul/long•
angle_style sdk•

These styles allow coarse grained MD simulations with the parametrization of Shinoda, DeVane, Klein, Mol
Sim, 33, 27 (2007) (SDK), with extensions to simulate ionic liquids, electrolytes, lipids and charged amino
acids.

See the doc pages for these commands for details.

There are example scripts for using this package in examples/USER/cg-cmm.

This is the second generation implementation reducing the the clutter of the previous version. For many
systems with electrostatics, it will be faster to use pair_style hybrid/overlay with lj/sdk and coul/long instead
of the combined lj/sdk/coul/long style. since the number of charged atom types is usually small. For any other
coulomb interactions this is now required. To exploit this property, the use of the kspace_style pppm/cg is
recommended over regular pppm. For all new styles, input file backward compatibility is provided. The old
implementation is still available through appending the /old suffix. These will be discontinued and removed
after the new implementation has been fully validated.

The current version of this package should be considered beta quality. The CG potentials work correctly for
"normal" situations, but have not been testing with all kinds of potential parameters and simulation systems.

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

USER-CUDA package

This package provides acceleration of various LAMMPS pair styles, fix styles, compute styles, and
long-range Coulombics via PPPM for NVIDIA GPUs.

See this section of the manual to get started:

Section_accelerate

There are example scripts for using this package in examples/USER/cuda.

This package uses an external library in lib/cuda which must be compiled before making LAMMPS. See the
lib/cuda/README file and the LAMMPS manual for information on building LAMMPS with external
libraries.

LIGGGHTS Users Manual

USER-COLVARS package 1178

The person who created this package is Christian Trott at the University of Technology Ilmenau, Germany
(christian.trott at tu-ilmenau.de). Contact him directly if you have questions.

USER-EFF package

This package contains a LAMMPS implementation of the electron Force Field (eFF) currently under
development at Caltech, as described in A. Jaramillo-Botero, J. Su, Q. An, and W.A. Goddard III, JCC, 2010.
The eFF potential was first introduced by Su and Goddard, in 2007.

eFF can be viewed as an approximation to QM wave packet dynamics and Fermionic molecular dynamics,
combining the ability of electronic structure methods to describe atomic structure, bonding, and chemistry in
materials, and of plasma methods to describe nonequilibrium dynamics of large systems with a large number
of highly excited electrons. We classify it as a mixed QM-classical approach rather than a conventional force
field method, which introduces QM-based terms (a spin-dependent repulsion term to account for the Pauli
exclusion principle and the electron wavefunction kinetic energy associated with the Heisenberg principle)
that reduce, along with classical electrostatic terms between nuclei and electrons, to the sum of a set of
effective pairwise potentials. This makes eFF uniquely suited to simulate materials over a wide range of
temperatures and pressures where electronically excited and ionized states of matter can occur and coexist.

The necessary customizations to the LAMMPS core are in place to enable the correct handling of explicit
electron properties during minimization and dynamics.

See the doc page for the pair_style eff/cut command to get started.

There are example scripts for using this package in examples/USER/eff.

There are auxiliary tools for using this package in tools/eff.

The person who created this package is Andres Jaramillo-Botero at CalTech (ajaramil at wag.caltech.edu).
Contact him directly if you have questions.

USER-OMP package

This package provides OpenMP multi-threading support and other optimizations of various LAMMPS pair
styles, dihedral styles, and fix styles.

See this section of the manual to get started:

Section_accelerate

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

USER-REAXC package

This package contains a implementation for LAMMPS of the ReaxFF force field. ReaxFF uses
distance-dependent bond-order functions to represent the contributions of chemical bonding to the potential
energy. It was originally developed by Adri van Duin and the Goddard group at CalTech.

The USER-REAXC version of ReaxFF (pair_style reax/c), implemented in C, should give identical or very
similar results to pair_style reax, which is a ReaxFF implementation on top of a Fortran library, a version of
which library was originally authored by Adri van Duin.

LIGGGHTS Users Manual

USER-CUDA package 1179

The reax/c version should be somewhat faster and more scalable, particularly with respect to the charge
equilibration calculation. It should also be easier to build and use since there are no complicating issues with
Fortran memory allocation or linking to a Fortran library.

For technical details about this implemention of ReaxFF, see this paper:

Parallel and Scalable Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques, H. M.
Aktulga, J. C. Fogarty, S. A. Pandit, A. Y. Grama, Parallel Computing, in press (2011).

See the doc page for the pair_style reax/c command for details of how to use it in LAMMPS.

The person who created this package is Hasan Metin Aktulga (hmaktulga at lbl.gov), while at Purdue
University. Contact him directly, or Aidan Thompson at Sandia (athomps at sandia.gov), if you have
questions.

USER-SPH package

This package implements smoothed particle hydrodynamics (SPH) in LAMMPS. Currently, the package has
the following features:

* Tait, ideal gas, Lennard-Jones equation of states, full support for complete (i.e. internal-energy dependent)
equations of state * plain or Monaghans XSPH integration of the equations of motion * density continuity or
density summation to propagate the density field * commands to set internal energy and density of particles
from the input script * output commands to access internal energy and density for dumping and thermo output

See the file doc/USER/sph/SPH_LAMMPS_userguide.pdf to get started.

There are example scripts for using this package in examples/USER/sph.

The person who created this package is Georg Ganzenmuller at the Fraunhofer-Institute for High-Speed
Dynamics, Ernst Mach Institute in Germany (georg.ganzenmueller at emi.fhg.de). Contact him directly if you
have questions.

LIGGGHTS Users Manual

USER-REAXC package 1180

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

8. Performance & scalability

LAMMPS performance on several prototypical benchmarks and machines is discussed on the Benchmarks
page of the LAMMPS WWW Site where CPU timings and parallel efficiencies are listed. Here, the
benchmarks are described briefly and some useful rules of thumb about their performance are highlighted.

These are the 5 benchmark problems:

LJ = atomic fluid, Lennard-Jones potential with 2.5 sigma cutoff (55 neighbors per atom), NVE
integration

1.

Chain = bead-spring polymer melt of 100-mer chains, FENE bonds and LJ pairwise interactions with
a 2^(1/6) sigma cutoff (5 neighbors per atom), NVE integration

2.

EAM = metallic solid, Cu EAM potential with 4.95 Angstrom cutoff (45 neighbors per atom), NVE
integration

3.

Chute = granular chute flow, frictional history potential with 1.1 sigma cutoff (7 neighbors per atom),
NVE integration

4.

Rhodo = rhodopsin protein in solvated lipid bilayer, CHARMM force field with a 10 Angstrom LJ
cutoff (440 neighbors per atom), particle-particle particle-mesh (PPPM) for long-range Coulombics,
NPT integration

5.

The input files for running the benchmarks are included in the LAMMPS distribution, as are sample output
files. Each of the 5 problems has 32,000 atoms and runs for 100 timesteps. Each can be run as a serial
benchmarks (on one processor) or in parallel. In parallel, each benchmark can be run as a fixed-size or
scaled-size problem. For fixed-size benchmarking, the same 32K atom problem is run on various numbers of
processors. For scaled-size benchmarking, the model size is increased with the number of processors. E.g. on
8 processors, a 256K-atom problem is run; on 1024 processors, a 32-million atom problem is run, etc.

A useful metric from the benchmarks is the CPU cost per atom per timestep. Since LAMMPS performance
scales roughly linearly with problem size and timesteps, the run time of any problem using the same model
(atom style, force field, cutoff, etc) can then be estimated. For example, on a 1.7 GHz Pentium desktop
machine (Intel icc compiler under Red Hat Linux), the CPU run-time in seconds/atom/timestep for the 5
problems is

Problem: LJ Chain EAM Chute Rhodopsin
CPU/atom/step: 4.55E-6 2.18E-6 9.38E-6 2.18E-6 1.11E-4

Ratio to LJ: 1.0 0.48 2.06 0.48 24.5
The ratios mean that if the atomic LJ system has a normalized cost of 1.0, the bead-spring chains and granular
systems run 2x faster, while the EAM metal and solvated protein models run 2x and 25x slower respectively.
The bulk of these cost differences is due to the expense of computing a particular pairwise force field for a
given number of neighbors per atom.

Performance on a parallel machine can also be predicted from the one-processor timings if the parallel
efficiency can be estimated. The communication bandwidth and latency of a particular parallel machine
affects the efficiency. On most machines LAMMPS will give fixed-size parallel efficiencies on these
benchmarks above 50% so long as the atoms/processor count is a few 100 or greater - i.e. on 64 to 128
processors. Likewise, scaled-size parallel efficiencies will typically be 80% or greater up to very large
processor counts. The benchmark data on the LAMMPS WWW Site gives specific examples on some
different machines, including a run of 3/4 of a billion LJ atoms on 1500 processors that ran at 85% parallel
efficiency.

LIGGGHTS Users Manual

USER-SPH package 1181

http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

11. Python interface to LAMMPS

This section describes how to build and use LAMMPS via a Python interface.

11.1 Building LAMMPS as a shared library•
11.2 Installing the Python wrapper into Python•
11.3 Extending Python with MPI to run in parallel•
11.4 Testing the Python-LAMMPS interface•
11.5 Using LAMMPS from Python•
11.6 Example Python scripts that use LAMMPS•

The LAMMPS distribution includes the file python/lammps.py which wraps the library interface to
LAMMPS. This file makes it is possible to run LAMMPS, invoke LAMMPS commands or give it an input
script, extract LAMMPS results, an modify internal LAMMPS variables, either from a Python script or
interactively from a Python prompt. You can do the former in serial or parallel. Running Python interactively
in parallel does not generally work, unless you have a package installed that extends your Python to enable
multiple instances of Python to read what you type.

Python is a powerful scripting and programming language which can be used to wrap software like LAMMPS
and other packages. It can be used to glue multiple pieces of software together, e.g. to run a coupled or
multiscale model. See Section section of the manual and the couple directory of the distribution for more ideas
about coupling LAMMPS to other codes. See Section_start 4 about how to build LAMMPS as a library, and
Section_howto 19 for a description of the library interface provided in src/library.cpp and src/library.h and
how to extend it for your needs. As described below, that interface is what is exposed to Python. It is designed
to be easy to add functions to. This can easily extend the Python inteface as well. See details below.

By using the Python interface, LAMMPS can also be coupled with a GUI or other visualization tools that
display graphs or animations in real time as LAMMPS runs. Examples of such scripts are inlcluded in the
python directory.

Two advantages of using Python are how concise the language is, and that it can be run interactively, enabling
rapid development and debugging of programs. If you use it to mostly invoke costly operations within
LAMMPS, such as running a simulation for a reasonable number of timesteps, then the overhead cost of
invoking LAMMPS thru Python will be negligible.

Before using LAMMPS from a Python script, you need to do two things. You need to build LAMMPS as a
dynamic shared library, so it can be loaded by Python. And you need to tell Python how to find the library and
the Python wrapper file python/lammps.py. Both these steps are discussed below. If you wish to run
LAMMPS in parallel from Python, you also need to extend your Python with MPI. This is also discussed
below.

The Python wrapper for LAMMPS uses the amazing and magical (to me) "ctypes" package in Python, which
auto-generates the interface code needed between Python and a set of C interface routines for a library. Ctypes
is part of standard Python for versions 2.5 and later. You can check which version of Python you have
installed, by simply typing "python" at a shell prompt.

11.1 Building LAMMPS as a shared library

Instructions on how to build LAMMPS as a shared library are given in Section_start 5. A shared library is one
that is dynamically loadable, which is what Python requires. On Linux this is a library file that ends in ".so",

LIGGGHTS Users Manual

8. Performance & scalability 1182

http://lammps.sandia.gov
http://www.python.org

not ".a".

From the src directory, type

make makeshlib
make -f Makefile.shlib foo

where foo is the machine target name, such as linux or g++ or serial. This should create the file
liblammps_foo.so in the src directory, as well as a soft link liblammps.so, which is what the Python wrapper
will load by default. Note that if you are building multiple machine versions of the shared library, the soft link
is always set to the most recently built version.

If this fails, see Section_start 5 for more details, especially if your LAMMPS build uses auxiliary libraries like
MPI or FFTW which may not be built as shared libraries on your system.

11.2 Installing the Python wrapper into Python

For Python to invoke LAMMPS, there are 2 files it needs to know about:

python/lammps.py•
src/liblammps.so•

Lammps.py is the Python wrapper on the LAMMPS library interface. Liblammps.so is the shared LAMMPS
library that Python loads, as described above.

You can insure Python can find these files in one of two ways:

set two environment variables•
run the python/install.py script•

If you set the paths to these files as environment variables, you only have to do it once. For the csh or tcsh
shells, add something like this to your ~/.cshrc file, one line for each of the two files:

setenv PYTHONPATH $PYTHONPATH:/home/sjplimp/lammps/python
setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/home/sjplimp/lammps/src

If you use the python/install.py script, you need to invoke it every time you rebuild LAMMPS (as a shared
library) or make changes to the python/lammps.py file.

You can invoke install.py from the python directory as

% python install.py [libdir] [pydir]

The optional libdir is where to copy the LAMMPS shared library to; the default is /usr/local/lib. The optional
pydir is where to copy the lammps.py file to; the default is the site-packages directory of the version of Python
that is running the install script.

Note that libdir must be a location that is in your default LD_LIBRARY_PATH, like /usr/local/lib or /usr/lib.
And pydir must be a location that Python looks in by default for imported modules, like its site-packages dir.
If you want to copy these files to non-standard locations, such as within your own user space, you will need to
set your PYTHONPATH and LD_LIBRARY_PATH environment variables accordingly, as above.

If the install.py script does not allow you to copy files into system directories, prefix the python command
with "sudo". If you do this, make sure that the Python that root runs is the same as the Python you run. E.g.

LIGGGHTS Users Manual

11.1 Building LAMMPS as a shared library 1183

you may need to do something like

% sudo /usr/local/bin/python install.py [libdir] [pydir]

You can also invoke install.py from the make command in the src directory as

% make install-python

In this mode you cannot append optional arguments. Again, you may need to prefix this with "sudo". In this
mode you cannot control which Python is invoked by root.

Note that if you want Python to be able to load different versions of the LAMMPS shared library (see this
section below), you will need to manually copy files like liblammps_g++.so into the appropriate system
directory. This is not needed if you set the LD_LIBRARY_PATH environment variable as described above.

11.3 Extending Python with MPI to run in parallel

If you wish to run LAMMPS in parallel from Python, you need to extend your Python with an interface to
MPI. This also allows you to make MPI calls directly from Python in your script, if you desire.

There are several Python packages available that purport to wrap MPI as a library and allow MPI functions to
be called from Python.

These include

pyMPI•
maroonmpi•
mpi4py•
myMPI•
Pypar•

All of these except pyMPI work by wrapping the MPI library and exposing (some portion of) its interface to
your Python script. This means Python cannot be used interactively in parallel, since they do not address the
issue of interactive input to multiple instances of Python running on different processors. The one exception is
pyMPI, which alters the Python interpreter to address this issue, and (I believe) creates a new alternate
executable (in place of "python" itself) as a result.

In principle any of these Python/MPI packages should work to invoke LAMMPS in parallel and MPI calls
themselves from a Python script which is itself running in parallel. However, when I downloaded and looked
at a few of them, their documentation was incomplete and I had trouble with their installation. It's not clear if
some of the packages are still being actively developed and supported.

The one I recommend, since I have successfully used it with LAMMPS, is Pypar. Pypar requires the
ubiquitous Numpy package be installed in your Python. After launching python, type

import numpy

to see if it is installed. If not, here is how to install it (version 1.3.0b1 as of April 2009). Unpack the numpy
tarball and from its top-level directory, type

python setup.py build
sudo python setup.py install

LIGGGHTS Users Manual

11.2 Installing the Python wrapper into Python 1184

http://pympi.sourceforge.net/
http://code.google.com/p/maroonmpi/
http://code.google.com/p/mpi4py/
http://nbcr.sdsc.edu/forum/viewtopic.php?t=89&sid=c997fefc3933bd66204875b436940f16
http://code.google.com/p/pypar
http://numpy.scipy.org

The "sudo" is only needed if required to copy Numpy files into your Python distribution's site-packages
directory.

To install Pypar (version pypar-2.1.4_94 as of Aug 2012), unpack it and from its "source" directory, type

python setup.py build
sudo python setup.py install

Again, the "sudo" is only needed if required to copy Pypar files into your Python distribution's site-packages
directory.

If you have successully installed Pypar, you should be able to run Python and type

import pypar

without error. You should also be able to run python in parallel on a simple test script

% mpirun -np 4 python test.py

where test.py contains the lines

import pypar
print "Proc %d out of %d procs" % (pypar.rank(),pypar.size())

and see one line of output for each processor you run on.

IMPORTANT NOTE: To use Pypar and LAMMPS in parallel from Python, you must insure both are using
the same version of MPI. If you only have one MPI installed on your system, this is not an issue, but it can be
if you have multiple MPIs. Your LAMMPS build is explicit about which MPI it is using, since you specify the
details in your lo-level src/MAKE/Makefile.foo file. Pypar uses the "mpicc" command to find information
about the MPI it uses to build against. And it tries to load "libmpi.so" from the LD_LIBRARY_PATH. This
may or may not find the MPI library that LAMMPS is using. If you have problems running both Pypar and
LAMMPS together, this is an issue you may need to address, e.g. by moving other MPI installations so that
Pypar finds the right one.

11.4 Testing the Python-LAMMPS interface

To test if LAMMPS is callable from Python, launch Python interactively and type:

>>> from lammps import lammps
>>> lmp = lammps()

If you get no errors, you're ready to use LAMMPS from Python. If the 2nd command fails, the most common
error to see is

OSError: Could not load LAMMPS dynamic library

which means Python was unable to load the LAMMPS shared library. This typically occurs if the system can't
find the LAMMPS shared library or one of the auxiliary shared libraries it depends on, or if something about
the library is incompatible with your Python. The error message should give you an indication of what went
wrong.

You can also test the load directly in Python as follows, without first importing from the lammps.py file:

>>> from ctypes import CDLL

LIGGGHTS Users Manual

11.3 Extending Python with MPI to run in parallel 1185

>>> CDLL("liblammps.so")

If an error occurs, carefully go thru the steps in Section_start 5 and above about building a shared library and
about insuring Python can find the necessary two files it needs.

Test LAMMPS and Python in serial:

To run a LAMMPS test in serial, type these lines into Python interactively from the bench directory:

>>> from lammps import lammps
>>> lmp = lammps()
>>> lmp.file("in.lj")

Or put the same lines in the file test.py and run it as

% python test.py

Either way, you should see the results of running the in.lj benchmark on a single processor appear on the
screen, the same as if you had typed something like:

lmp_g++ <in.lj

Test LAMMPS and Python in parallel:

To run LAMMPS in parallel, assuming you have installed the Pypar package as discussed above, create a
test.py file containing these lines:

import pypar
from lammps import lammps
lmp = lammps()
lmp.file("in.lj")
print "Proc %d out of %d procs has" % (pypar.rank(),pypar.size()),lmp
pypar.finalize()

You can then run it in parallel as:

% mpirun -np 4 python test.py

and you should see the same output as if you had typed

% mpirun -np 4 lmp_g++ <in.lj

Note that if you leave out the 3 lines from test.py that specify Pypar commands you will instantiate and run
LAMMPS independently on each of the P processors specified in the mpirun command. In this case you
should get 4 sets of output, each showing that a LAMMPS run was made on a single processor, instead of one
set of output showing that LAMMPS ran on 4 processors. If the 1-processor outputs occur, it means that
Pypar is not working correctly.

Also note that once you import the PyPar module, Pypar initializes MPI for you, and you can use MPI calls
directly in your Python script, as described in the Pypar documentation. The last line of your Python script
should be pypar.finalize(), to insure MPI is shut down correctly.

Running Python scripts:

Note that any Python script (not just for LAMMPS) can be invoked in one of several ways:

% python foo.script
% python -i foo.script

LIGGGHTS Users Manual

11.4 Testing the Python-LAMMPS interface 1186

http://datamining.anu.edu.au/~ole/pypar

% foo.script

The last command requires that the first line of the script be something like this:

#!/usr/local/bin/python
#!/usr/local/bin/python -i

where the path points to where you have Python installed, and that you have made the script file executable:

% chmod +x foo.script

Without the "-i" flag, Python will exit when the script finishes. With the "-i" flag, you will be left in the
Python interpreter when the script finishes, so you can type subsequent commands. As mentioned above, you
can only run Python interactively when running Python on a single processor, not in parallel.

11.5 Using LAMMPS from Python

The Python interface to LAMMPS consists of a Python "lammps" module, the source code for which is in
python/lammps.py, which creates a "lammps" object, with a set of methods that can be invoked on that object.
The sample Python code below assumes you have first imported the "lammps" module in your Python script,
as follows:

from lammps import lammps

These are the methods defined by the lammps module. If you look at the file src/library.cpp you will see that
they correspond one-to-one with calls you can make to the LAMMPS library from a C++ or C or Fortran
program.

lmp = lammps() # create a LAMMPS object using the default liblammps.so library
lmp = lammps("g++") # create a LAMMPS object using the liblammps_g++.so library
lmp = lammps("",list) # ditto, with command-line args, e.g. list = ["-echo","screen"]
lmp = lammps("g++",list)

lmp.close() # destroy a LAMMPS object

lmp.file(file) # run an entire input script, file = "in.lj"
lmp.command(cmd) # invoke a single LAMMPS command, cmd = "run 100"

xlo = lmp.extract_global(name,type) # extract a global quantity
 # name = "boxxlo", "nlocal", etc
 # type = 0 = int
 # 1 = double

coords = lmp.extract_atom(name,type) # extract a per-atom quantity
 # name = "x", "type", etc
 # type = 0 = vector of ints
 # 1 = array of ints
 # 2 = vector of doubles
 # 3 = array of doubles

eng = lmp.extract_compute(id,style,type) # extract value(s) from a compute
v3 = lmp.extract_fix(id,style,type,i,j) # extract value(s) from a fix
 # id = ID of compute or fix
 # style = 0 = global data
 # 1 = per-atom data
 # 2 = local data
 # type = 0 = scalar
 # 1 = vector

LIGGGHTS Users Manual

Running Python scripts: 1187

 # 2 = array
 # i,j = indices of value in global vector or array

var = lmp.extract_variable(name,group,flag) # extract value(s) from a variable
 # name = name of variable
 # group = group ID (ignored for equal-style variables)
 # flag = 0 = equal-style variable
 # 1 = atom-style variable

natoms = lmp.get_natoms() # total # of atoms as int
data = lmp.gather_atoms(name,type,count) # return atom attribute of all atoms gathered into data, ordered by atom ID
 # name = "x", "charge", "type", etc
 # count = # of per-atom values, 1 or 3, etc
lmp.scatter_atoms(name,type,count,data) # scatter atom attribute of all atoms from data, ordered by atom ID
 # name = "x", "charge", "type", etc
 # count = # of per-atom values, 1 or 3, etc

IMPORTANT NOTE: Currently, the creation of a LAMMPS object from within lammps.py does not take an
MPI communicator as an argument. There should be a way to do this, so that the LAMMPS instance runs on a
subset of processors if desired, but I don't know how to do it from Pypar. So for now, it runs with
MPI_COMM_WORLD, which is all the processors. If someone figures out how to do this with one or more
of the Python wrappers for MPI, like Pypar, please let us know and we will amend these doc pages.

Note that you can create multiple LAMMPS objects in your Python script, and coordinate and run multiple
simulations, e.g.

from lammps import lammps
lmp1 = lammps()
lmp2 = lammps()
lmp1.file("in.file1")
lmp2.file("in.file2")

The file() and command() methods allow an input script or single commands to be invoked.

The extract_global(), extract_atom(), extract_compute(), extract_fix(), and extract_variable() methods return
values or pointers to data structures internal to LAMMPS.

For extract_global() see the src/library.cpp file for the list of valid names. New names could easily be added.
A double or integer is returned. You need to specify the appropriate data type via the type argument.

For extract_atom(), a pointer to internal LAMMPS atom-based data is returned, which you can use via normal
Python subscripting. See the extract() method in the src/atom.cpp file for a list of valid names. Again, new
names could easily be added. A pointer to a vector of doubles or integers, or a pointer to an array of doubles
(double **) or integers (int **) is returned. You need to specify the appropriate data type via the type
argument.

For extract_compute() and extract_fix(), the global, per-atom, or local data calulated by the compute or fix
can be accessed. What is returned depends on whether the compute or fix calculates a scalar or vector or
array. For a scalar, a single double value is returned. If the compute or fix calculates a vector or array, a
pointer to the internal LAMMPS data is returned, which you can use via normal Python subscripting. The one
exception is that for a fix that calculates a global vector or array, a single double value from the vector or
array is returned, indexed by I (vector) or I and J (array). I,J are zero-based indices. The I,J arguments can be
left out if not needed. See Section_howto 15 of the manual for a discussion of global, per-atom, and local
data, and of scalar, vector, and array data types. See the doc pages for individual computes and fixes for a
description of what they calculate and store.

For extract_variable(), an equal-style or atom-style variable is evaluated and its result returned.

LIGGGHTS Users Manual

11.5 Using LAMMPS from Python 1188

For equal-style variables a single double value is returned and the group argument is ignored. For atom-style
variables, a vector of doubles is returned, one value per atom, which you can use via normal Python
subscripting. The values will be zero for atoms not in the specified group.

The get_natoms() method returns the total number of atoms in the simulation, as an int.

The gather_atoms() method returns a ctypes vector of ints or doubles as specified by type, of length
count*natoms, for the property of all the atoms in the simulation specified by name, ordered by count and then
by atom ID. The vector can be used via normal Python subscripting. If atom IDs are not consecutively ordered
within LAMMPS, a None is returned as indication of an error.

Note that the data structure gather_atoms("x") returns is different from the data structure returned by
extract_atom("x") in four ways. (1) Gather_atoms() returns a vector which you index as x[i]; extract_atom()
returns an array which you index as x[i][j]. (2) Gather_atoms() orders the atoms by atom ID while
extract_atom() does not. (3) Gathert_atoms() returns a list of all atoms in the simulation; extract_atoms()
returns just the atoms local to each processor. (4) Finally, the gather_atoms() data structure is a copy of the
atom coords stored internally in LAMMPS, whereas extract_atom() returns an array that effectively points
directly to the internal data. This means you can change values inside LAMMPS from Python by assigning a
new values to the extract_atom() array. To do this with the gather_atoms() vector, you need to change values
in the vector, then invoke the scatter_atoms() method.

The scatter_atoms() method takes a vector of ints or doubles as specified by type, of length count*natoms, for
the property of all the atoms in the simulation specified by name, ordered by bount and then by atom ID. It
uses the vector of data to overwrite the corresponding properties for each atom inside LAMMPS. This
requires LAMMPS to have its "map" option enabled; see the atom_modify command for details. If it is not, or
if atom IDs are not consecutively ordered, no coordinates are reset.

The array of coordinates passed to scatter_atoms() must be a ctypes vector of ints or doubles, allocated and
initialized something like this:

from ctypes import *
natoms = lmp.get_natoms()
n3 = 3*natoms
x = (n3*c_double)()
x0 = x coord of atom with ID 1
x1 = y coord of atom with ID 1
x2 = z coord of atom with ID 1
x3 = x coord of atom with ID 2
...
xn3-1 = z coord of atom with ID natoms
lmp.scatter_coords("x",1,3,x)

Alternatively, you can just change values in the vector returned by gather_atoms("x",1,3), since it is a ctypes
vector of doubles.

As noted above, these Python class methods correspond one-to-one with the functions in the LAMMPS
library interface in src/library.cpp and library.h. This means you can extend the Python wrapper via the
following steps:

Add a new interface function to src/library.cpp and src/library.h.•
Rebuild LAMMPS as a shared library.•
Add a wrapper method to python/lammps.py for this interface function.•
You should now be able to invoke the new interface function from a Python script. Isn't ctypes
amazing?

•

LIGGGHTS Users Manual

11.5 Using LAMMPS from Python 1189

11.6 Example Python scripts that use LAMMPS

These are the Python scripts included as demos in the python/examples directory of the LAMMPS
distribution, to illustrate the kinds of things that are possible when Python wraps LAMMPS. If you create
your own scripts, send them to us and we can include them in the LAMMPS distribution.

trivial.py read/run a LAMMPS input script thru Python
demo.py invoke various LAMMPS library interface routines
simple.py mimic operation of couple/simple/simple.cpp in Python
gui.py GUI go/stop/temperature-slider to control LAMMPS
plot.py real-time temeperature plot with GnuPlot via Pizza.py
viz_tool.py real-time viz via some viz package
vizplotgui_tool.py combination of viz_tool.py and plot.py and gui.py

For the viz_tool.py and vizplotgui_tool.py commands, replace "tool" with "gl" or "atomeye" or "pymol" or
"vmd", depending on what visualization package you have installed.

Note that for GL, you need to be able to run the Pizza.py GL tool, which is included in the pizza
sub-directory. See the Pizza.py doc pages for more info:

Note that for AtomEye, you need version 3, and there is a line in the scripts that specifies the path and name
of the executable. See the AtomEye WWW pages here or here for more details:

http://mt.seas.upenn.edu/Archive/Graphics/A
http://mt.seas.upenn.edu/Archive/Graphics/A3/A3.html

The latter link is to AtomEye 3 which has the scriping capability needed by these Python scripts.

Note that for PyMol, you need to have built and installed the open-source version of PyMol in your Python, so
that you can import it from a Python script. See the PyMol WWW pages here or here for more details:

http://www.pymol.org
http://sourceforge.net/scm/?type=svn&group_id=4546

The latter link is to the open-source version.

Note that for VMD, you need a fairly current version (1.8.7 works for me) and there are some lines in the
pizza/vmd.py script for 4 PIZZA variables that have to match the VMD installation on your system.

See the python/README file for instructions on how to run them and the source code for individual scripts
for comments about what they do.

Here are screenshots of the vizplotgui_tool.py script in action for different visualization package options.
Click to see larger images:

LIGGGHTS Users Manual

11.6 Example Python scripts that use LAMMPS 1190

http://www.sandia.gov/~sjplimp/pizza.html
http://mt.seas.upenn.edu/Archive/Graphics/A
http://mt.seas.upenn.edu/Archive/Graphics/A3/A3.html
http://www.pymol.org
http://sourceforge.net/scm/?type=svn&group_id=4546

LIGGGHTS Users Manual

11.6 Example Python scripts that use LAMMPS 1191

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

2. Getting Started

This section describes how to build and run LAMMPS, for both new and experienced users.

2.1 What's in the LAMMPS distribution
2.2 Making LAMMPS
2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS via the Make.py script
2.5 Building LAMMPS as a library
2.6 Running LAMMPS
2.7 Command-line options
2.8 Screen output
2.9 Tips for users of previous versions

2.1 What's in the LAMMPS distribution

When you download LAMMPS you will need to unzip and untar the downloaded file with the following
commands, after placing the file in an appropriate directory.

gunzip lammps*.tar.gz
tar xvf lammps*.tar

This will create a LAMMPS directory containing two files and several sub-directories:

README text file
LICENSE the GNU General Public License (GPL)
bench benchmark problems
doc documentation
examples simple test problems
potentials embedded atom method (EAM) potential files
src source files
tools pre- and post-processing tools

If you download one of the Windows executables from the download page, then you just get a single file:

lmp_windows.exe

Skip to the Running LAMMPS sections for info on how to launch these executables on a Windows box.

The Windows executables for serial or parallel only include certain packages and bug-fixes/upgrades listed on
this page up to a certain date, as stated on the download page. If you want something with more packages or
that is more current, you'll have to download the source tarball and build it yourself from source code using
Microsoft Visual Studio, as described in the next section.

2.2 Making LAMMPS

This section has the following sub-sections:

Read this first•
Steps to build a LAMMPS executable•

LIGGGHTS Users Manual

2. Getting Started 1192

http://lammps.sandia.gov
http://lammps.sandia.gov/bug.html

Common errors that can occur when making LAMMPS•
Additional build tips•
Building for a Mac•
Building for Windows•

Read this first:

Building LAMMPS can be non-trivial. You may need to edit a makefile, there are compiler options to
consider, additional libraries can be used (MPI, FFT, JPEG, PNG), LAMMPS packages may be included or
excluded, some of these packages use auxiliary libraries which need to be pre-built, etc.

Please read this section carefully. If you are not comfortable with makefiles, or building codes on a Unix
platform, or running an MPI job on your machine, please find a local expert to help you. Many compiling,
linking, and run problems that users have are often not LAMMPS issues - they are peculiar to the user's
system, compilers, libraries, etc. Such questions are better answered by a local expert.

If you have a build problem that you are convinced is a LAMMPS issue (e.g. the compiler complains about a
line of LAMMPS source code), then please post a question to the LAMMPS mail list.

If you succeed in building LAMMPS on a new kind of machine, for which there isn't a similar Makefile for in
the src/MAKE directory, send it to the developers and we can include it in the LAMMPS distribution.

Steps to build a LAMMPS executable:

Step 0

The src directory contains the C++ source and header files for LAMMPS. It also contains a top-level Makefile
and a MAKE sub-directory with low-level Makefile.* files for many machines. From within the src directory,
type "make" or "gmake". You should see a list of available choices. If one of those is the machine and options
you want, you can type a command like:

make linux
or
gmake mac

Note that on a multi-processor or multi-core platform you can launch a parallel make, by using the "-j" switch
with the make command, which will build LAMMPS more quickly.

If you get no errors and an executable like lmp_linux or lmp_mac is produced, you're done; it's your lucky
day.

Note that by default only a few of LAMMPS optional packages are installed. To build LAMMPS with
optional packages, see this section below.

Step 1

If Step 0 did not work, you will need to create a low-level Makefile for your machine, like Makefile.foo. You
should make a copy of an existing src/MAKE/Makefile.* as a starting point. The only portions of the file you
need to edit are the first line, the "compiler/linker settings" section, and the "LAMMPS-specific settings"
section.

Step 2

Change the first line of src/MAKE/Makefile.foo to list the word "foo" after the "#", and whatever other
options it will set. This is the line you will see if you just type "make".

LIGGGHTS Users Manual

2.2 Making LAMMPS 1193

http://lammps.sandia.gov/mail.html

Step 3

The "compiler/linker settings" section lists compiler and linker settings for your C++ compiler, including
optimization flags. You can use g++, the open-source GNU compiler, which is available on all Unix systems.
You can also use mpicc which will typically be available if MPI is installed on your system, though you
should check which actual compiler it wraps. Vendor compilers often produce faster code. On boxes with
Intel CPUs, we suggest using the commercial Intel icc compiler, which can be downloaded from Intel's
compiler site.

If building a C++ code on your machine requires additional libraries, then you should list them as part of the
LIB variable.

The DEPFLAGS setting is what triggers the C++ compiler to create a dependency list for a source file. This
speeds re-compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support
dependency file creation, or may use a different switch than -D. GNU g++ works with -D. If your compiler
can't create dependency files, then you'll need to create a Makefile.foo patterned after Makefile.storm, which
uses different rules that do not involve dependency files. Note that when you build LAMMPS for the first
time on a new platform, a long list of *.d files will be printed out rapidly. This is not an error; it is the
Makefile doing its normal creation of dependencies.

Step 4

The "system-specific settings" section has several parts. Note that if you change any -D setting in this section,
you should do a full re-compile, after typing "make clean" (which will describe different clean options).

The LMP_INC variable is used to include options that turn on ifdefs within the LAMMPS code. The options
that are currently recogized are:

-DLAMMPS_GZIP•
-DLAMMPS_JPEG•
-DLAMMPS_PNG•
-DLAMMPS_FFMPEG•
-DLAMMPS_MEMALIGN•
-DLAMMPS_XDR•
-DLAMMPS_SMALLBIG•
-DLAMMPS_BIGBIG•
-DLAMMPS_SMALLSMALL•
-DLAMMPS_LONGLONG_TO_LONG•
-DPACK_ARRAY•
-DPACK_POINTER•
-DPACK_MEMCPY•

The read_data and dump commands will read/write gzipped files if you compile with -DLAMMPS_GZIP. It
requires that your machine supports the "popen" function in the standard runtime library and that a gzip
executable can be found by LAMMPS during a run.

If you use -DLAMMPS_JPEG, the dump image command will be able to write out JPEG image files. For
JPEG files, you must also link LAMMPS with a JPEG library, as described below. If you use
-DLAMMPS_PNG, the dump image command will be able to write out PNG image files. For PNG files, you
must also link LAMMPS with a PNG library, as described below. If neither of those two defines are used,
LAMMPS will only be able to write out uncompressed PPM image files.

If you use -DLAMMPS_FFMPEG, the dump movie command will be available to support on-the-fly
generation of rendered movies the need to store intermediate image files. It requires that your machines

LIGGGHTS Users Manual

2.2 Making LAMMPS 1194

http://www.intel.com/software/products/noncom
http://www.intel.com/software/products/noncom

supports the "popen" function in the standard runtime library and that an FFmpeg executable can be found by
LAMMPS during the run.

Using -DLAMMPS_MEMALIGN= enables the use of the posix_memalign() call instead of malloc() when
large chunks or memory are allocated by LAMMPS. This can help to make more efficient use of vector
instructions of modern CPUS, since dynamically allocated memory has to be aligned on larger than default
byte boundaries (e.g. 16 bytes instead of 8 bytes on x86 type platforms) for optimal performance.

If you use -DLAMMPS_XDR, the build will include XDR compatibility files for doing particle dumps in
XTC format. This is only necessary if your platform does have its own XDR files available. See the
Restrictions section of the dump command for details.

Use at most one of the -DLAMMPS_SMALLBIG, -DLAMMPS_BIGBIG, -D-DLAMMPS_SMALLSMALL
settings. The default is -DLAMMPS_SMALLBIG. These settings refer to use of 4-byte (small) vs 8-byte (big)
integers within LAMMPS, as specified in src/lmptype.h. The only reason to use the BIGBIG setting is to
enable simulation of huge molecular systems with more than 2 billion atoms or to allow moving atoms to
wrap back through a periodic box more than 512 times. The only reason to use the SMALLSMALL setting is
if your machine does not support 64-bit integers. See the Additional build tips section below for more details.

The -DLAMMPS_LONGLONG_TO_LONG setting may be needed if your system or MPI version does not
recognize "long long" data types. In this case a "long" data type is likely already 64-bits, in which case this
setting will convert to that data type.

Using one of the -DPACK_ARRAY, -DPACK_POINTER, and -DPACK_MEMCPY options can make for
faster parallel FFTs (in the PPPM solver) on some platforms. The -DPACK_ARRAY setting is the default.
See the kspace_style command for info about PPPM. See Step 6 below for info about building LAMMPS
with an FFT library.

Step 5

The 3 MPI variables are used to specify an MPI library to build LAMMPS with.

If you want LAMMPS to run in parallel, you must have an MPI library installed on your platform. If you use
an MPI-wrapped compiler, such as "mpicc" to build LAMMPS, you should be able to leave these 3 variables
blank; the MPI wrapper knows where to find the needed files. If not, and MPI is installed on your system in
the usual place (under /usr/local), you also may not need to specify these 3 variables. On some large parallel
machines which use "modules" for their compile/link environements, you may simply need to include the
correct module in your build environment. Or the parallel machine may have a vendor-provided MPI which
the compiler has no trouble finding.

Failing this, with these 3 variables you can specify where the mpi.h file (MPI_INC) and the MPI library file
(MPI_PATH) are found and the name of the library file (MPI_LIB).

If you are installing MPI yourself, we recommend Argonne's MPICH2 or OpenMPI. MPICH can be
downloaded from the Argonne MPI site. OpenMPI can be downloaded from the OpenMPI site. Other MPI
packages should also work. If you are running on a big parallel platform, your system people or the vendor
should have already installed a version of MPI, which is likely to be faster than a self-installed MPICH or
OpenMPI, so find out how to build and link with it. If you use MPICH or OpenMPI, you will have to
configure and build it for your platform. The MPI configure script should have compiler options to enable you
to use the same compiler you are using for the LAMMPS build, which can avoid problems that can arise when
linking LAMMPS to the MPI library.

If you just want to run LAMMPS on a single processor, you can use the dummy MPI library provided in
src/STUBS, since you don't need a true MPI library installed on your system. See the

LIGGGHTS Users Manual

2.2 Making LAMMPS 1195

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.open-mpi.org

src/MAKE/Makefile.serial file for how to specify the 3 MPI variables in this case. You will also need to build
the STUBS library for your platform before making LAMMPS itself. To build from the src directory, type
"make stubs", or from the STUBS dir, type "make". This should create a libmpi_stubs.a file suitable for
linking to LAMMPS. If the build fails, you will need to edit the STUBS/Makefile for your platform.

The file STUBS/mpi.c provides a CPU timer function called MPI_Wtime() that calls gettimeofday() . If your
system doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the
ANSI-standard function clock() rolls over after an hour or so, and is therefore insufficient for timing long
LAMMPS simulations.

Step 6

The 3 FFT variables allow you to specify an FFT library which LAMMPS uses (for performing 1d FFTs)
when running the particle-particle particle-mesh (PPPM) option for long-range Coulombics via the
kspace_style command.

LAMMPS supports various open-source or vendor-supplied FFT libraries for this purpose. If you leave these
3 variables blank, LAMMPS will use the open-source KISS FFT library, which is included in the LAMMPS
distribution. This library is portable to all platforms and for typical LAMMPS simulations is almost as fast as
FFTW or vendor optimized libraries. If you are not including the KSPACE package in your build, you can
also leave the 3 variables blank.

Otherwise, select which kinds of FFTs to use as part of the FFT_INC setting by a switch of the form
-DFFT_XXX. Recommended values for XXX are: MKL, SCSL, FFTW2, and FFTW3. Legacy options are:
INTEL, SGI, ACML, and T3E. For backward compatability, using -DFFT_FFTW will use the FFTW2
library. Using -DFFT_NONE will use the KISS library described above.

You may also need to set the FFT_INC, FFT_PATH, and FFT_LIB variables, so the compiler and linker can
find the needed FFT header and library files. Note that on some large parallel machines which use "modules"
for their compile/link environements, you may simply need to include the correct module in your build
environment. Or the parallel machine may have a vendor-provided FFT library which the compiler has no
trouble finding.

FFTW is a fast, portable library that should also work on any platform. You can download it from
www.fftw.org. Both the legacy version 2.1.X and the newer 3.X versions are supported as -DFFT_FFTW2 or
-DFFT_FFTW3. Building FFTW for your box should be as simple as ./configure; make. Note that on some
platforms FFTW2 has been pre-installed, and uses renamed files indicating the precision it was compiled
with, e.g. sfftw.h, or dfftw.h instead of fftw.h. In this case, you can specify an additional define variable for
FFT_INC called -DFFTW_SIZE, which will select the correct include file. In this case, for FFT_LIB you
must also manually specify the correct library, namely -lsfftw or -ldfftw.

The FFT_INC variable also allows for a -DFFT_SINGLE setting that will use single-precision FFTs with
PPPM, which can speed-up long-range calulations, particularly in parallel or on GPUs. Fourier transform and
related PPPM operations are somewhat insensitive to floating point truncation errors and thus do not always
need to be performed in double precision. Using the -DFFT_SINGLE setting trades off a little accuracy for
reduced memory use and parallel communication costs for transposing 3d FFT data. Note that single precision
FFTs have only been tested with the FFTW3, FFTW2, MKL, and KISS FFT options.

Step 7

The 3 JPG variables allow you to specify a JPEG and/or PNG library which LAMMPS uses when writing out
JPEG or PNG files via the dump image command. These can be left blank if you do not use the
-DLAMMPS_JPEG or -DLAMMPS_PNG switches discussed above in Step 4, since in that case JPEG/PNG
output will be disabled.

LIGGGHTS Users Manual

2.2 Making LAMMPS 1196

http://kissfft.sf.net
http://www.fftw.org

A standard JPEG library usually goes by the name libjpeg.a or libjpeg.so and has an associated header file
jpeglib.h. Whichever JPEG library you have on your platform, you'll need to set the appropriate JPG_INC,
JPG_PATH, and JPG_LIB variables, so that the compiler and linker can find it.

A standard PNG library usually goes by the name libpng.a or libpng.so and has an associated header file
png.h. Whichever PNG library you have on your platform, you'll need to set the appropriate JPG_INC,
JPG_PATH, and JPG_LIB variables, so that the compiler and linker can find it.

As before, if these header and library files are in the usual place on your machine, you may not need to set
these variables.

Step 8

Note that by default only a few of LAMMPS optional packages are installed. To build LAMMPS with
optional packages, see this section below, before proceeding to Step 9.

Step 9

That's it. Once you have a correct Makefile.foo, you have installed the optional LAMMPS packages you want
to include in your build, and you have pre-built any other needed libraries (e.g. MPI, FFT, package libraries),
all you need to do from the src directory is type something like this:

make foo
or
gmake foo

You should get the executable lmp_foo when the build is complete.

Errors that can occur when making LAMMPS:

IMPORTANT NOTE: If an error occurs when building LAMMPS, the compiler or linker will state very
explicitly what the problem is. The error message should give you a hint as to which of the steps above has
failed, and what you need to do in order to fix it. Building a code with a Makefile is a very logical process.
The compiler and linker need to find the appropriate files and those files need to be compatible with
LAMMPS source files. When a make fails, there is usually a very simple reason, which you or a local expert
will need to fix.

Here are two non-obvious errors that can occur:

(1) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their
names, this can be because your machine's native make doesn't support wildcard expansion in a makefile. Try
gmake instead of make. If that doesn't work, try using a -f switch with your make command to use a
pre-generated Makefile.list which explicitly lists all the needed files, e.g.

make makelist
make -f Makefile.list linux
gmake -f Makefile.list mac

The first "make" command will create a current Makefile.list with all the file names in your src dir. The 2nd
"make" command (make or gmake) will use it to build LAMMPS. Note that you should include/exclude any
desired optional packages before using the "make makelist" command.

(2) If you get an error that says something like 'identifier "atoll" is undefined', then your machine does not
support "long long" integers. Try using the -DLAMMPS_LONGLONG_TO_LONG setting described above
in Step 4.

LIGGGHTS Users Manual

2.2 Making LAMMPS 1197

Additional build tips:

(1) Building LAMMPS for multiple platforms.

You can make LAMMPS for multiple platforms from the same src directory. Each target creates its own
object sub-directory called Obj_target where it stores the system-specific *.o files.

(2) Cleaning up.

Typing "make clean-all" or "make clean-machine" will delete *.o object files created when LAMMPS is built,
for either all builds or for a particular machine.

(3) Changing the LAMMPS size limits via -DLAMMPS_SMALLBIG or -DLAMMPS_BIBIG or
-DLAMMPS_SMALLSMALL

As explained above, any of these 3 settings can be specified on the LMP_INC line in your low-level
src/MAKE/Makefile.foo.

The default is -DLAMMPS_SMALLBIG which allows for systems with up to 2^63 atoms and timesteps
(about 9 billion billion). The atom limit is for atomic systems that do not require atom IDs. For molecular
models, which require atom IDs, the limit is 2^31 atoms (about 2 billion). With this setting, image flags are
stored in 32-bit integers, which means for 3 dimensions that atoms can only wrap around a periodic box at
most 512 times. If atoms move through the periodic box more than this limit, the image flags will "roll over",
e.g. from 511 to -512, which can cause diagnostics like the mean-squared displacement, as calculated by the
compute msd command, to be faulty.

To allow for larger molecular systems or larger image flags, compile with -DLAMMPS_BIGBIG. This
enables molecular systems with up to 2^63 atoms (about 9 billion billion). And image flags will not "roll
over" until they reach 2^20 = 1048576.

IMPORTANT NOTE: As of 6/2012, the BIGBIG setting does not yet enable molecular systems to grow as
large as 2^63. Only the image flag roll over is currently affected by this compile option.

If your system does not support 8-byte integers, you will need to compile with the
-DLAMMPS_SMALLSMALL setting. This will restrict your total number of atoms (for atomic or molecular
models) and timesteps to 2^31 (about 2 billion). Image flags will roll over at 2^9 = 512.

Note that in src/lmptype.h there are also settings for the MPI data types associated with the integers that store
atom IDs and total system sizes. These need to be consistent with the associated C data types, or else
LAMMPS will generate a run-time error.

In all cases, the size of problem that can be run on a per-processor basis is limited by 4-byte integer storage to
2^31 atoms per processor (about 2 billion). This should not normally be a restriction since such a problem
would have a huge per-processor memory footprint due to neighbor lists and would run very slowly in terms
of CPU secs/timestep.

Building for a Mac:

OS X is BSD Unix, so it should just work. See the src/MAKE/Makefile.mac file.

Building for Windows:

LIGGGHTS Users Manual

2.2 Making LAMMPS 1198

The LAMMPS download page has an option to download both a serial and parallel pre-built Windows
exeutable. See the Running LAMMPS section for instructions for running these executables on a Windows
box.

The pre-built executables are built with a subset of the available pacakges; see the download page for the list.
If you want a Windows version with specific packages included and excluded, you can build it yourself.

One way to do this is install and use cygwin to build LAMMPS with a standard Linus make, just as you
would on any Linux box; see src/MAKE/Makefile.cygwin.

The other way to do this is using Visual Studio and project files. See the src/WINDOWS directory and its
README.txt file for instructions on both a basic build and a customized build with pacakges you select.

2.3 Making LAMMPS with optional packages

This section has the following sub-sections:

Package basics•
Including/excluding packages•
Packages that require extra libraries•
Additional Makefile settings for extra libraries•

Package basics:

The source code for LAMMPS is structured as a set of core files which are always included, plus optional
packages. Packages are groups of files that enable a specific set of features. For example, force fields for
molecular systems or granular systems are in packages. You can see the list of all packages by typing "make
package" from within the src directory of the LAMMPS distribution.

If you use a command in a LAMMPS input script that is specific to a particular package, you must have built
LAMMPS with that package, else you will get an error that the style is invalid or the command is unknown.
Every command's doc page specfies if it is part of a package. You can also type

lmp_machine -h

to run your executable with the optional -h command-line switch for "help", which will list the styles and
commands known to your executable.

There are two kinds of packages in LAMMPS, standard and user packages. More information about the
contents of standard and user packages is given in Section_packages of the manual. The difference between
standard and user packages is as follows:

Standard packages are supported by the LAMMPS developers and are written in a syntax and style consistent
with the rest of LAMMPS. This means we will answer questions about them, debug and fix them if necessary,
and keep them compatible with future changes to LAMMPS.

User packages have been contributed by users, and always begin with the user prefix. If they are a single
command (single file), they are typically in the user-misc package. Otherwise, they are a a set of files grouped
together which add a specific functionality to the code.

User packages don't necessarily meet the requirements of the standard packages. If you have problems using a
feature provided in a user package, you will likely need to contact the contributor directly to get help.
Information on how to submit additions you make to LAMMPS as a user-contributed package is given in this
section of the documentation.

LIGGGHTS Users Manual

2.3 Making LAMMPS with optional packages 1199

Some packages (both standard and user) require additional libraries. See more details below.

Including/excluding packages:

To use or not use a package you must include or exclude it before building LAMMPS. From the src directory,
this is typically as simple as:

make yes-colloid
make g++

or

make no-manybody
make g++

IMPORTANT NOTE: You should NOT include/exclude packages and build LAMMPS in a single make
command by using multiple targets, e.g. make yes-colloid g++. This is because the make procedure creates a
list of source files that will be out-of-date for the build if the package configuration changes during the same
command.

Some packages have individual files that depend on other packages being included. LAMMPS checks for this
and does the right thing. I.e. individual files are only included if their dependencies are already included.
Likewise, if a package is excluded, other files dependent on that package are also excluded.

The reason to exclude packages is if you will never run certain kinds of simulations. For some packages, this
will keep you from having to build auxiliary libraries (see below), and will also produce a smaller executable
which may run a bit faster.

When you download a LAMMPS tarball, these packages are pre-installed in the src directory: KSPACE,
MANYBODY,MOLECULE. When you download LAMMPS source files from the SVN or Git repositories,
no packages are pre-installed.

Packages are included or excluded by typing "make yes-name" or "make no-name", where "name" is the name
of the package in lower-case, e.g. name = kspace for the KSPACE package or name = user-atc for the
USER-ATC package. You can also type "make yes-standard", "make no-standard", "make yes-user", "make
no-user", "make yes-all" or "make no-all" to include/exclude various sets of packages. Type "make package"
to see the all of the package-related make options.

IMPORTANT NOTE: Inclusion/exclusion of a package works by simply moving files back and forth between
the main src directory and sub-directories with the package name (e.g. src/KSPACE, src/USER-ATC), so that
the files are seen or not seen when LAMMPS is built. After you have included or excluded a package, you
must re-build LAMMPS.

Additional package-related make options exist to help manage LAMMPS files that exist in both the src
directory and in package sub-directories. You do not normally need to use these commands unless you are
editing LAMMPS files or have downloaded a patch from the LAMMPS WWW site.

Typing "make package-update" will overwrite src files with files from the package sub-directories if the
package has been included. It should be used after a patch is installed, since patches only update the files in
the package sub-directory, but not the src files. Typing "make package-overwrite" will overwrite files in the
package sub-directories with src files.

Typing "make package-status" will show which packages are currently included. Of those that are included, it
will list files that are different in the src directory and package sub-directory. Typing "make package-diff"
lists all differences between these files. Again, type "make package" to see all of the package-related make

LIGGGHTS Users Manual

2.3 Making LAMMPS with optional packages 1200

options.

Packages that require extra libraries:

A few of the standard and user packages require additional auxiliary libraries. They must be compiled first,
before LAMMPS is built. If you get a LAMMPS build error about a missing library, this is likely the reason.
See the Section_packages doc page for a list of packages that have auxiliary libraries.

Code for some of these auxiliary libraries is included in the LAMMPS distribution under the lib directory.
Examples are the USER-ATC and MEAM packages. Some auxiliary libraries are not included with
LAMMPS; to use the associated package you must download and install the auxiliary library yourself.
Examples are the KIM and VORONOI and USER-MOLFILE packages.

For libraries with provided source code, each lib directory has a README file (e.g. lib/reax/README) with
instructions on how to build that library. Typically this is done by typing something like:

make -f Makefile.g++

If one of the provided Makefiles is not appropriate for your system you will need to edit or add one. Note that
all the Makefiles have a setting for EXTRAMAKE at the top that names a Makefile.lammps.* file.

If successful, this will produce 2 files in the lib directory:

libpackage.a
Makefile.lammps

The Makefile.lammps file is a copy of the EXTRAMAKE file specified in the Makefile you used.

You MUST insure that the settings in Makefile.lammps are appropriate for your system. If they are not, the
LAMMPS build will fail.

As explained in the lib/package/README files, they are used to specify additional system libraries and their
locations so that LAMMPS can build with the auxiliary library. For example, if the MEAM or REAX
packages are used, the auxiliary libraries consist of F90 code, build with a F90 complier. To link that library
with LAMMPS (a C++ code) via whatever C++ compiler LAMMPS is built with, typically requires additional
Fortran-to-C libraries be included in the link. Another example are the BLAS and LAPACK libraries needed
to use the USER-ATC or USER-AWPMD packages.

For libraries without provided source code, see the src/package/Makefile.lammps file for information on
where to find the library and how to build it. E.g. the file src/KIM/Makefile.lammps. This file serves the same
purpose as the lib/package/Makefile.lammps file described above. It has settings needed when LAMMPS is
built to link with the auxiliary library. Again, you MUST insure that the settings in
src/package/Makefile.lammps are appropriate for your system and where you installed the auxiliary library. If
they are not, the LAMMPS build will fail.

2.4 Building LAMMPS via the Make.py script

The src directory includes a Make.py script, written in Python, which can be used to automate various steps of
the build process.

You can run the script from the src directory by typing either:

Make.py
python Make.py

LIGGGHTS Users Manual

2.4 Building LAMMPS via the Make.py script 1201

which will give you info about the tool. For the former to work, you may need to edit the 1st line of the script
to point to your local Python. And you may need to insure the script is executable:

chmod +x Make.py

The following options are supported as switches:

-i file1 file2 ...•
-p package1 package2 ...•
-u package1 package2 ...•
-e package1 arg1 arg2 package2 ...•
-o dir•
-b machine•
-s suffix1 suffix2 ...•
-l dir•
-j N•
-h switch1 switch2 ...•

Help on any switch can be listed by using -h, e.g.

Make.py -h -i -p

At a hi-level, these are the kinds of package management and build tasks that can be performed easily, using
the Make.py tool:

install/uninstall packages and build the associated external libs (use -p and -u and -e)•
install packages needed for one or more input scripts (use -i and -p)•
build LAMMPS, either in the src dir or new dir (use -b)•
create a new dir with only the source code needed for one or more input scripts (use -i and -o)•

The last bullet can be useful when you wish to build a stripped-down version of LAMMPS to run a specific
script(s). Or when you wish to move the minimal amount of files to another platform for a remote LAMMPS
build.

Note that using Make.py is not a substitute for insuring you have a valid src/MAKE/Makefile.foo for your
system, or that external library Makefiles in any lib/* directories you use are also valid for your system. But
once you have done that, you can use Make.py to quickly include/exclude the packages and external libraries
needed by your input scripts.

2.5 Building LAMMPS as a library

LAMMPS can be built as either a static or shared library, which can then be called from another application or
a scripting language. See this section for more info on coupling LAMMPS to other codes. See this section for
more info on wrapping and running LAMMPS from Python.

Static library:

To build LAMMPS as a static library (*.a file on Linux), type

make makelib
make -f Makefile.lib foo

where foo is the machine name. This kind of library is typically used to statically link a driver application to
LAMMPS, so that you can insure all dependencies are satisfied at compile time. Note that inclusion or
exclusion of any desired optional packages should be done before typing "make makelib". The first "make"

LIGGGHTS Users Manual

2.5 Building LAMMPS as a library 1202

command will create a current Makefile.lib with all the file names in your src dir. The second "make"
command will use it to build LAMMPS as a static library, using the ARCHIVE and ARFLAGS settings in
src/MAKE/Makefile.foo. The build will create the file liblammps_foo.a which another application can link to.

Shared library:

To build LAMMPS as a shared library (*.so file on Linux), which can be dynamically loaded, e.g. from
Python, type

make makeshlib
make -f Makefile.shlib foo

where foo is the machine name. This kind of library is required when wrapping LAMMPS with Python; see
Section_python for details. Again, note that inclusion or exclusion of any desired optional packages should be
done before typing "make makelib". The first "make" command will create a current Makefile.shlib with all
the file names in your src dir. The second "make" command will use it to build LAMMPS as a shared library,
using the SHFLAGS and SHLIBFLAGS settings in src/MAKE/Makefile.foo. The build will create the file
liblammps_foo.so which another application can link to dyamically. It will also create a soft link
liblammps.so, which the Python wrapper uses by default.

Note that for a shared library to be usable by a calling program, all the auxiliary libraries it depends on must
also exist as shared libraries. This will be the case for libraries included with LAMMPS, such as the dummy
MPI library in src/STUBS or any package libraries in lib/packges, since they are always built as shared
libraries with the -fPIC switch. However, if a library like MPI or FFTW does not exist as a shared library, the
second make command will generate an error. This means you will need to install a shared library version of
the package. The build instructions for the library should tell you how to do this.

As an example, here is how to build and install the MPICH library, a popular open-source version of MPI,
distributed by Argonne National Labs, as a shared library in the default /usr/local/lib location:

./configure --enable-shared
make
make install

You may need to use "sudo make install" in place of the last line if you do not have write privileges for
/usr/local/lib. The end result should be the file /usr/local/lib/libmpich.so.

Additional requirement for using a shared library:

The operating system finds shared libraries to load at run-time using the environment variable
LD_LIBRARY_PATH. So you may wish to copy the file src/liblammps.so or src/liblammps_g++.so (for
example) to a place the system can find it by default, such as /usr/local/lib, or you may wish to add the
LAMMPS src directory to LD_LIBRARY_PATH, so that the current version of the shared library is always
available to programs that use it.

For the csh or tcsh shells, you would add something like this to your ~/.cshrc file:

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/home/sjplimp/lammps/src

Calling the LAMMPS library:

Either flavor of library (static or shared0 allows one or more LAMMPS objects to be instantiated from the
calling program.

When used from a C++ program, all of LAMMPS is wrapped in a LAMMPS_NS namespace; you can safely
use any of its classes and methods from within the calling code, as needed.

LIGGGHTS Users Manual

Static library: 1203

http://www-unix.mcs.anl.gov/mpi

When used from a C or Fortran program or a scripting language like Python, the library has a simple
function-style interface, provided in src/library.cpp and src/library.h.

See the sample codes in examples/COUPLE/simple for examples of C++ and C and Fortran codes that invoke
LAMMPS thru its library interface. There are other examples as well in the COUPLE directory which are
discussed in Section_howto 10 of the manual. See Section_python of the manual for a description of the
Python wrapper provided with LAMMPS that operates through the LAMMPS library interface.

The files src/library.cpp and library.h define the C-style API for using LAMMPS as a library. See
Section_howto 19 of the manual for a description of the interface and how to extend it for your needs.

2.6 Running LAMMPS

By default, LAMMPS runs by reading commands from stdin; e.g. lmp_linux < in.file. This means you first
create an input script (e.g. in.file) containing the desired commands. This section describes how input scripts
are structured and what commands they contain.

You can test LAMMPS on any of the sample inputs provided in the examples or bench directory. Input scripts
are named in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of
processors it was run on.

Here is how you might run a standard Lennard-Jones benchmark on a Linux box, using mpirun to launch a
parallel job:

cd src
make linux
cp lmp_linux ../bench
cd ../bench
mpirun -np 4 lmp_linux <in.lj

See this page for timings for this and the other benchmarks on various platforms.

On a Windows box, you can skip making LAMMPS and simply download an executable, as described above,
though the pre-packaged executables include only certain packages.

To run a LAMMPS executable on a Windows machine, first decide whether you want to download the
non-MPI (serial) or the MPI (parallel) version of the executable. Download and save the version you have
chosen.

For the non-MPI version, follow these steps:

Get a command prompt by going to Start->Run... , then typing "cmd".•
Move to the directory where you have saved lmp_win_no-mpi.exe (e.g. by typing: cd "Documents").•
At the command prompt, type "lmp_win_no-mpi -in in.lj", replacing in.lj with the name of your
LAMMPS input script.

•

For the MPI version, which allows you to run LAMMPS under Windows on multiple processors, follow these
steps:

Download and install MPICH2 for Windows.•
You'll need to use the mpiexec.exe and smpd.exe files from the MPICH2 package. Put them in same
directory (or path) as the LAMMPS Windows executable.

•

Get a command prompt by going to Start->Run... , then typing "cmd".•
Move to the directory where you have saved lmp_win_mpi.exe (e.g. by typing: cd "Documents").•

LIGGGHTS Users Manual

Calling the LAMMPS library: 1204

http://lammps.sandia.gov/bench.html
http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=downloads

Then type something like this: "mpiexec -np 4 -localonly lmp_win_mpi -in in.lj", replacing in.lj with
the name of your LAMMPS input script.

•

Note that you may need to provide smpd with a passphrase --- it doesn't matter what you type.•
In this mode, output may not immediately show up on the screen, so if your input script takes a long
time to execute, you may need to be patient before the output shows up.

•

Alternatively, you can still use this executable to run on a single processor by typing something like:
"lmp_win_mpi -in in.lj".

•

The screen output from LAMMPS is described in the next section. As it runs, LAMMPS also writes a
log.lammps file with the same information.

Note that this sequence of commands copies the LAMMPS executable (lmp_linux) to the directory with the
input files. This may not be necessary, but some versions of MPI reset the working directory to where the
executable is, rather than leave it as the directory where you launch mpirun from (if you launch lmp_linux on
its own and not under mpirun). If that happens, LAMMPS will look for additional input files and write its
output files to the executable directory, rather than your working directory, which is probably not what you
want.

If LAMMPS encounters errors in the input script or while running a simulation it will print an ERROR
message and stop or a WARNING message and continue. See Section_errors for a discussion of the various
kinds of errors LAMMPS can or can't detect, a list of all ERROR and WARNING messages, and what to do
about them.

LAMMPS can run a problem on any number of processors, including a single processor. In theory you should
get identical answers on any number of processors and on any machine. In practice, numerical round-off can
cause slight differences and eventual divergence of molecular dynamics phase space trajectories.

LAMMPS can run as large a problem as will fit in the physical memory of one or more processors. If you run
out of memory, you must run on more processors or setup a smaller problem.

2.7 Command-line options

At run time, LAMMPS recognizes several optional command-line switches which may be used in any order.
Either the full word or a one-or-two letter abbreviation can be used:

-c or -cuda•
-e or -echo•
-i or -in•
-h or -help•
-l or -log•
-nc or -nocite•
-p or -partition•
-pl or -plog•
-ps or -pscreen•
-r or -restart•
-ro or -reorder•
-sc or -screen•
-sf or -suffix•
-v or -var•

For example, lmp_ibm might be launched as follows:

mpirun -np 16 lmp_ibm -v f tmp.out -l my.log -sc none <in.alloy
mpirun -np 16 lmp_ibm -var f tmp.out -log my.log -screen none <in.alloy

LIGGGHTS Users Manual

2.6 Running LAMMPS 1205

Here are the details on the options:

-cuda on/off

Explicitly enable or disable CUDA support, as provided by the USER-CUDA package. If LAMMPS is built
with this package, as described above in Section 2.3, then by default LAMMPS will run in CUDA mode. If
this switch is set to "off", then it will not, even if it was built with the USER-CUDA package, which means
you can run standard LAMMPS or with the GPU package for testing or benchmarking purposes. The only
reason to set the switch to "on", is to check if LAMMPS was built with the USER-CUDA package, since an
error will be generated if it was not.

-echo style

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style,
each command read from the input script will be echoed to the screen and/or logfile. This can be useful to
figure out which line of your script is causing an input error. The default value is log. The echo style can also
be set by using the echo command in the input script itself.

-in file

Specify a file to use as an input script. This is an optional switch when running LAMMPS in one-partition
mode. If it is not specified, LAMMPS reads its input script from stdin - e.g. lmp_linux < in.run. This is a
required switch when running LAMMPS in multi-partition mode, since multiple processors cannot all read
from stdin.

-help

Print a list of options compiled into this executable for each LAMMPS style (atom_style, fix, compute,
pair_style, bond_style, etc). This can help you know if the command you want to use was included via the
appropriate package. LAMMPS will print the info and immediately exit if this switch is used.

-log file

Specify a log file for LAMMPS to write status information to. In one-partition mode, if the switch is not used,
LAMMPS writes to the file log.lammps. If this switch is used, LAMMPS writes to the specified file. In
multi-partition mode, if the switch is not used, a log.lammps file is created with hi-level status information.
Each partition also writes to a log.lammps.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level logfile is named "file" and each partition also logs information to a file.N.
For both one-partition and multi-partition mode, if the specified file is "none", then no log files are created.
Using a log command in the input script will override this setting. Option -plog will override the name of the
partition log files file.N.

-nocite

Disable writing the log.cite file which is normally written to list references for specific cite-able features used
during a LAMMPS run. See the citation page for more details.

-partition 8x2 4 5 ...

Invoke LAMMPS in multi-partition mode. When LAMMPS is run on P processors and this switch is not used,
LAMMPS runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the P
processors are split into separate partitions and each partition runs its own simulation. The arguments to the
switch specify the number of processors in each partition. Arguments of the form MxN mean M partitions,
each with N processors. Arguments of the form N mean a single partition with N processors. The sum of
processors in all partitions must equal P. Thus the command "-partition 8x2 4 5" has 10 partitions and runs on
a total of 25 processors.

LIGGGHTS Users Manual

2.7 Command-line options 1206

http://lammps.sandia.gov/cite.html

Running with multiple partitions can e useful for running multi-replica simulations, where each replica runs
on on one or a few processors. Note that with MPI installed on a machine (e.g. your desktop), you can run on
more (virtual) processors than you have physical processors.

To run multiple independent simulatoins from one input script, using multiple partitions, see Section_howto 4
of the manual. World- and universe-style variables are useful in this context.

-plog file

Specify the base name for the partition log files, so partition N writes log information to file.N. If file is none,
then no partition log files are created. This overrides the filename specified in the -log command-line option.
This option is useful when working with large numbers of partitions, allowing the partition log files to be
suppressed (-plog none) or placed in a sub-directory (-plog replica_files/log.lammps) If this option is not used
the log file for partition N is log.lammps.N or whatever is specified by the -log command-line option.

-pscreen file

Specify the base name for the partition screen file, so partition N writes screen information to file.N. If file is
none, then no partition screen files are created. This overrides the filename specified in the -screen
command-line option. This option is useful when working with large numbers of partitions, allowing the
partition screen files to be suppressed (-pscreen none) or placed in a sub-directory (-pscreen
replica_files/screen). If this option is not used the screen file for partition N is screen.N or whatever is
specified by the -screen command-line option.

-restart restartfile datafile

Convert the restart file into a data file and immediately exit. This is the same operation as if the following
2-line input script were run:

read_restart restartfile
write_data datafile

Note that the specified restartfile and datafile can have wild-card characters ("*",%") as described by the
read_restart and write_data commands. But a filename such as file.* will need to be enclosed in quotes to
avoid shell expansion of the "*" character.

-reorder nth N
-reorder custom filename

Reorder the processors in the MPI communicator used to instantiate LAMMPS, in one of several ways. The
original MPI communicator ranks all P processors from 0 to P-1. The mapping of these ranks to physical
processors is done by MPI before LAMMPS begins. It may be useful in some cases to alter the rank order.
E.g. to insure that cores within each node are ranked in a desired order. Or when using the run_style
verlet/split command with 2 partitions to insure that a specific Kspace processor (in the 2nd partition) is
matched up with a specific set of processors in the 1st partition. See the Section_accelerate doc pages for
more details.

If the keyword nth is used with a setting N, then it means every Nth processor will be moved to the end of the
ranking. This is useful when using the run_style verlet/split command with 2 partitions via the -partition
command-line switch. The first set of processors will be in the first partition, the 2nd set in the 2nd partition.
The -reorder command-line switch can alter this so that the 1st N procs in the 1st partition and one proc in the
2nd partition will be ordered consecutively, e.g. as the cores on one physical node. This can boost
performance. For example, if you use "-reorder nth 4" and "-partition 9 3" and you are running on 12
processors, the processors will be reordered from

0 1 2 3 4 5 6 7 8 9 10 11

LIGGGHTS Users Manual

2.7 Command-line options 1207

to

0 1 2 4 5 6 8 9 10 3 7 11

so that the processors in each partition will be

0 1 2 4 5 6 8 9 10
3 7 11

See the "processors" command for how to insure processors from each partition could then be grouped
optimally for quad-core nodes.

If the keyword is custom, then a file that specifies a permutation of the processor ranks is also specified. The
format of the reorder file is as follows. Any number of initial blank or comment lines (starting with a "#"
character) can be present. These should be followed by P lines of the form:

I J

where P is the number of processors LAMMPS was launched with. Note that if running in multi-partition
mode (see the -partition switch above) P is the total number of processors in all partitions. The I and J values
describe a permutation of the P processors. Every I and J should be values from 0 to P-1 inclusive. In the set
of P I values, every proc ID should appear exactly once. Ditto for the set of P J values. A single I,J pairing
means that the physical processor with rank I in the original MPI communicator will have rank J in the
reordered communicator.

Note that rank ordering can also be specified by many MPI implementations, either by environment variables
that specify how to order physical processors, or by config files that specify what physical processors to
assign to each MPI rank. The -reorder switch simply gives you a portable way to do this without relying on
MPI itself. See the processors out command for how to output info on the final assignment of physical
processors to the LAMMPS simulation domain.

-screen file

Specify a file for LAMMPS to write its screen information to. In one-partition mode, if the switch is not used,
LAMMPS writes to the screen. If this switch is used, LAMMPS writes to the specified file instead and you
will see no screen output. In multi-partition mode, if the switch is not used, hi-level status information is
written to the screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is
specified in multi-partition mode, the hi-level screen dump is named "file" and each partition also writes
screen information to a file.N. For both one-partition and multi-partition mode, if the specified file is "none",
then no screen output is performed. Option -pscreen will override the name of the partition screen files file.N.

-suffix style

Use variants of various styles if they exist. The specified style can be opt, omp, gpu, or cuda. These refer to
optional packages that LAMMPS can be built with, as described above in Section 2.3. The "opt" style
corrsponds to the OPT package, the "omp" style to the USER-OMP package, the "gpu" style to the GPU
package, and the "cuda" style to the USER-CUDA package.

As an example, all of the packages provide a pair_style lj/cut variant, with style names lj/cut/opt, lj/cut/omp,
lj/cut/gpu, or lj/cut/cuda. A variant styles can be specified explicitly in your input script, e.g. pair_style
lj/cut/gpu. If the -suffix switch is used, you do not need to modify your input script. The specified suffix
(opt,omp,gpu,cuda) is automatically appended whenever your input script command creates a new atom, pair,
fix, compute, or run style. If the variant version does not exist, the standard version is created.

For the GPU package, using this command-line switch also invokes the default GPU settings, as if the
command "package gpu force/neigh 0 0 1" were used at the top of your input script. These settings can be

LIGGGHTS Users Manual

2.7 Command-line options 1208

changed by using the package gpu command in your script if desired.

For the OMP package, using this command-line switch also invokes the default OMP settings, as if the
command "package omp *" were used at the top of your input script. These settings can be changed by using
the package omp command in your script if desired.

The suffix command can also set a suffix and it can also turn off/on any suffix setting made via the command
line.

-var name value1 value2 ...

Specify a variable that will be defined for substitution purposes when the input script is read. "Name" is the
variable name which can be a single character (referenced as $x in the input script) or a full string (referenced
as ${abc}). An index-style variable will be created and populated with the subsequent values, e.g. a set of
filenames. Using this command-line option is equivalent to putting the line "variable name index value1
value2 ..." at the beginning of the input script. Defining an index variable as a command-line argument
overrides any setting for the same index variable in the input script, since index variables cannot be
re-defined. See the variable command for more info on defining index and other kinds of variables and this
section for more info on using variables in input scripts.

NOTE: Currently, the command-line parser looks for arguments that start with "-" to indicate new switches.
Thus you cannot specify multiple variable values if any of they start with a "-", e.g. a negative numeric value.
It is OK if the first value1 starts with a "-", since it is automatically skipped.

2.8 LAMMPS screen output

As LAMMPS reads an input script, it prints information to both the screen and a log file about significant
actions it takes to setup a simulation. When the simulation is ready to begin, LAMMPS performs various
initializations and prints the amount of memory (in MBytes per processor) that the simulation requires. It also
prints details of the initial thermodynamic state of the system. During the run itself, thermodynamic
information is printed periodically, every few timesteps. When the run concludes, LAMMPS prints the final
thermodynamic state and a total run time for the simulation. It then appends statistics about the CPU time and
storage requirements for the simulation. An example set of statistics is shown here:

Loop time of 49.002 on 2 procs for 2004 atoms

Pair time (%) = 35.0495 (71.5267)
Bond time (%) = 0.092046 (0.187841)
Kspce time (%) = 6.42073 (13.103)
Neigh time (%) = 2.73485 (5.5811)
Comm time (%) = 1.50291 (3.06703)
Outpt time (%) = 0.013799 (0.0281601)
Other time (%) = 2.13669 (4.36041)

Nlocal: 1002 ave, 1015 max, 989 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Nghost: 8720 ave, 8724 max, 8716 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Neighs: 354141 ave, 361422 max, 346860 min
Histogram: 1 0 0 0 0 0 0 0 0 1

Total # of neighbors = 708282
Ave neighs/atom = 353.434
Ave special neighs/atom = 2.34032
Number of reneighborings = 42
Dangerous reneighborings = 2

LIGGGHTS Users Manual

2.8 LAMMPS screen output 1209

The first section gives the breakdown of the CPU run time (in seconds) into major categories. The second
section lists the number of owned atoms (Nlocal), ghost atoms (Nghost), and pair-wise neighbors stored per
processor. The max and min values give the spread of these values across processors with a 10-bin histogram
showing the distribution. The total number of histogram counts is equal to the number of processors.

The last section gives aggregate statistics for pair-wise neighbors and special neighbors that LAMMPS keeps
track of (see the special_bonds command). The number of times neighbor lists were rebuilt during the run is
given as well as the number of potentially "dangerous" rebuilds. If atom movement triggered neighbor list
rebuilding (see the neigh_modify command), then dangerous reneighborings are those that were triggered on
the first timestep atom movement was checked for. If this count is non-zero you may wish to reduce the delay
factor to insure no force interactions are missed by atoms moving beyond the neighbor skin distance before a
rebuild takes place.

If an energy minimization was performed via the minimize command, additional information is printed, e.g.

Minimization stats:
 E initial, next-to-last, final = -0.895962 -2.94193 -2.94342
 Gradient 2-norm init/final= 1920.78 20.9992
 Gradient inf-norm init/final= 304.283 9.61216
 Iterations = 36
 Force evaluations = 177

The first line lists the initial and final energy, as well as the energy on the next-to-last iteration. The next 2
lines give a measure of the gradient of the energy (force on all atoms). The 2-norm is the "length" of this force
vector; the inf-norm is the largest component. The last 2 lines are statistics on how many iterations and
force-evaluations the minimizer required. Multiple force evaluations are typically done at each iteration to
perform a 1d line minimization in the search direction.

If a kspace_style long-range Coulombics solve was performed during the run (PPPM, Ewald), then additional
information is printed, e.g.

FFT time (% of Kspce) = 0.200313 (8.34477)
FFT Gflps 3d 1d-only = 2.31074 9.19989

The first line gives the time spent doing 3d FFTs (4 per timestep) and the fraction it represents of the total
KSpace time (listed above). Each 3d FFT requires computation (3 sets of 1d FFTs) and communication
(transposes). The total flops performed is 5Nlog_2(N), where N is the number of points in the 3d grid. The
FFTs are timed with and without the communication and a Gflop rate is computed. The 3d rate is with
communication; the 1d rate is without (just the 1d FFTs). Thus you can estimate what fraction of your FFT
time was spent in communication, roughly 75% in the example above.

2.9 Tips for users of previous LAMMPS versions

The current C++ began with a complete rewrite of LAMMPS 2001, which was written in F90. Features of
earlier versions of LAMMPS are listed in Section_history. The F90 and F77 versions (2001 and 99) are also
freely distributed as open-source codes; check the LAMMPS WWW Site for distribution information if you
prefer those versions. The 99 and 2001 versions are no longer under active development; they do not have all
the features of C++ LAMMPS.

If you are a previous user of LAMMPS 2001, these are the most significant changes you will notice in C++
LAMMPS:

(1) The names and arguments of many input script commands have changed. All commands are now a single
word (e.g. read_data instead of read data).

LIGGGHTS Users Manual

2.9 Tips for users of previous LAMMPS versions 1210

http://lammps.sandia.gov

(2) All the functionality of LAMMPS 2001 is included in C++ LAMMPS, but you may need to specify the
relevant commands in different ways.

(3) The format of the data file can be streamlined for some problems. See the read_data command for details.
The data file section "Nonbond Coeff" has been renamed to "Pair Coeff" in C++ LAMMPS.

(4) Binary restart files written by LAMMPS 2001 cannot be read by C++ LAMMPS with a read_restart
command. This is because they were output by F90 which writes in a different binary format than C or C++
writes or reads. Use the restart2data tool provided with LAMMPS 2001 to convert the 2001 restart file to a
text data file. Then edit the data file as necessary before using the C++ LAMMPS read_data command to read
it in.

(5) There are numerous small numerical changes in C++ LAMMPS that mean you will not get identical
answers when comparing to a 2001 run. However, your initial thermodynamic energy and MD trajectory
should be close if you have setup the problem for both codes the same.

LIGGGHTS Users Manual

2.9 Tips for users of previous LAMMPS versions 1211

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

9. Additional tools

LAMMPS is designed to be a computational kernel for performing molecular dynamics computations.
Additional pre- and post-processing steps are often necessary to setup and analyze a simulation. A few
additional tools are provided with the LAMMPS distribution and are described in this section.

Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing
setup, analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

Note that many users write their own setup or analysis tools or use other existing codes and convert their
output to a LAMMPS input format or vice versa. The tools listed here are included in the LAMMPS
distribution as examples of auxiliary tools. Some of them are not actively supported by Sandia, as they were
contributed by LAMMPS users. If you have problems using them, we can direct you to the authors.

The source code for each of these codes is in the tools sub-directory of the LAMMPS distribution. There is a
Makefile (which you may need to edit for your platform) which will build several of the tools which reside in
that directory. Some of them are larger packages in their own sub-directories with their own Makefiles.

amber2lmp•
binary2txt•
ch2lmp•
chain•
createatoms•
data2xmovie•
eam database•
eam generate•
eff•
emacs•
ipp•
kate•
lmp2arc•
lmp2cfg•
lmp2vmd•
matlab•
micelle2d•
moltemplate•
msi2lmp•
phonon•
polymer bonding•
pymol_asphere•
python•
reax•
restart2data•
vim•
xmgrace•
xmovie•

LIGGGHTS Users Manual

9. Additional tools 1212

http://lammps.sandia.gov
http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html

amber2lmp tool

The amber2lmp sub-directory contains two Python scripts for converting files back-and-forth between the
AMBER MD code and LAMMPS. See the README file in amber2lmp for more information.

These tools were written by Keir Novik while he was at Queen Mary University of London. Keir is no longer
there and cannot support these tools which are out-of-date with respect to the current LAMMPS version (and
maybe with respect to AMBER as well). Since we don't use these tools at Sandia, you'll need to experiment
with them and make necessary modifications yourself.

binary2txt tool

The file binary2txt.cpp converts one or more binary LAMMPS dump file into ASCII text files. The syntax for
running the tool is

binary2txt file1 file2 ...

which creates file1.txt, file2.txt, etc. This tool must be compiled on a platform that can read the binary file
created by a LAMMPS run, since binary files are not compatible across all platforms.

ch2lmp tool

The ch2lmp sub-directory contains tools for converting files back-and-forth between the CHARMM MD code
and LAMMPS.

They are intended to make it easy to use CHARMM as a builder and as a post-processor for LAMMPS. Using
charmm2lammps.pl, you can convert an ensemble built in CHARMM into its LAMMPS equivalent. Using
lammps2pdb.pl you can convert LAMMPS atom dumps into pdb files.

See the README file in the ch2lmp sub-directory for more information.

These tools were created by Pieter in't Veld (pjintve at sandia.gov) and Paul Crozier (pscrozi at sandia.gov) at
Sandia.

chain tool

The file chain.f creates a LAMMPS data file containing bead-spring polymer chains and/or monomer solvent
atoms. It uses a text file containing chain definition parameters as an input. The created chains and solvent
atoms can strongly overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to
un-overlap it. The syntax for running the tool is

chain <def.chain > data.file

See the def.chain or def.chain.ab files in the tools directory for examples of definition files. This tool was used
to create the system for the chain benchmark.

createatoms tool

The tools/createatoms directory contains a Fortran program called createAtoms.f which can generate a variety
of interesting crystal structures and geometries and output the resulting list of atom coordinates in LAMMPS
or other formats.

See the included Manual.pdf for details.

LIGGGHTS Users Manual

amber2lmp tool 1213

The tool is authored by Xiaowang Zhou (Sandia), xzhou at sandia.gov.

data2xmovie tool

The file data2xmovie.c converts a LAMMPS data file into a snapshot suitable for visualizing with the xmovie
tool, as if it had been output with a dump command from LAMMPS itself. The syntax for running the tool is

data2xmovie options <infile > outfile

See the top of the data2xmovie.c file for a discussion of the options.

eam database tool

The tools/eam_database directory contains a Fortran program that will generate EAM alloy setfl potential files
for any combination of 16 elements: Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, Zr. The files
can then be used with the pair_style eam/alloy command.

The tool is authored by Xiaowang Zhou (Sandia), xzhou at sandia.gov, and is based on his paper:

X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, Phys. Rev. B, 69, 144113 (2004).

eam generate tool

The tools/eam_generate directory contains several one-file C programs that convert an analytic formula into a
tabulated embedded atom method (EAM) setfl potential file. The potentials they produce are in the potentials
directory, and can be used with the pair_style eam/alloy command.

The source files and potentials were provided by Gerolf Ziegenhain (gerolf at ziegenhain.com).

eff tool

The tools/eff directory contains various scripts for generating structures and post-processing output for
simulations using the electron force field (eFF).

These tools were provided by Andres Jaramillo-Botero at CalTech (ajaramil at wag.caltech.edu).

emacs tool

The tools/emacs directory contains a Lips add-on file for Emacs that enables a lammps-mode for editing of
input scripts when using Emacs, with various highlighting options setup.

These tools were provided by Aidan Thompson at Sandia (athomps at sandia.gov).

ipp tool

The tools/ipp directory contains a Perl script ipp which can be used to facilitate the creation of a complicated
file (say, a lammps input script or tools/createatoms input file) using a template file.

ipp was created and is maintained by Reese Jones (Sandia), rjones at sandia.gov.

See two examples in the tools/ipp directory. One of them is for the tools/createatoms tool's input file.

LIGGGHTS Users Manual

createatoms tool 1214

kate tool

The file in the tools/kate directory is an add-on to the Kate editor in the KDE suite that allow syntax
highlighting of LAMMPS input scripts. See the README.txt file for details.

The file was provided by Alessandro Luigi Sellerio (alessandro.sellerio at ieni.cnr.it).

lmp2arc tool

The lmp2arc sub-directory contains a tool for converting LAMMPS output files to the format for Accelrys'
Insight MD code (formerly MSI/Biosym and its Discover MD code). See the README file for more
information.

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is
now at the Mayo Clinic (jec at mayo.edu), but still fields questions about the tool.

This tool was updated for the current LAMMPS C++ version by Jeff Greathouse at Sandia (jagreat at
sandia.gov).

lmp2cfg tool

The lmp2cfg sub-directory contains a tool for converting LAMMPS output files into a series of *.cfg files
which can be read into the AtomEye visualizer. See the README file for more information.

This tool was written by Ara Kooser at Sandia (askoose at sandia.gov).

lmp2vmd tool

The lmp2vmd sub-directory contains a README.txt file that describes details of scripts and plugin support
within the VMD package for visualizing LAMMPS dump files.

The VMD plugins and other supporting scripts were written by Axel Kohlmeyer (akohlmey at
cmm.chem.upenn.edu) at U Penn.

matlab tool

The matlab sub-directory contains several MATLAB scripts for post-processing LAMMPS output. The scripts
include readers for log and dump files, a reader for EAM potential files, and a converter that reads LAMMPS
dump files and produces CFG files that can be visualized with the AtomEye visualizer.

See the README.pdf file for more information.

These scripts were written by Arun Subramaniyan at Purdue Univ (asubrama at purdue.edu).

micelle2d tool

The file micelle2d.f creates a LAMMPS data file containing short lipid chains in a monomer solution. It uses
a text file containing lipid definition parameters as an input. The created molecules and solvent atoms can
strongly overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to un-overlap it.
The syntax for running the tool is

micelle2d <def.micelle2d > data.file

LIGGGHTS Users Manual

kate tool 1215

http://mt.seas.upenn.edu/Archive/Graphics/A
http://www.ks.uiuc.edu/Research/vmd
http://www.mathworks.com
http://mt.seas.upenn.edu/Archive/Graphics/A

See the def.micelle2d file in the tools directory for an example of a definition file. This tool was used to create
the system for the micelle example.

moltemplate tool

The moltemplate sub-directory contains a Python-based tool for building molecular systems based on a
text-file description, and creating LAMMPS data files that encode their molecular topology as lists of bonds,
angles, dihedrals, etc. See the README.TXT file for more information.

This tool was written by Andrew Jewett (jewett.aij at gmail.com), who supports it. It has its own WWW page
at http://moltemplate.org.

msi2lmp tool

The msi2lmp sub-directory contains a tool for creating LAMMPS input data files from Accelrys' Insight MD
code (formerly MSI/Biosym and its Discover MD code). See the README file for more information.

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is
now at the Mayo Clinic (jec at mayo.edu), but still fields questions about the tool.

This tool may be out-of-date with respect to the current LAMMPS and Insight versions. Since we don't use it
at Sandia, you'll need to experiment with it yourself.

phonon tool

The phonon sub-directory contains a post-processing tool useful for analyzing the output of the fix phonon
command in the USER-PHONON package.

See the README file for instruction on building the tool and what library it needs. And see the
examples/USER/phonon directory for example problems that can be post-processed with this tool.

This tool was written by Ling-Ti Kong at Shanghai Jiao Tong University.

polymer bonding tool

The polybond sub-directory contains a Python-based tool useful for performing "programmable polymer
bonding". The Python file lmpsdata.py provides a "Lmpsdata" class with various methods which can be
invoked by a user-written Python script to create data files with complex bonding topologies.

See the Manual.pdf for details and example scripts.

This tool was written by Zachary Kraus at Georgia Tech.

pymol_asphere tool

The pymol_asphere sub-directory contains a tool for converting a LAMMPS dump file that contains
orientation info for ellipsoidal particles into an input file for the PyMol visualization package.

Specifically, the tool triangulates the ellipsoids so they can be viewed as true ellipsoidal particles within
PyMol. See the README and examples directory within pymol_asphere for more information.

This tool was written by Mike Brown at Sandia.

LIGGGHTS Users Manual

micelle2d tool 1216

http://moltemplate.org
http://pymol.sourceforge.net

python tool

The python sub-directory contains several Python scripts that perform common LAMMPS post-processing
tasks, such as:

extract thermodynamic info from a log file as columns of numbers•
plot two columns of thermodynamic info from a log file using GnuPlot•
sort the snapshots in a dump file by atom ID•
convert multiple NEB dump files into one dump file for viz•
convert dump files into XYZ, CFG, or PDB format for viz by other packages•

These are simple scripts built on Pizza.py modules. See the README for more info on Pizza.py and how to
use these scripts.

reax tool

The reax sub-directory contains stand-alond codes that can post-process the output of the fix reax/bonds
command from a LAMMPS simulation using ReaxFF. See the README.txt file for more info.

These tools were written by Aidan Thompson at Sandia.

restart2data tool

IMPORTANT NOTE: This tool is now obsolete and is not included in the current LAMMPS distribution.
This is becaues there is now a write_data command, which can create a data file from within an input script.
Running LAMMPS with the "-r" command-line switch as follows:

lmp_g++ -r restartfile datafile

is the same as running a 2-line input script:

read_restart restartfile write_data datafile

which will produce the same data file that the restart2data tool used to create. The following information is
included in case you have an older version of LAMMPS which still includes the restart2data tool.

The file restart2data.cpp converts a binary LAMMPS restart file into an ASCII data file. The syntax for
running the tool is

restart2data restart-file data-file (input-file)

Input-file is optional and if specified will contain LAMMPS input commands for the masses and force field
parameters, instead of putting those in the data-file. Only a few force field styles currently support this option.

This tool must be compiled on a platform that can read the binary file created by a LAMMPS run, since
binary files are not compatible across all platforms.

Note that a text data file has less precision than a binary restart file. Hence, continuing a run from a converted
data file will typically not conform as closely to a previous run as will restarting from a binary restart file.

If a "%" appears in the specified restart-file, the tool expects a set of multiple files to exist. See the restart and
write_restart commands for info on how such sets of files are written by LAMMPS, and how the files are
named.

LIGGGHTS Users Manual

python tool 1217

http://www.sandia.gov/~sjplimp/pizza.html

vim tool

The files in the tools/vim directory are add-ons to the VIM editor that allow easier editing of LAMMPS input
scripts. See the README.txt file for details.

These files were provided by Gerolf Ziegenhain (gerolf at ziegenhain.com)

xmgrace tool

The files in the tools/xmgrace directory can be used to plot the thermodynamic data in LAMMPS log files via
the xmgrace plotting package. There are several tools in the directory that can be used in post-processing
mode. The lammpsplot.cpp file can be compiled and used to create plots from the current state of a running
LAMMPS simulation.

See the README file for details.

These files were provided by Vikas Varshney (vv0210 at gmail.com)

xmovie tool

The xmovie tool is an X-based visualization package that can read LAMMPS dump files and animate them. It
is in its own sub-directory with the tools directory. You may need to modify its Makefile so that it can find the
appropriate X libraries to link against.

The syntax for running xmovie is

xmovie options dump.file1 dump.file2 ...

If you just type "xmovie" you will see a list of options. Note that by default, LAMMPS dump files are in
scaled coordinates, so you typically need to use the -scale option with xmovie. When xmovie runs it opens a
visualization window and a control window. The control options are straightforward to use.

Xmovie was mostly written by Mike Uttormark (U Wisconsin) while he spent a summer at Sandia. It displays
2d projections of a 3d domain. While simple in design, it is an amazingly fast program that can render large
numbers of atoms very quickly. It's a useful tool for debugging LAMMPS input and output and making sure
your simulation is doing what you think it should. The animations on the Examples page of the LAMMPS
WWW site were created with xmovie.

I've lost contact with Mike, so I hope he's comfortable with us distributing his great tool!

LIGGGHTS Users Manual

vim tool 1218

http://lammps.sandia.gov
http://lammps.sandia.gov

LIGGGHTS WWW Site - LAMMPS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

set command

Syntax:

set style ID keyword values ...

style = atom or type or mol or group or region•
ID = atom ID range or type range or mol ID range or group ID or region ID•
one or more keyword/value pairs may be appended•
keyword = type or type/fraction or mol or x or y or z or charge or dipole or dipole/random or quat or
quat/random or diameter or shape or length or tri or theta or angmom or mass or density or volume or
image or bond or angle or dihedral or improper or meso_e or meso_cv or meso_rho or property/atom

type value = atom type
 value can be an atom-style variable (see below)

type/fraction values = type fraction seed
 type = new atom type
 fraction = fraction of selected atoms to set to new atom type
 seed = random # seed (positive integer)

mol value = molecule ID
 value can be an atom-style variable (see below)

x,y,z value = atom coordinate (distance units)
 value can be an atom-style variable (see below)

charge value = atomic charge (charge units)
 value can be an atom-style variable (see below)

dipole values = x y z
 x,y,z = orientation of dipole moment vector
 any of x,y,z can be an atom-style variable (see below)

dipole/random value = seed Dlen
 seed = random # seed (positive integer) for dipole moment orientations
 Dlen = magnitude of dipole moment (dipole units)

quat values = a b c theta
 a,b,c = unit vector to rotate particle around via right-hand rule
 theta = rotation angle (degrees)
 any of a,b,c,theta can be an atom-style variable (see below)

quat/random value = seed
 seed = random # seed (positive integer) for quaternion orientations

diameter value = diameter of spherical particle (distance units)
 value can be an atom-style variable (see below)

shape value = Sx Sy Sz
 Sx,Sy,Sz = 3 diameters of ellipsoid (distance units)

length value = len
 len = length of line segment (distance units)
 len can be an atom-style variable (see below)

tri value = side
 side = side length of equilateral triangle (distance units)
 side can be an atom-style variable (see below)

theta value = angle (degrees)
 angle = orientation of line segment with respect to x-axis
 angle can be an atom-style variable (see below)

angmom values = Lx Ly Lz
 Lx,Ly,Lz = components of angular momentum vector (distance-mass-velocity units)
 any of Lx,Ly,Lz can be an atom-style variable (see below)

mass value = per-atom mass (mass units)
 value can be an atom-style variable (see below)

density value = particle density for sphere or ellipsoid (mass/distance^3 or mass/distance^2 or mass/distance units, depending on dimensionality of particle)
 value can be an atom-style variable (see below)

volume value = particle volume for Peridynamic particle (distance^3 units)
 value can be an atom-style variable (see below)

image nx ny nz
 nx,ny,nz = which periodic image of the simulation box the atom is in

•

LIGGGHTS Users Manual

xmovie tool 1219

http://www.cfdem.com
http://lammps.sandia.gov

bond value = bond type for all bonds between selected atoms
angle value = angle type for all angles between selected atoms
dihedral value = dihedral type for all dihedrals between selected atoms
improper value = improper type for all impropers between selected atoms
meso_e value = energy of SPH particles (need units)

 value can be an atom-style variable (see below)
meso_cv value = heat capacity of SPH particles (need units)

 value can be an atom-style variable (see below)
meso_rho value = density of SPH particles (need units)

 value can be an atom-style variable (see below)
add value = yes no

 yes = add per-atom quantities to a region or a group
until value = final timestep

 final timestep = the final timestep value until which the per-atom quantity is to be added
property/atom value = varname var_value0 var_value1

 varname = name of the variable to be set
 var_value0, var_value1... = values of the property to be set

Examples:

set group solvent type 2
set group solvent type/fraction 2 0.5 12393
set group edge bond 4
set region half charge 0.5
set type 3 charge 0.5
set type 1*3 charge 0.5
set atom 100*200 x 0.5 y 1.0
set atom 1492 type 3
set region reg add yes until 1000 property/atom liqOnParticle 5e-5
set property/atom Temp 273.15

LIGGGHTS vs. LAMMPS Info:

This command offers a new keyword property/atom to enable the set command to assign values to properties
defined by a fix property/atom

Description:

Set one or more properties of one or more atoms. Since atom properties are initially assigned by the read_data,
read_restart or create_atoms commands, this command changes those assignments. This can be useful for
overriding the default values assigned by the create_atoms command (e.g. charge = 0.0). It can be useful for
altering pairwise and molecular force interactions, since force-field coefficients are defined in terms of types.
It can be used to change the labeling of atoms by atom type or molecule ID when they are output in dump
files. It can also be useful for debugging purposes; i.e. positioning an atom at a precise location to compute
subsequent forces or energy.

Note that the style and ID arguments determine which atoms have their properties reset. The remaining
keywords specify which properties to reset and what the new values are. Some strings like type or mol can be
used as a style and/or a keyword.

This section describes how to select which atoms to change the properties of, via the style and ID arguments.

The style atom selects all the atoms in a range of atom IDs. The style type selects all the atoms in a range of
types. The style mol selects all the atoms in a range of molecule IDs.

In each of the range cases, the range can be specified as a single numeric value, or a wildcard asterisk can be
used to specify a range of values. This takes the form "*" or "*n" or "n*" or "m*n". For example, for the style
type, if N = the number of atom types, then an asterisk with no numeric values means all types from 1 to N. A
leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types from n to N

LIGGGHTS Users Manual

set command 1220

(inclusive). A middle asterisk means all types from m to n (inclusive). For all the styles except mol, the lowest
value for the wildcard is 1; for mol it is 0.

The style group selects all the atoms in the specified group. The style region selects all the atoms in the
specified geometric region. See the group and region commands for details of how to specify a group or
region.

This section describes the keyword options for which properties to change, for the selected atoms.

Note that except where explicitly prohibited below, all of the keywords allow an atom-style variable to be
used as the specified value(s). If the value is a variable, it should be specified as v_name, where name is the
variable name. In this case, the variable will be evaluated, and its resulting per-atom value used to determine
the value assigned to each selected atom.

Atom-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. They can also include
per-atom values, such as atom coordinates. Thus it is easy to specify a time-dependent or spatially-dependent
set of per-atom values. As explained on the variable doc page, atomfile-style variables can be used in place of
atom-style variables, and thus as arguments to the set command. Atomfile-style variables read their per-atoms
values from a file.

IMPORTANT NOTE: Atom-style and atomfile-style variables return floating point per-atom values. If the
values are assigned to an integer variable, such as the molecule ID, then the floating point value is truncated to
its integer portion, e.g. a value of 2.6 would become 2.

Keyword type sets the atom type for all selected atoms. The specified value must be from 1 to ntypes, where
ntypes was set by the create_box command or the atom types field in the header of the data file read by the
read_data command.

Keyword type/fraction sets the atom type for a fraction of the selected atoms. The actual number of atoms
changed is not guaranteed to be exactly the requested fraction, but should be statistically close. Random
numbers are used in such a way that a particular atom is changed or not changed, regardless of how many
processors are being used. This keyword does not allow use of an atom-style variable.

Keyword mol sets the molecule ID for all selected atoms. The atom style being used must support the use of
molecule IDs.

Keywords x, y, z, and charge set the coordinates or charge of all selected atoms. For charge, the atom style
being used must support the use of atomic charge.

Keyword dipole uses the specified x,y,z values as components of a vector to set as the orientation of the
dipole moment vectors of the selected atoms. The magnitude of the dipole moment is set by the length of this
orientation vector.

Keyword dipole/random randomizes the orientation of the dipole moment vectors of the selected atoms and
sets the magnitude of each to the specified Dlen value. For 2d systems, the z component of the orientation is
set to 0.0. Random numbers are used in such a way that the orientation of a particular atom is the same,
regardless of how many processors are being used. This keyword does not allow use of an atom-style variable.

Keyword quat uses the specified values to create a quaternion (4-vector) that represents the orientation of the
selected atoms. The particles must be ellipsoids as defined by the atom_style ellipsoid command or triangles
as defined by the atom_style tri command. Note that particles defined by atom_style ellipsoid have 3 shape
parameters. The 3 values must be non-zero for each particle set by this command. They are used to specify the
aspect ratios of an ellipsoidal particle, which is oriented by default with its x-axis along the simulation box's

LIGGGHTS Users Manual

set command 1221

x-axis, and similarly for y and z. If this body is rotated (via the right-hand rule) by an angle theta around a unit
rotation vector (a,b,c), then the quaternion that represents its new orientation is given by (cos(theta/2),
a*sin(theta/2), b*sin(theta/2), c*sin(theta/2)). The theta and a,b,c values are the arguments to the quat
keyword. LAMMPS normalizes the quaternion in case (a,b,c) was not specified as a unit vector. For 2d
systems, the a,b,c values are ignored, since a rotation vector of (0,0,1) is the only valid choice.

Keyword quat/random randomizes the orientation of the quaternion of the selected atoms. The particles must
be ellipsoids as defined by the atom_style ellipsoid command or triangles as defined by the atom_style tri
command. Random numbers are used in such a way that the orientation of a particular atom is the same,
regardless of how many processors are being used. For 2d systems, only orientations in the xy plane are
generated. As with keyword quat, for ellipsoidal particles, the 3 shape values must be non-zero for each
particle set by this command. This keyword does not allow use of an atom-style variable.

Keyword diameter sets the size of the selected atoms. The particles must be finite-size spheres as defined by
the atom_style sphere command. The diameter of a particle can be set to 0.0, which means they will be treated
as point particles. Note that this command does not adjust the particle mass, even if it was defined with a
density, e.g. via the read_data command.

Keyword shape sets the size and shape of the selected atoms. The particles must be ellipsoids as defined by
the atom_style ellipsoid command. The Sx, Sy, Sz settings are the 3 diameters of the ellipsoid in each
direction. All 3 can be set to the same value, which means the ellipsoid is effectively a sphere. They can also
all be set to 0.0 which means the particle will be treated as a point particle. Note that this command does not
adjust the particle mass, even if it was defined with a density, e.g. via the read_data command.

Keyword length sets the length of selected atoms. The particles must be line segments as defined by the
atom_style line command. If the specified value is non-zero the line segment is (re)set to a length = the
specified value, centered around the particle position, with an orientation along the x-axis. If the specified
value is 0.0, the particle will become a point particle. Note that this command does not adjust the particle
mass, even if it was defined with a density, e.g. via the read_data command.

Keyword tri sets the size of selected atoms. The particles must be triangles as defined by the atom_style tri
command. If the specified value is non-zero the triangle is (re)set to be an equilateral triangle in the xy plane
with side length = the specified value, with a centroid at the particle position, with its base parallel to the x
axis, and the y-axis running from the center of the base to the top point of the triangle. If the specified value is
0.0, the particle will become a point particle. Note that this command does not adjust the particle mass, even if
it was defined with a density, e.g. via the read_data command.

Keyword theta sets the orientation of selected atoms. The particles must be line segments as defined by the
atom_style line command. The specified value is used to set the orientation angle of the line segments with
respect to the x axis.

Keyword angmom sets the angular momentum of selected atoms. The particles must be ellipsoids as defined
by the atom_style ellipsoid command or triangles as defined by the atom_style tri command. The angular
momentum vector of the particles is set to the 3 specified components.

Keyword mass sets the mass of all selected particles. The particles must have a per-atom mass attribute, as
defined by the atom_style command. See the "mass" command for how to set mass values on a per-type basis.

Keyword density also sets the mass of all selected particles, but in a different way. The particles must have a
per-atom mass attribute, as defined by the atom_style command. If the atom has a radius attribute (see
atom_style sphere) and its radius is non-zero, its mass is set from the density and particle volume. If the atom
has a shape attribute (see atom_style ellipsoid) and its 3 shape parameters are non-zero, then its mass is set
from the density and particle volume. If the atom has a length attribute (see atom_style line) and its length is
non-zero, then its mass is set from the density and line segment length (the input density is assumed to be in

LIGGGHTS Users Manual

set command 1222

mass/distance units). If the atom has an area attribute (see atom_style tri) and its area is non-zero, then its
mass is set from the density and triangle area (the input density is assumed to be in mass/distance^2 units). If
none of these cases are valid, then the mass is set to the density value directly (the input density is assumed to
be in mass units).

Keyword volume sets the volume of all selected particles. Currently, only the atom_style peri command
defines particles with a volume attribute. Note that this command does not adjust the particle mass.

Keyword image sets which image of the simulation box the atom is considered to be in. An image of 0 means
it is inside the box as defined. A value of 2 means add 2 box lengths to get the true value. A value of -1 means
subtract 1 box length to get the true value. LAMMPS updates these flags as atoms cross periodic boundaries
during the simulation. The flags can be output with atom snapshots via the dump command. If a value of
NULL is specified for any of nx,ny,nz, then the current image value for that dimension is unchanged. For
non-periodic dimensions only a value of 0 can be specified. This keyword does not allow use of atom-style
variables.

This command can be useful after a system has been equilibrated and atoms have diffused one or more box
lengths in various directions. This command can then reset the image values for atoms so that they are
effectively inside the simulation box, e.g if a diffusion coefficient is about to be measured via the compute
msd command. Care should be taken not to reset the image flags of two atoms in a bond to the same value if
the bond straddles a periodic boundary (rather they should be different by +/- 1). This will not affect the
dynamics of a simulation, but may mess up analysis of the trajectories if a LAMMPS diagnostic or your own
analysis relies on the image flags to unwrap a molecule which straddles the periodic box.

Keywords bond, angle, dihedral, and improper, set the bond type (angle type, etc) of all bonds (angles, etc) of
selected atoms to the specified value from 1 to nbondtypes (nangletypes, etc). All atoms in a particular bond
(angle, etc) must be selected atoms in order for the change to be made. The value of nbondtype (nangletypes,
etc) was set by the bond types (angle types, etc) field in the header of the data file read by the read_data
command. These keywords do not allow use of an atom-style variable.

Keywords meso_e, meso_cv, and meso_rho set the energy, heat capacity, and density of smmothed particle
hydrodynamics (SPH) particles. See this PDF guide to using SPH in LAMMPS.

Keyword property/atom can update per-particle properties defined by a fix property/atom command. varname
is the name of the variable you want to set, it is followed by the values that should be assigned to this variable.
The number of values provided as var_valuei must correspond to the number of values needed for the update,
i.e. only var_value0 if the defined property is a scalar, and the appropriate number if the property is a vector.
See fix property/atom for details on how to define such a per-particle property.

Keyword add and until are used to add a per-atom quantity (or property) in addition to the keyword
property/atom. The add keyword is used to turn on the addition of a quantity in a region or a group until the
timestep defined by the until keyword.

Restrictions:

You cannot set an atom attribute (e.g. mol or q or volume) if the atom_style does not have that attribute.

This command requires inter-processor communication to coordinate the setting of bond types (angle types,
etc). This means that your system must be ready to perform a simulation before using one of these keywords
(force fields set, atom mass set, etc). This is not necessary for other keywords.

Using the region style with the bond (angle, etc) keywords can give unpredictable results if there are bonds
(angles, etc) that straddle periodic boundaries. This is because the region may only extend up to the boundary
and partner atoms in the bond (angle, etc) may have coordinates outside the simulation box if they are ghost

LIGGGHTS Users Manual

set command 1223

atoms.

Related commands:

create_box, create_atoms, read_data

Default: none

LIGGGHTS Users Manual

set command 1224

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

shell command

Syntax:

shell cmd args

cmd = cd or mkdir or mv or rm or rmdir or putenv or arbitrary command

cd arg = dir
 dir = directory to change to

mkdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to create

mv args = old new
 old = old filename
 new = new filename

rm args = file1 file2 ...
 file1,file2 = one or more filenames to delete

rmdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to delete

putenv args = var1=value1 var2=value2
 var=value = one of more definitions of environment variables
 anything else is passed as a command to the shell for direct execution

•

Examples:

shell cd sub1
shell cd ..
shell mkdir tmp1 tmp2 tmp3
shell rmdir tmp1
shell mv log.lammps hold/log.1
shell rm TMP/file1 TMP/file2
shell putenv LAMMPS_POTENTIALS=../../potentials
shell my_setup file1 10 file2
shell my_post_process 100 dump.out

Description:

Execute a shell command. A few simple file-based shell commands are supported directly, in Unix-style
syntax. Any command not listed above is passed as-is to the C-library system() call, which invokes the
command in a shell.

This is means to invoke other commands from your input script. For example, you can move files around in
preparation for the next section of the input script. Or you can run a program that pre-processes data for input
into LAMMPS. Or you can run a program that post-processes LAMMPS output data.

With the exception of cd, all commands, including ones invoked via a system() call, are executed by only a
single processor, so that files/directories are not being manipulated by multiple processors.

The cd cmd executes the Unix "cd" command to change the working directory. All subsequent LAMMPS
commands that read/write files will use the new directory. All processors execute this command.

The mkdir cmd executes the Unix "mkdir" command to create one or more directories.

The mv cmd executes the Unix "mv" command to rename a file and/or move it to a new directory.

The rm cmd executes the Unix "rm" command to remove one or more files.

LIGGGHTS Users Manual

shell command 1225

http://lammps.sandia.gov

The rmdir cmd executes the Unix "rmdir" command to remove one or more directories. A directory must be
empty to be successfully removed.

The putenv cmd defines or updates an environment variable directly. Since this command does not pass
through the shell, no shell variable expansion or globbing is performed, only the usual substitution for
LAMMPS variables defined with the variable command is performed. The resulting string is then used
literally.

Any other cmd is passed as-is to the shell along with its arguments as one string, invoked by the C-library
system() call. For example, these lines in your input script:

variable n equal 10
variable foo string file2
shell my_setup file1 $n ${foo}

would be the same as invoking

% my_setup file1 10 file2

from a command-line prompt. The executable program "my_setup" is run with 3 arguments: file1 10 file2.

Restrictions:

LAMMPS does not detect errors or print warnings when any of these commands execute. E.g. if the specified
directory does not exist, executing the cd command will silently do nothing.

Related commands: none

Default: none

LIGGGHTS Users Manual

shell command 1226

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

special_bonds command

Syntax:

special_bonds keyword values ...

one or more keyword/value pairs may be appended•
keyword = amber or charmm or dreiding or fene or lj/coul or lj or coul or angle or dihedral or extra

amber values = none
charmm values = none
dreiding values = none
fene values = none
lj/coul values = w1,w2,w3

 w1,w2,w3 = weights (0.0 to 1.0) on pairwise Lennard-Jones and Coulombic interactions
lj values = w1,w2,w3

 w1,w2,w3 = weights (0.0 to 1.0) on pairwise Lennard-Jones interactions
coul values = w1,w2,w3

 w1,w2,w3 = weights (0.0 to 1.0) on pairwise Coulombic interactions
angle value = yes or no
dihedral value = yes or no
extra value = N

 N = number of extra 1-2,1-3,1-4 interactions to save space for

•

Examples:

special_bonds amber
special_bonds charmm
special_bonds fene dihedral no
special_bonds lj/coul 0.0 0.0 0.5 angle yes dihedral yes
special_bonds lj 0.0 0.0 0.5 coul 0.0 0.0 0.0 dihedral yes
special_bonds lj/coul 0 1 1 extra 2

Description:

Set weighting coefficients for pairwise energy and force contributions between pairs of atoms that are also
permanently bonded to each other, either directly or via one or two intermediate bonds. These weighting
factors are used by nearly all pair styles in LAMMPS that compute simple pairwise interactions. Permanent
bonds between atoms are specified by defining the bond topology in the data file read by the read_data
command. Typically a bond_style command is also used to define a bond potential. The rationale for using
these weighting factors is that the interaction between a pair of bonded atoms is all (or mostly) specified by
the bond, angle, dihedral potentials, and thus the non-bonded Lennard-Jones or Coulombic interaction
between the pair of atoms should be excluded (or reduced by a weighting factor).

IMPORTANT NOTE: These weighting factors are NOT used by pair styles that compute many-body
interactions, since the "bonds" that result from such interactions are not permanent, but are created and broken
dynamically as atom conformations change. Examples of pair styles in this category are EAM, MEAM,
Stillinger-Weber, Tersoff, COMB, AIREBO, and ReaxFF. In fact, it generally makes no sense to define
permanent bonds between atoms that interact via these potentials, though such bonds may exist elsewhere in
your system, e.g. when using the pair_style hybrid command. Thus LAMMPS ignores special_bonds settings
when manybody potentials are calculated.

The Coulomb factors are applied to any Coulomb (charge interaction) term that the potential calculates. The
LJ factors are applied to the remaining terms that the potential calculates, whether they represent LJ
interactions or not. The weighting factors are a scaling pre-factor on the energy and force between the pair of
atoms. A value of 1.0 means include the full interaction; a value of 0.0 means exclude it completely.

LIGGGHTS Users Manual

special_bonds command 1227

http://lammps.sandia.gov

The 1st of the 3 coefficients (LJ or Coulombic) is the weighting factor on 1-2 atom pairs, which are pairs of
atoms directly bonded to each other. The 2nd coefficient is the weighting factor on 1-3 atom pairs which are
those separated by 2 bonds (e.g. the two H atoms in a water molecule). The 3rd coefficient is the weighting
factor on 1-4 atom pairs which are those separated by 3 bonds (e.g. the 1st and 4th atoms in a dihedral
interaction). Thus if the 1-2 coefficient is set to 0.0, then the pairwise interaction is effectively turned off for
all pairs of atoms bonded to each other. If it is set to 1.0, then that interaction will be at full strength.

IMPORTANT NOTE: For purposes of computing weighted pairwise interactions, 1-3 and 1-4 interactions are
not defined from the list of angles or dihedrals used by the simulation. Rather, they are inferred topologically
from the set of bonds specified when the simulation is defined from a data or restart file (see read_data or
read_restart commands). Thus the set of 1-2,1-3,1-4 interactions that the weights apply to is the same whether
angle and dihedral potentials are computed or not, and remains the same even if bonds are constrained, or
turned off, or removed during a simulation.

The two exceptions to this rule are (a) if the angle or dihedral keywords are set to yes (see below), or (b) if the
delete_bonds command is used with the special option that recomputes the 1-2,1-3,1-4 topologies after bonds
are deleted; see the delete_bonds command for more details.

The amber keyword sets the 3 coefficients to 0.0, 0.0, 0.5 for LJ interactions and to 0.0, 0.0, 0.8333 for
Coulombic interactions, which is the default for a commonly used version of the AMBER force field, where
the last value is really 5/6. See (Cornell) for a description of the AMBER force field.

The charmm keyword sets the 3 coefficients to 0.0, 0.0, 0.0 for both LJ and Coulombic interactions, which is
the default for a commonly used version of the CHARMM force field. Note that in pair styles
lj/charmm/coul/charmm and lj/charmm/coul/long the 1-4 coefficients are defined explicitly, and these
pairwise contributions are computed as part of the charmm dihedral style - see the pair_coeff and
dihedral_style commands for more information. See (MacKerell) for a description of the CHARMM force
field.

The dreiding keyword sets the 3 coefficients to 0.0, 0.0, 1.0 for both LJ and Coulombic interactions, which is
the default for the Dreiding force field, as discussed in (Mayo).

The fene keyword sets the 3 coefficients to 0.0, 1.0, 1.0 for both LJ and Coulombic interactions, which is
consistent with a coarse-grained polymer model with FENE bonds. See (Kremer) for a description of FENE
bonds.

The lj/coul, lj, and coul keywords allow the 3 coefficients to be set explicitly. The lj/coul keyword sets both
the LJ and Coulombic coefficients to the same 3 values. The lj and coul keywords only set either the LJ or
Coulombic coefficients. Use both of them if you wish to set the LJ coefficients to different values than the
Coulombic coefficients.

The angle keyword allows the 1-3 weighting factor to be ignored for individual atom pairs if they are not
listed as the first and last atoms in any angle defined in the simulation or as 1,3 or 2,4 atoms in any dihedral
defined in the simulation. For example, imagine the 1-3 weighting factor is set to 0.5 and you have a linear
molecule with 4 atoms and bonds as follows: 1-2-3-4. If your data file defines 1-2-3 as an angle, but does not
define 2-3-4 as an angle or 1-2-3-4 as a dihedral, then the pairwise interaction between atoms 1 and 3 will
always be weighted by 0.5, but different force fields use different rules for weighting the pairwise interaction
between atoms 2 and 4. If the angle keyword is specified as yes, then the pairwise interaction between atoms 2
and 4 will be unaffected (full weighting of 1.0). If the angle keyword is specified as no which is the default,
then the 2,4 interaction will also be weighted by 0.5.

The dihedral keyword allows the 1-4 weighting factor to be ignored for individual atom pairs if they are not
listed as the first and last atoms in any dihedral defined in the simulation. For example, imagine the 1-4
weighting factor is set to 0.5 and you have a linear molecule with 5 atoms and bonds as follows: 1-2-3-4-5. If

LIGGGHTS Users Manual

special_bonds command 1228

your data file defines 1-2-3-4 as a dihedral, but does not define 2-3-4-5 as a dihedral, then the pairwise
interaction between atoms 1 and 4 will always be weighted by 0.5, but different force fields use different rules
for weighting the pairwise interaction between atoms 2 and 5. If the dihedral keyword is specified as yes, then
the pairwise interaction between atoms 2 and 5 will be unaffected (full weighting of 1.0). If the dihedral
keyword is specified as no which is the default, then the 2,5 interaction will also be weighted by 0.5.

The extra keyword is used when additional bonds will be created during a simulation run, e.g. by the fix
bond/create command. A list of 1-2,1-3,1-4 neighbors for each atom is calculated and stored by LAMMPS. If
new bonds are created, the list needs to grow. Using the extra keyword leaves empty space in the list for N
additional bonds to be added. If you do not do this, you may get an error when bonds are added.

Restrictions: none

Related commands:

delete_bonds, fix bond/create

Default:

All 3 Lennard-Jones and 3 Coulobmic weighting coefficients = 0.0, angle = no, dihedral = no, and extra = 0.

(Cornell) Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman, JACS 117,
5179-5197 (1995).

(Kremer) Kremer, Grest, J Chem Phys, 92, 5057 (1990).

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

(Mayo) Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909 (1990).

LIGGGHTS Users Manual

special_bonds command 1229

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

suffix command

Syntax:

suffix style

style = off or on or opt or omp or gpu or cuda•

Examples:

suffix off
suffix on
suffix gpu

Description:

This command allows you to use variants of various styles if they exist. In that respect it operates the same as
the -suffix command-line switch. It also has options to turn off/on any suffix setting made via the command
line.

The specified style can be opt, omp, gpu, or cuda. These refer to optional packages that LAMMPS can be
built with, as described in this section of the manual. The "opt" style corrsponds to the OPT package, the
"omp" style to the USER-OMP package, the "gpu" style to the GPU package, and the "cuda" style to the
USER-CUDA package.

These are the variants these packages provide:

OPT = a handful of pair styles, cache-optimized for faster CPU performance•
USER-OMP = a collection of pair, bond, angle, dihedral, improper, kspace, compute, and fix styles
with support for OpenMP multi-threading

•

GPU = a handful of pair styles and the PPPM kspace_style, optimized to run on one or more GPUs or
multicore CPU/GPU nodes

•

USER-CUDA = a collection of atom, pair, fix, compute, and intergrate styles, optimized to run on one
or more NVIDIA GPUs

•

As an example, all of the packages provide a pair_style lj/cut variant, with style names lj/cut/opt, lj/cut/omp,
lj/cut/gpu, or lj/cut/cuda. A variant styles can be specified explicitly in your input script, e.g. pair_style
lj/cut/gpu. If the suffix command is used with the appropriate style, you do not need to modify your input
script. The specified suffix (opt,omp,gpu,cuda) is automatically appended whenever your input script
command creates a new atom, pair, bond, angle, dihedral, improper, kspace, fix, compute, or run style. If the
variant version does not exist, the standard version is created.

If the specified style is off, then any previously specified suffix is temporarily disabled, whether it was
specified by a command-line switch or a previous suffix command. If the specified style is on, a disabled
suffix is turned back on. The use of these 2 commands lets your input script use a standard LAMMPS style
(i.e. a non-accelerated variant), which can be useful for testing or benchmarking purposes. Of course this is
also possible by not using any suffix commands, and explictly appending or not appending the suffix to the
relevant commands in your input script.

Restrictions: none

Related commands:

LIGGGHTS Users Manual

suffix command 1230

http://lammps.sandia.gov

Command-line switch -suffix

Default: none

LIGGGHTS Users Manual

suffix command 1231

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

tad command

Syntax:

tad N t_event T_lo T_hi delta tmax compute-ID keyword value ...

N = # of timesteps to run (not including dephasing/quenching)•
t_event = timestep interval between event checks•
T_lo = temperature at which event times are desired•
T_hi = temperature at which MD simulation is performed•
delta = desired confidence level for stopping criterion•
tmax = reciprocal of lowest expected preexponential factor (time units)•
compute-ID = ID of the compute used for event detection•
zero or more keyword/value pairs may be appended•
keyword = min or neb or min_style or neb_style or neb_log

min values = etol ftol maxiter maxeval
 etol = stopping tolerance for energy (energy units)
 ftol = stopping tolerance for force (force units)
 maxiter = max iterations of minimize
 maxeval = max number of force/energy evaluations

neb values = ftol N1 N2 Nevery
 etol = stopping tolerance for energy (energy units)
 ftol = stopping tolerance for force (force units)
 N1 = max # of iterations (timesteps) to run initial NEB
 N2 = max # of iterations (timesteps) to run barrier-climbing NEB
 Nevery = print NEB statistics every this many timesteps

min_style value = cg or hftn or sd or quickmin or fire
neb_style value = quickmin or fire
neb_log value = file where NEB statistics are printed

•

Examples:

tad 2000 50 1800 2300 0.01 0.01 event
tad 2000 50 1800 2300 0.01 0.01 event &
 min 1e-05 1e-05 100 100 &
 neb 0.0 0.01 200 200 20 &
 min_style cg &
 neb_style fire &
 neb_log log.neb

Description:

Run a temperature accelerated dynamics (TAD) simulation. This method requires two or more partitions to
perform NEB transition state searches.

TAD is described in this paper by Art Voter. It is a method that uses accelerated dynamics at an elevated
temperature to generate results at a specified lower temperature. A good overview of accelerated dynamics
methods for such systems is given in this review paper from the same group. In general, these methods
assume that the long-time dynamics is dominated by infrequent events i.e. the system is is confined to low
energy basins for long periods, punctuated by brief, randomly-occurring transitions to adjacent basins. TAD is
suitable for infrequent-event systems, where in addition, the transition kinetics are well-approximated by
harmonic transition state theory (hTST). In hTST, the temperature dependence of transition rates follows the
Arrhenius relation. As a consequence a set of event times generated in a high-temperature simulation can be
mapped to a set of much longer estimated times in the low-temperature system. However, because this
mapping involves the energy barrier of the transition event, which is different for each event, the first event at

LIGGGHTS Users Manual

tad command 1232

http://lammps.sandia.gov

the high temperature may not be the earliest event at the low temperature. TAD handles this by first
generating a set of possible events from the current basin. After each event, the simulation is reflected
backwards into the current basin. This is repeated until the stopping criterion is satisfied, at which point the
event with the earliest low-temperature occurrence time is selected. The stopping criterion is that the
confidence measure be greater than 1-delta. The confidence measure is the probability that no earlier
low-temperature event will occur at some later time in the high-temperature simulation. hTST provides an
lower bound for this probability, based on the user-specified minimum pre-exponential factor (reciprocal of
tmax).

In order to estimate the energy barrier for each event, the TAD method invokes the NEB method. Each NEB
replica runs on a partition of processors. The current NEB implementation in LAMMPS restricts you to
having exactly one processor per replica. For more information, see the documentation for the neb command.
In the current LAMMPS implementation of TAD, all the non-NEB TAD operations are performed on the first
partition, while the other partitions remain idle. See Section_howto 5 of the manual for further discussion of
multi-replica simulations.

A TAD run has several stages, which are repeated each time an event is performed. The logic for a TAD run
is as follows:

while (time remains):
 while (time <tstop):
 until (event occurs):
 run dynamics for t_event steps
 quench
 run neb calculation using all replicas
 compute tlo from energy barrier
 update earliest event
 update tstop
 reflect back into current basin
 execute earliest event

Before this outer loop begins, the initial potential energy basin is identified by quenching (an energy
minimization, see below) the initial state and storing the resulting coordinates for reference.

Inside the inner loop, dynamics is run continuously according to whatever integrator has been specified by the
user, stopping every t_event steps to check if a transition event has occurred. This check is performed by
quenching the system and comparing the resulting atom coordinates to the coordinates from the previous
basin.

A quench is an energy minimization and is performed by whichever algorithm has been defined by the min
and min_style keywords or their default values. Note that typically, you do not need to perform a
highly-converged minimization to detect a transition event.

The event check is performed by a compute with the specified compute-ID. Currently there is only one
compute that works with the TAD commmand, which is the compute event/displace command. Other
event-checking computes may be added. Compute event/displace checks whether any atom in the compute
group has moved further than a specified threshold distance. If so, an "event" has occurred.

The neb calculation is similar to that invoked by the neb command, except that the final state is generated
internally, instead of being read in from a file. The TAD implementation provides default values for the NEB
settings, which can be overridden using the neb and neb_style keywords.

A key aspect of the TAD method is setting the stopping criterion appropriately. If this criterion is too
conservative, then many events must be generated before one is finally executed. Conversely, if this criterion
is too aggressive, high-entropy high-barrier events will be over-sampled, while low-entropy low-barrier events
will be under-sampled. If the lowest pre-exponential factor is known fairly accurately, then it can be used to

LIGGGHTS Users Manual

tad command 1233

estimate tmax, and the value of delta can be set to the desired confidence level e.g. delta = 0.05 corresponds to
95% confidence. However, for systems where the dynamics are not well characterized (the most common
case), it will be necessary to experiment with the values of delta and tmax to get a good trade-off between
accuracy and performance.

A second key aspect is the choice of t_hi. A larger value greatly increases the rate at which new events are
generated. However, too large a value introduces errors due to anharmonicity (not accounted for within
hTST). Once again, for any given system, experimentation is necessary to determine the best value of t_hi.

Five kinds of output can be generated during a TAD run: event statistics, NEB statistics, thermodynamic
output by each replica, dump files, and restart files.

Event statistics are printed to the screen and master log.lammps file each time an event is executed. The
quantities are the timestep, CPU time, global event number N, local event number M, event status, energy
barrier, time margin, t_lo and delt_lo. The timestep is the usual LAMMPS timestep, which corresponds to the
high-temperature time at which the event was detected, in units of timestep. The CPU time is the total
processor time since the start of the TAD run. The global event number N is a counter that increments with
each executed event. The local event number M is a counter that resets to zero upon entering each new basin.
The event status is E when an event is executed, and is D for an event that is detected, while DF is for a
detected event that is also the earliest (first) event at the low temperature.

The time margin is the ratio of the high temperature time in the current basin to the stopping time. This last
number can be used to judge whether the stopping time is too short or too long (see above).

t_lo is the low-temperature event time when the current basin was entered, in units of timestep. delt_lo is the
time of each detected event, measured relative to t_lo. delt_lo is equal to the high-temperature time since
entering the current basin, scaled by an exponential factor that depends on the hi/lo temperature ratio and the
energy barrier for that event.

On lines for executed events, with status E, the global event number is incremented by one, the local event
number and time margin are reset to zero, while the global event number, energy barrier, and delt_lo match
the last event with status DF in the immediately preceding block of detected events. The low-temperature
event time t_lo is incremented by delt_lo.

The NEB statistics are written to the file specified by the neb_log keyword. If the keyword value is "none",
then no NEB statistics are printed out. The statistics are written every Nevery timesteps. See the neb command
for a full description of the NEB statistics. When invoked from TAD, NEB statistics are never printed to the
screen.

Because the NEB calculation must run on multiple partitions, LAMMPS produces additional screen and log
files for each partition, e.g. log.lammps.0, log.lammps.1, etc. For the TAD command, these contain the
thermodynamic output of each NEB replica. In addition, the log file for the first partition, log.lammps.0, will
contain thermodynamic output from short runs and minimizations corresponding to the dynamics and quench
operations, as well as a line for each new detected event, as described above.

After the TAD command completes, timing statistics for the TAD run are printed in each replica's log file,
giving a breakdown of how much CPU time was spent in each stage (NEB, dynamics, quenching, etc).

Any dump files defined in the input script will be written to during a TAD run at timesteps when an event is
executed. This means the the requested dump frequency in the dump command is ignored. There will be one
dump file (per dump command) created for all partitions. The atom coordinates of the dump snapshot are
those of the minimum energy configuration resulting from quenching following the executed event. The
timesteps written into the dump files correspond to the timestep at which the event occurred and NOT the
clock. A dump snapshot corresponding to the initial minimum state used for event detection is written to the

LIGGGHTS Users Manual

tad command 1234

dump file at the beginning of each TAD run.

If the restart command is used, a single restart file for all the partitions is generated, which allows a TAD run
to be continued by a new input script in the usual manner. The restart file is generated after an event is
executed. The restart file contains a snapshot of the system in the new quenched state, including the event
number and the low-temperature time. The restart frequency specified in the restart command is interpreted
differently when performing a TAD run. It does not mean the timestep interval between restart files. Instead it
means an event interval for executed events. Thus a frequency of 1 means write a restart file every time an
event is executed. A frequency of 10 means write a restart file every 10th executed event. When an input
script reads a restart file from a previous TAD run, the new script can be run on a different number of replicas
or processors.

Note that within a single state, the dynamics will typically temporarily continue beyond the event that is
ultimately chosen, until the stopping criterionis satisfied. When the event is eventually executed, the timestep
counter is reset to the value when the event was detected. Similarly, after each quench and NEB minimization,
the timestep counter is reset to the value at the start of the minimization. This means that the timesteps listed
in the replica log files do not always increase monotonically. However, the timestep values printed to the
master log file, dump files, and restart files are always monotonically increasing.

Restrictions:

This command can only be used if LAMMPS was built with the REPLICA package. See the Making
LAMMPS section for more info on packages.

N setting must be integer multiple of t_event.

Runs restarted from restart files written during a TAD run will only produce identical results if the
user-specified integrator supports exact restarts. So fix nvt will produce an exact restart, but fix langevin will
not.

This command cannot be used when any fixes are defined that keep track of elapsed time to perform
time-dependent operations. Examples include the "ave" fixes such as fix ave/spatial. Also fix dt/reset and fix
deposit.

Related commands:

compute event/displace, min_modify, min_style, run_style, minimize, temper, neb, prd

Default:

The option defaults are min = 0.1 0.1 40 50, neb = 0.01 100 100 10, min_style = cg, neb_style = quickmin, and
neb_log = "none"

(Voter) Sorensen and Voter, J Chem Phys, 112, 9599 (2000)

(Voter2) Voter, Montalenti, Germann, Annual Review of Materials Research 32, 321 (2002).

LIGGGHTS Users Manual

tad command 1235

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

temper command

Syntax:

temper N M temp fix-ID seed1 seed2 index

N = total # of timesteps to run•
M = attempt a tempering swap every this many steps•
temp = initial temperature for this ensemble•
fix-ID = ID of the fix that will control temperature during the run•
seed1 = random # seed used to decide on adjacent temperature to partner with•
seed2 = random # seed for Boltzmann factor in Metropolis swap•
index = which temperature (0 to N-1) I am simulating (optional)•

Examples:

temper 100000 100 $t tempfix 0 58728
temper 40000 100 $t tempfix 0 32285 $w

Description:

Run a parallel tempering or replica exchange simulation using multiple replicas (ensembles) of a system. Two
or more replicas must be used.

Each replica runs on a partition of one or more processors. Processor partitions are defined at run-time using
the -partition command-line switch; see Section_start 6 of the manual. Note that if you have MPI installed,
you can run a multi-replica simulation with more replicas (partitions) than you have physical processors, e.g
you can run a 10-replica simulation on one or two processors. You will simply not get the performance
speed-up you would see with one or more physical processors per replica. See this section of the manual for
further discussion.

Each replica's temperature is controlled at a different value by a fix with fix-ID that controls temperature.
Possible fix styles are nvt, temp/berendsen, langevin and temp/rescale. The desired temperature is specified by
temp, which is typically a variable previously set in the input script, so that each partition is assigned a
different temperature. See the variable command for more details. For example:

variable t world 300.0 310.0 320.0 330.0
fix myfix all nvt $t $t 100.0
temper 100000 100 $t myfix 3847 58382

would define 4 temperatures, and assign one of them to the thermostat used by each replica, and to the temper
command.

As the tempering simulation runs for N timesteps, a temperature swap between adjacent ensembles will be
attempted every M timesteps. If seed1 is 0, then the swap attempts will alternate between odd and even
pairings. If seed1 is non-zero then it is used as a seed in a random number generator to randomly choose an
odd or even pairing each time. Each attempted swap of temperatures is either accepted or rejected based on a
Boltzmann-weighted Metropolis criterion which uses seed2 in the random number generator.

As a tempering run proceeds, multiple log files and screen output files are created, one per replica. By default
these files are named log.lammps.M and screen.M where M is the replica number from 0 to N-1, with N = #
of replicas. See the section on command-line switches for info on how to change these names.

LIGGGHTS Users Manual

temper command 1236

http://lammps.sandia.gov

The main screen and log file (log.lammps) will list information about which temperature is assigned to each
replica at each thermodynamic output timestep. E.g. for a simulation with 16 replicas:

Running on 16 partitions of processors
Step T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
500 1 0 3 2 5 4 6 7 8 9 10 11 12 13 14 15
1000 2 0 4 1 5 3 6 7 8 9 10 11 12 14 13 15
1500 2 1 4 0 5 3 6 7 9 8 10 11 12 14 13 15
2000 2 1 3 0 6 4 5 7 10 8 9 11 12 14 13 15
2500 2 1 3 0 6 4 5 7 11 8 9 10 12 14 13 15
...

The column headings T0 to TN-1 mean which temperature is currently assigned to the replica 0 to N-1. Thus
the columns represent replicas and the value in each column is its temperature (also numbered 0 to N-1). For
example, a 0 in the 4th column (column T3, step 2500) means that the 4th replica is assigned temperature 0,
i.e. the lowest temperature. You can verify this time sequence of temperature assignments for the Nth replica
by comparing the Nth column of screen output to the thermodynamic data in the corresponding log.lammps.N
or screen.N files as time proceeds.

The last argument index in the temper command is optional and is used when restarting a tempering run from
a set of restart files (one for each replica) which had previously swapped to new temperatures. The index
value (from 0 to N-1, where N is the # of replicas) identifies which temperature the replica was simulating on
the timestep the restart files were written. Obviously, this argument must be a variable so that each partition
has the correct value. Set the variable to the N values listed in the log file for the previous run for the replica
temperatures at that timestep. For example if the log file listed the following for a simulation with 5 replicas:

500000 2 4 0 1 3

then a setting of

variable w world 2 4 0 1 3

would be used to restart the run with a tempering command like the example above with $w as the last
argument.

Restrictions:

This command can only be used if LAMMPS was built with the REPLICA package. See the Making
LAMMPS section for more info on packages.

Related commands:

variable, prd, neb

Default: none

LIGGGHTS Users Manual

temper command 1237

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

thermo command

Syntax:

thermo N

N = output thermodynamics every N timesteps•
N can be a variable (see below)•

Examples:

thermo 100

Description:

Compute and print thermodynamic info (e.g. temperature, energy, pressure) on timesteps that are a multiple of
N and at the beginning and end of a simulation. A value of 0 will only print thermodynamics at the beginning
and end.

The content and format of what is printed is controlled by the thermo_style and thermo_modify commands.

Instead of a numeric value, N can be specifed as an equal-style variable, which should be specified as
v_name, where name is the variable name. In this case, the variable is evaluated at the beginning of a run to
determine the next timestep at which thermodynamic info will be written out. On that timestep, the variable
will be evaluated again to determine the next timestep, etc. Thus the variable should return timestep values.
See the stagger() and logfreq() and stride() math functions for equal-style variables, as examples of useful
functions to use in this context. Other similar math functions could easily be added as options for equal-style
variables.

For example, the following commands will output thermodynamic info at timesteps
0,10,20,30,100,200,300,1000,2000,etc:

variable s equal logfreq(10,3,10)
thermo v_s

Restrictions: none

Related commands:

thermo_style, thermo_modify

Default:

thermo 0

LIGGGHTS Users Manual

thermo command 1238

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

thermo_modify command

Syntax:

thermo_modify keyword value ...

one or more keyword/value pairs may be listed

keyword = lost or norm or flush or line or format or temp or press:l
lost value = error or warn or ignore
norm value = yes or no
flush value = yes or no
line value = one or multi
format values = int string or float string or M string

 M = integer from 1 to N, where N = # of quantities being printed
 string = C-style format string

temp value = compute ID that calculates a temperature
press value = compute ID that calculates a pressure

•

Examples:

thermo_modify lost ignore flush yes
thermo_modify temp myTemp format 3 %15.8g
thermo_modify line multi format float %g

Description:

Set options for how thermodynamic information is computed and printed by LAMMPS.

IMPORTANT NOTE: These options apply to the currently defined thermo style. When you specify a
thermo_style command, all thermodynamic settings are restored to their default values, including those
previously reset by a thermo_modify command. Thus if your input script specifies a thermo_style command,
you should use the thermo_modify command after it.

The lost keyword determines whether LAMMPS checks for lost atoms each time it computes thermodynamics
and what it does if atoms are lost. An atom can be "lost" if it moves across a non-periodic simulation box
boundary or if it moves more than a box length outside the simulation domain (or more than a processor
sub-domain length) before reneighboring occurs. The latter case is typically due to bad dynamics, e.g. too
large a timestep or huge forces and velocities. If the value is ignore, LAMMPS does not check for lost atoms.
If the value is error or warn, LAMMPS checks and either issues an error or warning. The code will exit with
an error and continue with a warning. A warning will only be issued once, the first time an atom is lost. This
can be a useful debugging option.

The norm keyword determines whether various thermodynamic output values are normalized by the number
of atoms or not, depending on whether it is set to yes or no. Different unit styles have different defaults for
this setting (see below). Even if norm is set to yes, a value is only normalized if it is an "extensive" quantity,
meaning that it scales with the number of atoms in the system. For the thermo keywords described by the doc
page for the thermo_style command, all energy-related keywords are extensive, such as pe or ebond or
enthalpy. Other keywords such as temp or press are "intensive" meaning their value is independent (in a
statistical sense) of the number of atoms in the system and thus are never normalized. For thermodynamic
output values extracted from fixes and computes in a thermo_style custom command, the doc page for the
individual fix or compute lists whether the value is "extensive" or "intensive" and thus whether it is
normalized. Thermodynamic output values calculated by a variable formula are assumed to be "intensive" and
thus are never normalized. You can always include a divide by the number of atoms in the variable formula if
this is not the case.

LIGGGHTS Users Manual

thermo_modify command 1239

http://lammps.sandia.gov

The flush keyword invokes a flush operation after thermodynamic info is written to the log file. This insures
the output in that file is current (no buffering by the OS), even if LAMMPS halts before the simulation
completes.

The line keyword determines whether thermodynamics will be printed as a series of numeric values on one
line or in a multi-line format with 3 quantities with text strings per line and a dashed-line header containing
the timestep and CPU time. This modify option overrides the one and multi thermo_style settings.

The format keyword sets the numeric format of individual printed quantities. The int and float keywords set
the format for all integer or floating-point quantities printed. The setting with a numeric value M (e.g. format
5 %10.4g) sets the format of the Mth value printed in each output line, e.g. the 5th column of output in this
case. If the format for a specific column has been set, it will take precedent over the int or float setting.

IMPORTANT NOTE: The thermo output values step and atoms are stored internally as 8-byte signed
integers, rather than the usual 4-byte signed integers. When specifying the "format int" keyword you can use a
"%d"-style format identifier in the format string and LAMMPS will convert this to the corresponding "%lu"
form when it is applied to those keywords. However, when specifying the "format M string" keyword for step
and natoms, you should specify a string appropriate for an 8-byte signed integer, e.g. one with "%ld".

The temp keyword is used to determine how thermodynamic temperature is calculated, which is used by all
thermo quantities that require a temperature ("temp", "press", "ke", "etotal", "enthalpy", "pxx", etc). The
specified compute ID must have been previously defined by the user via the compute command and it must be
a style of compute that calculates a temperature. As described in the thermo_style command, thermo output
uses a default compute for temperature with ID = thermo_temp. This option allows the user to override the
default.

The press keyword is used to determine how thermodynamic pressure is calculated, which is used by all
thermo quantities that require a pressure ("press", "enthalpy", "pxx", etc). The specified compute ID must
have been previously defined by the user via the compute command and it must be a style of compute that
calculates a pressure. As described in the thermo_style command, thermo output uses a default compute for
pressure with ID = thermo_press. This option allows the user to override the default.

IMPORTANT NOTE: If both the temp and press keywords are used in a single thermo_modify command (or
in two separate commands), then the order in which the keywords are specified is important. Note that a
pressure compute defines its own temperature compute as an argument when it is specified. The temp
keyword will override this (for the pressure compute being used by thermodynamics), but only if the temp
keyword comes after the press keyword. If the temp keyword comes before the press keyword, then the new
pressure compute specified by the press keyword will be unaffected by the temp setting.

Restrictions: none

Related commands:

thermo, thermo_style

Default:

The option defaults are lost = error, norm = yes for unit style of lj, norm = no for unit style of real and metal,
flush = no, and temp/press = compute IDs defined by thermo_style.

The defaults for the line and format options depend on the thermo style. For styles "one" and "custom", the
line and format defaults are "one", "%8d", and "%12.8g". For style "multi", the line and format defaults are
"multi", "%8d", and "%14.4f".

LIGGGHTS Users Manual

thermo_modify command 1240

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

thermo_style command

Syntax:

thermo_style style args

style = one or multi or custom•
args = list of arguments for a particular style

one args = none
multi args = none
custom args = list of attributes

 possible attributes = step, elapsed, elaplong, dt, time,
 cpu, tpcpu, spcpu, cpuremain, part, cu
 atoms, temp, press, pe, ke, etotal, enthalpy,
 evdwl, ecoul, epair, ebond, eangle, edihed, eimp,
 emol, elong, etail,
 vol, lx, ly, lz, xlo, xhi, ylo, yhi, zlo, zhi,
 xy, xz, yz, xlat, ylat, zlat,
 pxx, pyy, pzz, pxy, pxz, pyz,
 fmax, fnorm,
 cella, cellb, cellc, cellalpha, cellbeta, cellgamma,
 c_ID, c_ID[I], c_ID[I][J],
 f_ID, f_ID[I], f_ID[I][J],
 v_name
 step = timestep
 elapsed = timesteps since start of this run
 elaplong = timesteps since start of initial run in a series of runs
 dt = timestep size
 time = simulation time
 cpu = elapsed CPU time in seconds
 tpcpu = time per CPU second
 spcpu = timesteps per CPU second
 cpuremain = estimated CPU time remaining in run
 part = which partition (0 to Npartition-1) this is
 cu = timesteps per CPU second
 atoms = # of atoms
 temp = temperature
 press = pressure
 pe = total potential energy
 ke = kinetic energy
 etotal = total energy (pe + ke)
 enthalpy = enthalpy (etotal + press*vol)
 evdwl = VanderWaal pairwise energy
 ecoul = Coulombic pairwise energy
 epair = pairwise energy (evdwl + ecoul + elong + etail)
 ebond = bond energy
 eangle = angle energy
 edihed = dihedral energy
 eimp = improper energy
 emol = molecular energy (ebond + eangle + edihed + eimp)
 elong = long-range kspace energy
 etail = VanderWaal energy long-range tail correction
 vol = volume
 lx,ly,lz = box lengths in x,y,z
 xlo,xhi,ylo,yhi,zlo,zhi = box boundaries
 xy,xz,yz = box tilt for triclinic (non-orthogonal) simulation boxes
 xlat,ylat,zlat = lattice spacings as calculated by lattice command
 pxx,pyy,pzz,pxy,pxz,pyz = 6 components of pressure tensor
 fmax = max component of force on any atom in any dimension
 fnorm = length of force vector for all atoms
 cella,cellb,cellc = periodic cell lattice constants a,b,c

•

LIGGGHTS Users Manual

thermo_style command 1241

http://lammps.sandia.gov

 cellalpha, cellbeta, cellgamma = periodic cell angles alpha,beta,gamma
 c_ID = global scalar value calculated by a compute with ID
 c_ID[I] = Ith component of global vector calculated by a compute with ID
 c_ID[I][J] = I,J component of global array calculated by a compute with ID
 f_ID = global scalar value calculated by a fix with ID
 f_ID[I] = Ith component of global vector calculated by a fix with ID
 f_ID[I][J] = I,J component of global array calculated by a fix with ID
 v_name = scalar value calculated by an equal-style variable with name

Examples:

thermo_style multi
thermo_style custom step temp pe etotal press vol
thermo_style custom step temp etotal c_myTemp v_abc

Description:

Set the style and content for printing thermodynamic data to the screen and log file.

Style one prints a one-line summary of thermodynamic info that is the equivalent of "thermo_style custom
step temp epair emol etotal press". The line contains only numeric values.

Style multi prints a multiple-line listing of thermodynamic info that is the equivalent of "thermo_style custom
etotal ke temp pe ebond eangle edihed eimp evdwl ecoul elong press". The listing contains numeric values
and a string ID for each quantity.

Style custom is the most general setting and allows you to specify which of the keywords listed above you
want printed on each thermodynamic timestep. Note that the keywords c_ID, f_ID, v_name are references to
computes, fixes, and equal-style variables that have been defined elsewhere in the input script or can even be
new styles which users have added to LAMMPS (see the Section_modify section of the documentation). Thus
the custom style provides a flexible means of outputting essentially any desired quantity as a simulation
proceeds.

All styles except custom have vol appended to their list of outputs if the simulation box volume changes
during the simulation.

The values printed by the various keywords are instantaneous values, calculated on the current timestep.
Time-averaged quantities, which include values from previous timesteps, can be output by using the f_ID
keyword and accessing a fix that does time-averaging such as the fix ave/time command.

Options invoked by the thermo_modify command can be used to set the one- or multi-line format of the
print-out, the normalization of thermodynamic output (total values versus per-atom values for extensive
quantities (ones which scale with the number of atoms in the system), and the numeric precision of each
printed value.

IMPORTANT NOTE: When you use a "thermo_style" command, all thermodynamic settings are restored to
their default values, including those previously set by a thermo_modify command. Thus if your input script
specifies a thermo_style command, you should use the thermo_modify command after it.

Several of the thermodynamic quantities require a temperature to be computed: "temp", "press", "ke", "etotal",
"enthalpy", "pxx", etc. By default this is done by using a temperature compute which is created when
LAMMPS starts up, as if this command had been issued:

compute thermo_temp all temp

See the compute temp command for details. Note that the ID of this compute is thermo_temp and the group is
all. You can change the attributes of this temperature (e.g. its degrees-of-freedom) via the compute_modify

LIGGGHTS Users Manual

thermo_style command 1242

command. Alternatively, you can directly assign a new compute (that calculates temperature) which you have
defined, to be used for calculating any thermodynamic quantity that requires a temperature. This is done via
the thermo_modify command.

Several of the thermodynamic quantities require a pressure to be computed: "press", "enthalpy", "pxx", etc.
By default this is done by using a pressure compute which is created when LAMMPS starts up, as if this
command had been issued:

compute thermo_press all pressure thermo_temp

See the compute pressure command for details. Note that the ID of this compute is thermo_press and the
group is all. You can change the attributes of this pressure via the compute_modify command. Alternatively,
you can directly assign a new compute (that calculates pressure) which you have defined, to be used for
calculating any thermodynamic quantity that requires a pressure. This is done via the thermo_modify
command.

Several of the thermodynamic quantities require a potential energy to be computed: "pe", "etotal", "ebond",
etc. This is done by using a pe compute which is created when LAMMPS starts up, as if this command had
been issued:

compute thermo_pe all pe

See the compute pe command for details. Note that the ID of this compute is thermo_pe and the group is all.
You can change the attributes of this potential energy via the compute_modify command.

The kinetic energy of the system ke is inferred from the temperature of the system with 1/2 Kb T of energy for
each degree of freedom. Thus, using different compute commands for calculating temperature, via the
thermo_modify temp command, may yield different kinetic energies, since different computes that calculate
temperature can subtract out different non-thermal components of velocity and/or include different degrees of
freedom (translational, rotational, etc).

The potential energy of the system pe will include contributions from fixes if the fix_modify thermo option is
set for a fix that calculates such a contribution. For example, the fix wall/lj93 fix calculates the energy of
atoms interacting with the wall. See the doc pages for "individual fixes" to see which ones contribute.

A long-range tail correction etail for the VanderWaal pairwise energy will be non-zero only if the
pair_modify tail option is turned on. The etail contribution is included in evdwl, pe, and etotal, and the
corresponding tail correction to the pressure is included in press and pxx, pyy, etc.

The step, elapsed, and elaplong keywords refer to timestep count. Step is the current timestep, or iteration
count when a minimization is being performed. Elapsed is the number of timesteps elapsed since the
beginning of this run. Elaplong is the number of timesteps elapsed since the beginning of an initial run in a
series of runs. See the start and stop keywords for the run for info on how to invoke a series of runs that keep
track of an initial starting time. If these keywords are not used, then elapsed and elaplong are the same value.

The dt keyword is the current timestep size in time units. The time keyword is the current elapsed simulation
time, also in time units, which is simply (step*dt) if the timestep size has not changed and the timestep has not
been reset. If the timestep has changed (e.g. via fix dt/reset) or the timestep has been reset (e.g. via the
"reset_timestep" command), then the simulation time is effectively a cummulative value up to the current
point.

The cpu keyword is elapsed CPU seconds since the beginning of this run. The tpcpu and spcpu keywords are
measures of how fast your simulation is currently running. The tpcpu keyword is simulation time per CPU
second, where simulation time is in time units. E.g. for metal units, the tpcpu value would be picoseconds per
CPU second. The spcpu keyword is the number of timesteps per CPU second. Both quantities are on-the-fly

LIGGGHTS Users Manual

thermo_style command 1243

metrics, measured relative to the last time they were invoked. Thus if you are printing out thermodyamic
output every 100 timesteps, the two keywords will continually output the time and timestep rate for the last
100 steps. The tpcpu keyword does not attempt to track any changes in timestep size, e.g. due to using the fix
dt/reset command.

The cpuremain keyword estimates the CPU time remaining in the current run, based on the time elapsed thus
far. It will only be a good estimate if the CPU time/timestep for the rest of the run is similar to the preceding
timesteps. On the initial timestep the value will be 0.0 since there is no history to estimate from. For a
minimization run performed by the "minimize" command, the estimate is based on the maxiter parameter,
assuming the minimization will proceed for the maximum number of allowed iterations.

The part keyword is useful for multi-replica or multi-partition simulations to indicate which partition this
output and this file corresponds to, or for use in a variable to append to a filename for output specific to this
partition. See Section_start 7 of the manual for details on running in multi-partition mode.

The fmax and fnorm keywords are useful for monitoring the progress of an energy minimization. The fmax
keyword calculates the maximum force in any dimension on any atom in the system, or the infinity-norm of
the force vector for the system. The fnorm keyword calculates the 2-norm or length of the force vector.

The keywords cella, cellb, cellc, cellalpha, cellbeta, cellgamma, correspond to the usual crystallographic
quantities that define the periodic unit cell of a crystal. See this section of the doc pages for a geometric
description of triclinic periodic cells, including a precise defintion of these quantities in terms of the internal
LAMMPS cell dimensions lx, ly, lz, yz, xz, xy.

The c_ID and c_ID[I] and c_ID[I][J] keywords allow global values calculated by a compute to be output. As
discussed on the compute doc page, computes can calculate global, per-atom, or local values. Only global
values can be referenced by this command. However, per-atom compute values can be referenced in a variable
and the variable referenced by thermo_style custom, as discussed below.

The ID in the keyword should be replaced by the actual ID of a compute that has been defined elsewhere in
the input script. See the compute command for details. If the compute calculates a global scalar, vector, or
array, then the keyword formats with 0, 1, or 2 brackets will reference a scalar value from the compute.

Note that some computes calculate "intensive" global quantities like temperature; others calculate "extensive"
global quantities like kinetic energy that are summed over all atoms in the compute group. Intensive quantities
are printed directly without normalization by thermo_style custom. Extensive quantities may be normalized
by the total number of atoms in the simulation (NOT the number of atoms in the compute group) when output,
depending on the thermo_modify norm option being used.

The f_ID and f_ID[I] and f_ID[I][J] keywords allow global values calculated by a fix to be output. As
discussed on the fix doc page, fixes can calculate global, per-atom, or local values. Only global values can be
referenced by this command. However, per-atom fix values can be referenced in a variable and the variable
referenced by thermo_style custom, as discussed below.

The ID in the keyword should be replaced by the actual ID of a fix that has been defined elsewhere in the
input script. See the fix command for details. If the fix calculates a global scalar, vector, or array, then the
keyword formats with 0, 1, or 2 brackets will reference a scalar value from the fix.

Note that some fixes calculate "intensive" global quantities like timestep size; others calculate "extensive"
global quantities like energy that are summed over all atoms in the fix group. Intensive quantities are printed
directly without normalization by thermo_style custom. Extensive quantities may be normalized by the total
number of atoms in the simulation (NOT the number of atoms in the fix group) when output, depending on
the thermo_modify norm option being used.

LIGGGHTS Users Manual

thermo_style command 1244

The v_name keyword allow the current value of a variable to be output. The name in the keyword should be
replaced by the variable name that has been defined elsewhere in the input script. Only equal-style variables
can be referenced. See the variable command for details. Variables of style equal can reference per-atom
properties or thermodynamic keywords, or they can invoke other computes, fixes, or variables when
evaluated, so this is a very general means of creating thermodynamic output.

Note that equal-style variables are assumed to be "intensive" global quantities, which are thus printed as-is,
without normalization by thermo_style custom. You can include a division by "natoms" in the variable
formula if this is not the case.

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

Related commands:

thermo, thermo_modify, fix_modify, compute temp, compute pressure

Default:

thermo_style one

LIGGGHTS Users Manual

thermo_style command 1245

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

timestep command

Syntax:

timestep dt

dt = timestep size (time units)•

Examples:

timestep 2.0
timestep 0.003

Description:

Set the timestep size for subsequent molecular dynamics simulations. See the units command for a discussion
of time units. The default value for the timestep also depends on the choice of units for the simulation; see the
default values below.

When the run style is respa, dt is the timestep for the outer loop (largest) timestep.

Restrictions: none

Related commands:

fix dt/reset, run, run_style respa, units

Default:

timestep = 0.005 tau for units = lj
timestep = 1.0 fmsec for units = real
timestep = 0.001 psec for units = metal
timestep = 1.0e-8 sec (10 nsec) for units = si or cgs

LIGGGHTS Users Manual

timestep command 1246

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

uncompute command

Syntax:

uncompute compute-ID

compute-ID = ID of a previously defined compute•

Examples:

uncompute 2
uncompute lower-boundary

Description:

Delete a compute that was previously defined with a compute command. This also wipes out any additional
changes made to the compute via the compute_modify command.

Restrictions: none

Related commands:

compute

Default: none

LIGGGHTS Users Manual

uncompute command 1247

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

undump command

Syntax:

undump dump-ID

dump-ID = ID of previously defined dump•

Examples:

undump mine
undump 2

Description:

Turn off a previously defined dump so that it is no longer active. This closes the file associated with the
dump.

Restrictions: none

Related commands:

dump

Default: none

LIGGGHTS Users Manual

undump command 1248

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

unfix command

Syntax:

unfix fix-ID

fix-ID = ID of a previously defined fix•

Examples:

unfix 2
unfix lower-boundary

Description:

Delete a fix that was previously defined with a fix command. This also wipes out any additional changes
made to the fix via the fix_modify command.

Restrictions: none

Related commands:

fix

Default: none

LIGGGHTS Users Manual

unfix command 1249

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

units command

Syntax:

units style

style = lj or real or metal or si or cgs or electron or micro or nano•

Examples:

units metal
units lj

Description:

This command sets the style of units used for a simulation. It determines the units of all quantities specified in
the input script and data file, as well as quantities output to the screen, log file, and dump files. Typically, this
command is used at the very beginning of an input script.

For all units except lj, LAMMPS uses physical constants from www.physics.nist.gov. For the definition of
Kcal in real units, LAMMPS uses the thermochemical calorie = 4.184 J.

For style lj, all quantities are unitless. Without loss of generality, LAMMPS sets the fundamental quantities
mass, sigma, epsilon, and the Boltzmann constant = 1. The masses, distances, energies you specify are
multiples of these fundamental values. The formulas relating the reduced or unitless quantity (with an
asterisk) to the same quantity with units is also given. Thus you can use the mass & sigma & epsilon values
for a specific material and convert the results from a unitless LJ simulation into physical quantities.

mass = mass or m•
distance = sigma, where x* = x / sigma•
time = tau, where tau = t* = t (epsilon / m / sigma^2)^1/2•
energy = epsilon, where E* = E / epsilon•
velocity = sigma/tau, where v* = v tau / sigma•
force = epsilon/sigma, where f* = f sigma / epsilon•
torque = epsilon, where t* = t / epsilon•
temperature = reduced LJ temperature, where T* = T Kb / epsilon•
pressure = reduced LJ pressure, where P* = P sigma^3 / epsilon•
dynamic viscosity = reduced LJ viscosity, where eta* = eta sigma^3 / epsilon / tau•
charge = reduced LJ charge, where q* = q / (4 pi perm0 sigma epsilon)^1/2•
dipole = reduced LJ dipole, moment where *mu = mu / (4 pi perm0 sigma^3 epsilon)^1/2•
electric field = force/charge, where E* = E (4 pi perm0 sigma epsilon)^1/2 sigma / epsilon•
density = mass/volume, where rho* = rho sigma^dim•

Note that for LJ units, the default mode of thermodyamic output via the thermo_style command is to
normalize energies by the number of atoms, i.e. energy/atom. This can be changed via the thermo_modify
norm command.

For style real, these are the units:

mass = grams/mole•
distance = Angstroms•
time = femtoseconds•
energy = Kcal/mole•

LIGGGHTS Users Manual

units command 1250

http://lammps.sandia.gov

velocity = Angstroms/femtosecond•
force = Kcal/mole-Angstrom•
torque = Kcal/mole•
temperature = Kelvin•
pressure = atmospheres•
dynamic viscosity = Poise•
charge = multiple of electron charge (+1.0 is a proton)•
dipole = charge*Angstroms•
electric field = volts/Angstrom•
density = gram/cm^dim•

For style metal, these are the units:

mass = grams/mole•
distance = Angstroms•
time = picoseconds•
energy = eV•
velocity = Angstroms/picosecond•
force = eV/Angstrom•
torque = eV•
temperature = Kelvin•
pressure = bars•
dynamic viscosity = Poise•
charge = multiple of electron charge (+1.0 is a proton)•
dipole = charge*Angstroms•
electric field = volts/Angstrom•
density = gram/cm^dim•

For style si, these are the units:

mass = kilograms•
distance = meters•
time = seconds•
energy = Joules•
velocity = meters/second•
force = Newtons•
torque = Newton-meters•
temperature = Kelvin•
pressure = Pascals•
dynamic viscosity = Pascal*second•
charge = Coulombs•
dipole = Coulombs*meters•
electric field = volts/meter•
density = kilograms/meter^dim•

For style cgs, these are the units:

mass = grams•
distance = centimeters•
time = seconds•
energy = ergs•
velocity = centimeters/second•
force = dynes•
torque = dyne-centimeters•

LIGGGHTS Users Manual

units command 1251

temperature = Kelvin•
pressure = dyne/cm^2 or barye = 1.0e-6 bars•
dynamic viscosity = Poise•
charge = statcoulombs or esu•
dipole = statcoul-cm = 10^18 debye•
electric field = statvolt/cm or dyne/esu•
density = grams/cm^dim•

For style electron, these are the units:

mass = atomic mass units•
distance = Bohr•
time = femtoseconds•
energy = Hartrees•
velocity = Bohr/atomic time units [1.03275e-15 seconds]•
force = Hartrees/Bohr•
temperature = Kelvin•
pressure = Pascals•
charge = multiple of electron charge (+1.0 is a proton)•
dipole moment = Debye•
electric field = volts/cm•

For style micro, these are the units:

mass = picograms•
distance = micrometers•
time = microseconds•
energy = picogram-micrometer^2/microsecond^2•
velocity = micrometers/microsecond•
force = picogram-micrometer/microsecond^2•
torque = picogram-micrometer^2/microsecond^2•
temperature = Kelvin•
pressure = picogram/(micrometer-microsecond^2)•
dynamic viscosity = picogram/(micrometer-microsecond)•
charge = picocoulombs•
dipole = picocoulomb-micrometer•
electric field = volt/micrometer•
density = picograms/micrometer^dim•

For style nano, these are the units:

mass = attograms•
distance = nanometers•
time = nanoseconds•
energy = attogram-nanometer^2/nanosecond^2•
velocity = nanometers/nanosecond•
force = attogram-nanometer/nanosecond^2•
torque = attogram-nanometer^2/nanosecond^2•
temperature = Kelvin•
pressure = attogram/(nanometer-nanosecond^2)•
dynamic viscosity = attogram/(nanometer-nanosecond)•
charge = multiple of electron charge (+1.0 is a proton)•
dipole = charge-nanometer•
electric field = volt/nanometer•

LIGGGHTS Users Manual

units command 1252

density = attograms/nanometer^dim•

The units command also sets the timestep size and neighbor skin distance to default values for each style:

For style lj these are dt = 0.005 tau and skin = 0.3 sigma.•
For style real these are dt = 1.0 fmsec and skin = 2.0 Angstroms.•
For style metal these are dt = 0.001 psec and skin = 2.0 Angstroms.•
For style si these are dt = 1.0e-8 sec and skin = 0.001 meters.•
For style cgs these are dt = 1.0e-8 sec and skin = 0.1 cm.•
For style electron these are dt = 0.001 fmsec and skin = 2.0 Bohr.•
For style micro these are dt = 2.0 microsec and skin = 0.1 micrometers.•
For style nano these are dt = 0.00045 nanosec and skin = 0.1 nanometers.•

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command.

Related commands: none

Default:

units lj

LIGGGHTS Users Manual

units command 1253

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

variable command

Syntax:

variable name style args ...

name = name of variable to define•
style = delete or index or loop or world or universe or uloop or string or getenv or file or atomfile or
equal or atom

delete = no args
index args = one or more strings
loop args = N

 N = integer size of loop, loop from 1 to N inclusive
loop args = N pad

 N = integer size of loop, loop from 1 to N inclusive
 pad = all values will be same length, e.g. 001, 002, ..., 100

loop args = N1 N2
 N1,N2 = loop from N1 to N2 inclusive

loop args = N1 N2 pad
 N1,N2 = loop from N1 to N2 inclusive
 pad = all values will be same length, e.g. 050, 051, ..., 100

world args = one string for each partition of processors
universe args = one or more strings
uloop args = N

 N = integer size of loop
uloop args = N pad

 N = integer size of loop
 pad = all values will be same length, e.g. 001, 002, ..., 100

string arg = one string
getenv arg = one string
file arg = filename
atomfile arg = filename
equal or atom args = one formula containing numbers, thermo keywords, math operations, group functions, atom values and vectors, compute/fix/variable references

 numbers = 0.0, 100, -5.4, 2.8e-4, etc
 constants = PI
 thermo keywords = vol, ke, press, etc from thermo_style
 math operators = (), -x, x+y, x-y, x*y, x/y, x^y,
 x==y, x!=y, xy, x>=y, x&&y, x||y, !x
 math functions = sqrt(x), exp(x), ln(x), log(x), abs(x),
 sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), atan2(y,x),
 random(x,y,z), normal(x,y,z), ceil(x), floor(x), round(x)
 ramp(x,y), stagger(x,y), logfreq(x,y,z), stride(x,y,z), vdisplace(x,y), swiggle(x,y,z), cwiggle(x,y,z)
 group functions = count(group), mass(group), charge(group),
 xcm(group,dim), vcm(group,dim), fcm(group,dim),
 bound(group,xmin), gyration(group), ke(group),
 angmom(group,dim), torque(group,dim),
 inertia(group,dimdim), omega(group,dim)
 region functions = count(group,region), mass(group,region), charge(group,region),
 xcm(group,dim,region), vcm(group,dim,region), fcm(group,dim,region),
 bound(group,xmin,region), gyration(group,region), ke(group,reigon),
 angmom(group,dim,region), torque(group,dim,region),
 inertia(group,dimdim,region), omega(group,dim,region)
 special functions = sum(x), min(x), max(x), ave(x), trap(x), gmask(x), rmask(x), grmask(x,y), next(x)
 atom value = id[i], mass[i], type[i], x[i], y[i], z[i], vx[i], vy[i], vz[i], fx[i], fy[i], fz[i]
 atom vector = id, mass, type, x, y, z, vx, vy, vz, fx, fy, fz
 compute references = c_ID, c_ID[i], c_ID[i][j]
 fix references = f_ID, f_ID[i], f_ID[i][j]
 variable references = v_name, v_name[i]

•

Examples:

LIGGGHTS Users Manual

variable command 1254

http://lammps.sandia.gov

variable x index run1 run2 run3 run4 run5 run6 run7 run8
variable LoopVar loop $n
variable beta equal temp/3.0
variable b1 equal x[234]+0.5*vol
variable b1 equal "x[234] + 0.5*vol"
variable b equal xcm(mol1,x)/2.0
variable b equal c_myTemp
variable b atom x*y/vol
variable foo string myfile
variable f file values.txt
variable temp world 300.0 310.0 320.0 ${Tfinal}
variable x universe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
variable x uloop 15 pad
variable x delete

Description:

This command assigns one or more strings to a variable name for evaluation later in the input script or during
a simulation.

Variables can thus be useful in several contexts. A variable can be defined and then referenced elsewhere in
an input script to become part of a new input command. For variable styles that store multiple strings, the next
command can be used to increment which string is assigned to the variable. Variables of style equal store a
formula which when evaluated produces a single numeric value which can be output either directly (see the
print, fix print, and run every commands) or as part of thermodynamic output (see the thermo_style
command), or used as input to an averaging fix (see the fix ave/time command). Variables of style atom store
a formula which when evaluated produces one numeric value per atom which can be output to a dump file
(see the dump custom command) or used as input to an averaging fix (see the fix ave/spatial and fix ave/atom
commands). Variables of style atomfile can be used anywhere in an input script that atom-style variables are
used; they get their per-atom values from a file rather than from a formula.

In the discussion that follows, the "name" of the variable is the arbitrary string that is the 1st argument in the
variable command. This name can only contain alphanumeric characters and underscores. The "string" is one
or more of the subsequent arguments. The "string" can be simple text as in the 1st example above, it can
contain other variables as in the 2nd example, or it can be a formula as in the 3rd example. The "value" is the
numeric quantity resulting from evaluation of the string. Note that the same string can generate different
values when it is evaluated at different times during a simulation.

IMPORTANT NOTE: When the input script line is encountered that defines a variable of style equal or atom
that contains a formula, the formula is NOT immediately evaluated and the result stored. See the discussion
below about "Immediate Evaluation of Variables" if you want to do this.

IMPORTANT NOTE: When a variable command is encountered in the input script and the variable name has
already been specified, the command is ignored. This means variables can NOT be re-defined in an input
script (with 2 exceptions, read further). This is to allow an input script to be processed multiple times without
resetting the variables; see the jump or include commands. It also means that using the command-line switch
-var will override a corresponding index variable setting in the input script.

There are two exceptions to this rule. First, variables of style string, getenv, equal and atom ARE redefined
each time the command is encountered. This allows these style of variables to be redefined multiple times in
an input script. In a loop, this means the formula associated with an equal or atom style variable can change if
it contains a substitution for another variable, e.g. $x.

Second, as described below, if a variable is iterated on to the end of its list of strings via the next command, it
is removed from the list of active variables, and is thus available to be re-defined in a subsequent variable
command. The delete style does the same thing.

LIGGGHTS Users Manual

variable command 1255

This section of the manual explains how occurrences of a variable name in an input script line are replaced by
the variable's string. The variable name can be referenced as $x if the name "x" is a single character, or as
${LoopVar} if the name "LoopVar" is one or more characters.

As described below, for variable styles index, loop, file, universe, and uloop, which string is assigned to a
variable can be incremented via the next command. When there are no more strings to assign, the variable is
exhausted and a flag is set that causes the next jump command encountered in the input script to be skipped.
This enables the construction of simple loops in the input script that are iterated over and then exited from.

As explained above, an exhausted variable can be re-used in an input script. The delete style also removes the
variable, the same as if it were exhausted, allowing it to be redefined later in the input script or when the input
script is looped over. This can be useful when breaking out of a loop via the if and jump commands before the
variable would become exhausted. For example,

label loop
variable a loop 5
print "A = $a"
if "$a > 2" then "jump in.script break"
next a
jump in.script loop
label break
variable a delete

For the index style, one or more strings are specified. Initially, the 1st string is assigned to the variable. Each
time a next command is used with the variable name, the next string is assigned. All processors assign the
same string to the variable.

Index style variables with a single string value can also be set by using the command-line switch -var; see this
section for details.

The loop style is identical to the index style except that the strings are the integers from 1 to N inclusive, if
only one argument N is specified. This allows generation of a long list of runs (e.g. 1000) without having to
list N strings in the input script. Initially, the string "1" is assigned to the variable. Each time a next command
is used with the variable name, the next string ("2", "3", etc) is assigned. All processors assign the same string
to the variable. The loop style can also be specified with two arguments N1 and N2. In this case the loop runs
from N1 to N2 inclusive, and the string N1 is initially assigned to the variable. N1 <= N2 and N2 >= 0 is
required.

For the world style, one or more strings are specified. There must be one string for each processor partition or
"world". See this section of the manual for information on running LAMMPS with multiple partitions via the
"-partition" command-line switch. This variable command assigns one string to each world. All processors in
the world are assigned the same string. The next command cannot be used with equal style variables, since
there is only one value per world. This style of variable is useful when you wish to run different simulations
on different partitions, or when performing a parallel tempering simulation (see the temper command), to
assign different temperatures to different partitions.

For the universe style, one or more strings are specified. There must be at least as many strings as there are
processor partitions or "worlds". See this page for information on running LAMMPS with multiple partitions
via the "-partition" command-line switch. This variable command initially assigns one string to each world.
When a next command is encountered using this variable, the first processor partition to encounter it, is
assigned the next available string. This continues until all the variable strings are consumed. Thus, this
command can be used to run 50 simulations on 8 processor partitions. The simulations will be run one after
the other on whatever partition becomes available, until they are all finished. Universe style variables are
incremented using the files "tmp.lammps.variable" and "tmp.lammps.variable.lock" which you will see in
your directory during such a LAMMPS run.

LIGGGHTS Users Manual

variable command 1256

The uloop style is identical to the universe style except that the strings are the integers from 1 to N. This
allows generation of long list of runs (e.g. 1000) without having to list N strings in the input script.

For the string style, a single string is assigned to the variable. The only difference between this and using the
index style with a single string is that a variable with string style can be redefined. E.g. by another command
later in the input script, or if the script is read again in a loop.

For the getenv style, a single string is assigned to the variable which should be the name of an environment
variable. When the variable is evaluated, it returns the value of the environment variable, or an empty string if
it not defined. This style of variable can be used to adapt the behavior of LAMMPS input scripts via
environment variable settings, or to retrieve information that has been previously stored with the shell putenv
command. Note that because environment variable settings are stored by the operating systems, they persist
beyond a clear command.

For the file style, a filename is provided which contains a list of strings to assign to the variable, one per line.
The strings can be numeric values if desired. See the discussion of the next() function below for equal-style
variables, which will convert the string of a file-style variable into a numeric value in a formula.

When a file-style variable is defined, the file is opened and the string on the first line is read and stored with
the variable. This means the variable can then be evaluated as many times as desired and will return that
string. There are two ways to cause the next string from the file to be read: use the next command or the next()
function in an equal- or atom-style variable, as discussed below.

The rules for formatting the file are as follows. A comment character "#" can be used anywhere on a line; text
starting with the comment character is stripped. Blank lines are skipped. The first "word" of a non-blank line,
delimited by white space, is the "string" assigned to the variable.

For the atomfile style, a filename is provided which contains one or more sets of values, to assign on a
per-atom basis to the variable. The format of the file is described below.

When an atomfile-style variable is defined, the file is opened and the first set of per-atom values are read and
stored with the variable. This means the variable can then be evaluated as many times as desired and will
return those values. There are two ways to cause the next set of per-atom values from the file to be read: use
the next command or the next() function in an atom-style variable, as discussed below.

The rules for formatting the file are as follows. Each time a set of per-atom values is read, a non-blank line is
searched for in the file. A comment character "#" can be used anywhere on a line; text starting with the
comment character is stripped. Blank lines are skipped. The first "word" of a non-blank line, delimited by
white space, is read as the count N of per-atom lines to immediately follow. N can be be the total number of
atoms in the system, or only a subset. The next N lines have the following format

ID value

where ID is an atom ID and value is the per-atom numeric value that will be assigned to that atom. IDs can be
listed in any order.

IMPORTANT NOTE: Every time a set of per-atom lines is read, the value for all atoms is first set to 0.0.
Thus values for atoms whose ID does not appear in the set, will remain 0.0.

For the equal and atom styles, a single string is specified which represents a formula that will be evaluated
afresh each time the variable is used. If you want spaces in the string, enclose it in double quotes so the parser
will treat it as a single argument. For equal style variables the formula computes a scalar quantity, which
becomes the value of the variable whenever it is evaluated. For atom style variables the formula computes one
quantity for each atom whenever it is evaluated.

LIGGGHTS Users Manual

variable command 1257

Note that equal and atom variables can produce different values at different stages of the input script or at
different times during a run. For example, if an equal variable is used in a fix print command, different values
could be printed each timestep it was invoked. If you want a variable to be evaluated immediately, so that the
result is stored by the variable instead of the string, see the section below on "Immediate Evaluation of
Variables".

The next command cannot be used with equal or atom style variables, since there is only one string.

The formula for an equal or atom variable can contain a variety of quantities. The syntax for each kind of
quantity is simple, but multiple quantities can be nested and combined in various ways to build up formulas of
arbitrary complexity. For example, this is a valid (though strange) variable formula:

variable x equal "pe + c_MyTemp / vol^(1/3)"

Specifically, an formula can contain numbers, thermo keywords, math operators, math functions, group
functions, region functions, atom values, atom vectors, compute references, fix references, and references to
other variables.

Number 0.2, 100, 1.0e20, -15.4, etc
Constant PI
Thermo
keywords vol, pe, ebond, etc

Math
operators (), -x, x+y, x-y, x*y, x/y, x^y, x==y, x!=y, xy, x>=y, x&&y, x||y, !x

Math
functions

sqrt(x), exp(x), ln(x), log(x), abs(x), sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), atan2(y,x),
random(x,y,z), normal(x,y,z), ceil(x), floor(x), round(x), ramp(x,y), stagger(x,y),
logfreq(x,y,z), stride(x,y,z), vdisplace(x,y), swiggle(x,y,z), cwiggle(x,y,z)

Group
functions

count(ID), mass(ID), charge(ID), xcm(ID,dim), vcm(ID,dim), fcm(ID,dim), bound(ID,dir),
gyration(ID), ke(ID), angmom(ID,dim), torque(ID,dim), inertia(ID,dimdim), omega(ID,dim)

Region
functions

count(ID,IDR), mass(ID,IDR), charge(ID,IDR), xcm(ID,dim,IDR), vcm(ID,dim,IDR),
fcm(ID,dim,IDR), bound(ID,dir,IDR), gyration(ID,IDR), ke(ID,IDR), angmom(ID,dim,IDR),
torque(ID,dim,IDR), inertia(ID,dimdim,IDR), omega(ID,dim,IDR)

Special
functions sum(x), min(x), max(x), ave(x), trap(x), gmask(x), rmask(x), grmask(x,y), next(x)

Atom values id[i], mass[i], type[i], x[i], y[i], z[i], vx[i], vy[i], vz[i], fx[i], fy[i], fz[i]
Atom vectors id, mass, type, x, y, z, vx, vy, vz, fx, fy, fz
Compute
references c_ID, c_ID[i], c_ID[i][j]

Fix
references f_ID, f_ID[i], f_ID[i][j]

Other
variables v_name, v_name[i]

Most of the formula elements produce a scalar value. A few produce a per-atom vector of values. These are
the atom vectors, compute references that represent a per-atom vector, fix references that represent a per-atom
vector, and variables that are atom-style variables. Math functions that operate on scalar values produce a
scalar value; math function that operate on per-atom vectors do so element-by-element and produce a
per-atom vector.

A formula for equal-style variables cannot use any formula element that produces a per-atom vector. A
formula for an atom-style variable can use formula elements that produce either a scalar value or a per-atom
vector. Atom-style variables are evaluated by other commands that define a group on which they operate, e.g.

LIGGGHTS Users Manual

variable command 1258

a dump or compute or fix command. When they invoke the atom-style variable, only atoms in the group are
inlcuded in the formula evaluation. The variable evaluates to 0.0 for atoms not in the group.

The thermo keywords allowed in a formula are those defined by the thermo_style custom command. Thermo
keywords that require a compute to calculate their values such as "temp" or "press", use computes stored and
invoked by the thermo_style command. This means that you can only use those keywords in a variable if the
style you are using with the thermo_style command (and the thermo keywords associated with that style) also
define and use the needed compute. Note that some thermo keywords use a compute indirectly to calculate
their value (e.g. the enthalpy keyword uses temp, pe, and pressure). If a variable is evaluated directly in an
input script (not during a run), then the values accessed by the thermo keyword must be current. See the
discussion below about "Variable Accuracy".

Math Operators

Math operators are written in the usual way, where the "x" and "y" in the examples can themselves be
arbitrarily complex formulas, as in the examples above. In this syntax, "x" and "y" can be scalar values or
per-atom vectors. For example, "ke/natoms" is the division of two scalars, where "vy+vz" is the
element-by-element sum of two per-atom vectors of y and z velocities.

Operators are evaluated left to right and have the usual C-style precedence: unary minus and unary logical
NOT operator "!" have the highest precedence, exponentiation "^" is next; multiplication and division are
next; addition and subtraction are next; the 4 relational operators "", and ">=" are next; the two remaining
relational operators "==" and "!=" are next; then the logical AND operator "&&"; and finally the logical OR
operator "||" has the lowest precedence. Parenthesis can be used to group one or more portions of a formula
and/or enforce a different order of evaluation than what would occur with the default precedence.

IMPORTANT NOTE: Because a unary minus is higher precedence than exponentiation, the formula "-2^2"
will evaluate to 4, not -4. This convention is compatible with some programming languages, but not others.
As mentioned, this behavior can be easily overridden with parenthesis; the formula "-(2^2)" will evaluate to
-4.

The 6 relational operators return either a 1.0 or 0.0 depending on whether the relationship between x and y is
TRUE or FALSE. For example the expression x

These relational and logical operators can be used as a masking or selection operation in a formula. For
example, the number of atoms whose properties satifsy one or more criteria could be calculated by taking the
returned per-atom vector of ones and zeroes and passing it to the compute reduce command.

Math Functions

Math functions are specified as keywords followed by one or more parenthesized arguments "x", "y", "z",
each of which can themselves be arbitrarily complex formulas. In this syntax, the arguments can represent
scalar values or per-atom vectors. In the latter case, the math operation is performed on each element of the
vector. For example, "sqrt(natoms)" is the sqrt() of a scalar, where "sqrt(y*z)" yields a per-atom vector with
each element being the sqrt() of the product of one atom's y and z coordinates.

Most of the math functions perform obvious operations. The ln() is the natural log; log() is the base 10 log.

The random(x,y,z) function takes 3 arguments: x = lo, y = hi, and z = seed. It generates a uniform random
number between lo and hi. The normal(x,y,z) function also takes 3 arguments: x = mu, y = sigma, and z =
seed. It generates a Gaussian variate centered on mu with variance sigma^2. In both cases the seed is used the
first time the internal random number generator is invoked, to initialize it. For equal-style variables, every
processor uses the same seed so that they each generate the same sequence of random numbers. For
atom-style variables, a unique seed is created for each processor, based on the specified seed. This effectively

LIGGGHTS Users Manual

Math Operators 1259

generates a different random number for each atom being looped over in the atom-style variable.

IMPORTANT NOTE: Internally, there is just one random number generator for all equal-style variables and
one for all atom-style variables. If you define multiple variables (of each style) which use the random() or
normal() math functions, then the internal random number generators will only be initialized once, which
means only one of the specified seeds will determine the sequence of generated random numbers.

The ceil(), floor(), and round() functions are those in the C math library. Ceil() is the smallest integer not less
than its argument. Floor() if the largest integer not greater than its argument. Round() is the nearest integer to
its argument.

The ramp(x,y) function uses the current timestep to generate a value linearly intepolated between the specified
x,y values over the course of a run, according to this formula:

value = x + (y-x) * (timestep-startstep) / (stopstep-startstep)

The run begins on startstep and ends on stopstep. Startstep and stopstep can span multiple runs, using the start
and stop keywords of the run command. See the run command for details of how to do this.

The stagger(x,y) function uses the current timestep to generate a new timestep. X,y > 0 and x > y are required.
The generated timesteps increase in a staggered fashion, as the sequence x,x+y,2x,2x+y,3x,3x+y,etc. For any
current timestep, the next timestep in the sequence is returned. Thus if stagger(1000,100) is used in a variable
by the dump_modify every command, it will generate the sequence of output timesteps:

100,1000,1100,2000,2100,3000,etc

The logfreq(x,y,z) function uses the current timestep to generate a new timestep. X,y,z > 0 and y < z are
required. The generated timesteps increase in a logarithmic fashion, as the sequence
x,2x,3x,...y*x,z*x,2*z*x,3*z*x,...y*z*x,z*z*x,2*z*x*x,etc. For any current timestep, the next timestep in the
sequence is returned. Thus if logfreq(100,4,10) is used in a variable by the dump_modify every command, it
will generate the sequence of output timesteps:

100,200,300,400,1000,2000,3000,4000,10000,20000,etc

The stride(x,y,z) function uses the current timestep to generate a new timestep. X,y >= 0 and z > 0 and x <= y
are required. The generated timesteps increase in increments of z, from x to y, I.e. it generates the sequece
x,x+z,x+2z,...,y. If y-x is not a multiple of z, then similar to the way a for loop operates, the last value will be
one that does not exceed y. For any current timestep, the next timestep in the sequence is returned. Thus if
stagger(1000,2000,100) is used in a variable by the dump_modify every command, it will generate the
sequence of output timesteps:

1000,1100,1200, ... ,1900,2000

The vdisplace(x,y) function takes 2 arguments: x = value0 and y = velocity, and uses the elapsed time to
change the value by a linear displacement due to the applied velocity over the course of a run, according to
this formula:

value = value0 + velocity*(timestep-startstep)*dt

where dt = the timestep size.

The run begins on startstep. Startstep can span multiple runs, using the start keyword of the run command.
See the run command for details of how to do this. Note that the thermo_style keyword elaplong =
timestep-startstep.

LIGGGHTS Users Manual

Math Functions 1260

The swiggle(x,y,z) and cwiggle(x,y,z) functions each take 3 arguments: x = value0, y = amplitude, z = period.
They use the elapsed time to oscillate the value by a sin() or cos() function over the course of a run, according
to one of these formulas, where omega = 2 PI / period:

value = value0 + Amplitude * sin(omega*(timestep-startstep)*dt)
value = value0 + Amplitude * (1 - cos(omega*(timestep-startstep)*dt))

where dt = the timestep size.

The run begins on startstep. Startstep can span multiple runs, using the start keyword of the run command.
See the run command for details of how to do this. Note that the thermo_style keyword elaplong =
timestep-startstep.

Group and Region Functions

Group functions are specified as keywords followed by one or two parenthesized arguments. The first
argument is the group-ID. The dim argument, if it exists, is x or y or z. The dir argument, if it exists, is xmin,
xmax, ymin, ymax, zmin, or zmax. The dimdim argument, if it exists, is xx or yy or zz or xy or yz or xz.

The group function count() is the number of atoms in the group. The group functions mass() and charge() are
the total mass and charge of the group. Xcm() and vcm() return components of the position and velocity of the
center of mass of the group. Fcm() returns a component of the total force on the group of atoms. Bound()
returns the min/max of a particular coordinate for all atoms in the group. Gyration() computes the
radius-of-gyration of the group of atoms. See the compute gyration command for a definition of the formula.
Angmom() returns components of the angular momentum of the group of atoms around its center of mass.
Torque() returns components of the torque on the group of atoms around its center of mass, based on current
forces on the atoms. Inertia() returns one of 6 components of the symmetric inertia tensor of the group of
atoms around its center of mass, ordered as Ixx,Iyy,Izz,Ixy,Iyz,Ixz. Omega() returns components of the
angular velocity of the group of atoms around its center of mass.

Region functions are specified exactly the same way as group functions except they take an extra argument
which is the region ID. The function is computed for all atoms that are in both the group and the region. If the
group is "all", then the only criteria for atom inclusion is that it be in the region.

Special Functions

Special functions take specific kinds of arguments, meaning their arguments cannot be formulas themselves.

The sum(x), min(x), max(x), ave(x), and trap(x) functions each take 1 argument which is of the form "c_ID"
or "c_ID[N]" or "f_ID" or "f_ID[N]". The first two are computes and the second two are fixes; the ID in the
reference should be replaced by the ID of a compute or fix defined elsewhere in the input script. The compute
or fix must produce either a global vector or array. If it produces a global vector, then the notation without
"[N]" should be used. If it produces a global array, then the notation with "[N]" should be used, when N is an
integer, to specify which column of the global array is being referenced.

These functions operate on the global vector of inputs and reduce it to a single scalar value. This is analagous
to the operation of the compute reduce command, which invokes the same functions on per-atom and local
vectors.

The sum() function calculates the sum of all the vector elements. The min() and max() functions find the
minimum and maximum element respectively. The ave() function is the same as sum() except that it divides
the result by the length of the vector. The trap() function is the same as sum() except the first and last elements
are multiplied by a weighting factor of 1/2 when performing the sum. This effectively implements an
integratiion via the trapezoidal rule on the global vector of data. I.e. consider a set of points, equally spaced by
1 in their x coordinate: (1,V1), (2,V2), ..., (N,VN), where the Vi are the values in the global vector of length

LIGGGHTS Users Manual

Group and Region Functions 1261

N. The integral from 1 to N of these points is trap(). When appropriately normalized by the timestep size, this
function is useful for calculating integrals of time-series data, like that generated by the fix ave/correlate
command.

The gmask(x) function takes 1 argument which is a group ID. It can only be used in atom-style variables. It
returns a 1 for atoms that are in the group, and a 0 for atoms that are not.

The rmask(x) function takes 1 argument which is a region ID. It can only be used in atom-style variables. It
returns a 1 for atoms that are in the geometric region, and a 0 for atoms that are not.

The grmask(x,y) function takes 2 arguments. The first is a group ID, and the second is a region ID. It can only
be used in atom-style variables. It returns a 1 for atoms that are in both the group and region, and a 0 for
atoms that are not in both.

The next(x) function takes 1 argument which is a variable ID (not "v_foo", just "foo"). It must be for a
file-style or atomfile-style variable. Each time the next() function is invoked (i.e. each time the equal-style or
atom-style variable is evaluated), the following steps occur.

For file-style variables, the current string value stored by the file-style variable is converted to a numeric value
and returned by the function. And the next string value in the file is read and stored. Note that if the line
previously read from the file was not a numeric string, then it will typically evaluate to 0.0, which is likely not
what you want.

For atomfile-style variables, the current per-atom values stored by the atomfile-style variable are returned by
the function. And the next set of per-atom values in the file is read and stored.

Since file-style and atomfile-style variables read and store the first line of the file or first set of per-atoms
values when they are defined in the input script, these are the value(s) that will be returned the first time the
next() function is invoked. If next() is invoked more times than there are lines or sets of lines in the file, the
variable is deleted, similar to how the next command operates.

Atom Values and Vectors

Atom values take a single integer argument I from 1 to N, where I is the an atom-ID, e.g. x[243], which means
use the x coordinate of the atom with ID = 243.

Atom vectors generate one value per atom, so that a reference like "vx" means the x-component of each
atom's velocity will be used when evaluating the variable. Note that other atom attributes can be used as
inputs to a variable by using the compute property/atom command and then specifying a quantity from that
compute.

Compute References

Compute references access quantities calculated by a compute. The ID in the reference should be replaced by
the ID of a compute defined elsewhere in the input script. As discussed in the doc page for the compute
command, computes can produce global, per-atom, or local values. Only global and per-atom values can be
used in a variable. Computes can also produce a scalar, vector, or array. An equal-style variable can only use
scalar values, which means a global scalar, or an element of a global or per-atom vector or array. Atom-style
variables can use the same scalar values. They can also use per-atom vector values. A vector value can be a
per-atom vector itself, or a column of an per-atom array. See the doc pages for individual computes to see
what kind of values they produce.

Examples of different kinds of compute references are as follows. There is no ambiguity as to what a
reference means, since computes only produce global or per-atom quantities, never both.

LIGGGHTS Users Manual

Special Functions 1262

c_ID global scalar, or per-atom vector

c_ID[I] Ith element of global vector, or atom I's value in per-atom vector, or Ith column from per-atom
array

c_ID[I][J] I,J element of global array, or atom I's Jth value in per-atom array
If a variable containing a compute is evaluated directly in an input script (not during a run), then the values
accessed by the compute must be current. See the discussion below about "Variable Accuracy".

Fix References

Fix references access quantities calculated by a fix. The ID in the reference should be replaced by the ID of a
fix defined elsewhere in the input script. As discussed in the doc page for the fix command, fixes can produce
global, per-atom, or local values. Only global and per-atom values can be used in a variable. Fixes can also
produce a scalar, vector, or array. An equal-style variable can only use scalar values, which means a global
scalar, or an element of a global or per-atom vector or array. Atom-style variables can use the same scalar
values. They can also use per-atom vector values. A vector value can be a per-atom vector itself, or a column
of an per-atom array. See the doc pages for individual fixes to see what kind of values they produce.

The different kinds of fix references are exactly the same as the compute references listed in the above table,
where "c_" is replaced by "f_". Again, there is no ambiguity as to what a reference means, since fixes only
produce global or per-atom quantities, never both.

f_ID global scalar, or per-atom vector

f_ID[I] Ith element of global vector, or atom I's value in per-atom vector, or Ith column from per-atom
array

f_ID[I][J] I,J element of global array, or atom I's Jth value in per-atom array
If a variable containing a fix is evaluated directly in an input script (not during a run), then the values accessed
by the fix should be current. See the discussion below about "Variable Accuracy".

Note that some fixes only generate quantities on certain timesteps. If a variable attempts to access the fix on
non-allowed timesteps, an error is generated. For example, the fix ave/time command may only generate
averaged quantities every 100 steps. See the doc pages for individual fix commands for details.

Variable References

Variable references access quantities stored or calculated by other variables, which will cause those variables
to be evaluated. The name in the reference should be replaced by the name of a variable defined elsewhere in
the input script.

As discussed on this doc page, equal-style variables generate a global scalar numeric value; atom-style and
atomfile-style variables generate a per-atom vector of numeric values; all other variables store a string. The
formula for an equal-style variable can use any style of variable except an atom-style or atomfile-style (unless
only a single value from the variable is accessed via a subscript). If a string-storing variable is used, the string
is converted to a numeric value. Note that this will typically produce a 0.0 if the string is not a numeric string,
which is likely not what you want. The formula for an atom-style variable can use any style of variable,
including other atom-style or atomfile-style variables.

Examples of different kinds of variable references are as follows. There is no ambiguity as to what a reference
means, since variables produce only a global scalar or a per-atom vector, never both.

v_name scalar, or per-atom vector
v_name[I] atom I's value in per-atom vector

LIGGGHTS Users Manual

Compute References 1263

Immediate Evaluation of Variables:

There is a difference between referencing a variable with a leading $ sign (e.g. $x or ${abc}) versus with a
leading "v_" (e.g. v_x or v_abc). The former can be used in any input script command, including a variable
command. The input script parser evaluates the reference variable immediately and substitutes its value into
the command. As explained in Section commands 3.2 for "Parsing rules", you can also use un-named
"immediate" variables for this purpose. An variable reference such as $((xlo+xhi)/2+sqrt(v_area)) evaluates
the string between the parenthesis as an equal-style variable.

Referencing a variable with a leading "v_" is an optional or required kind of argument for some commands
(e.g. the fix ave/spatial or dump custom or thermo_style commands) if you wish it to evaluate a variable
periodically during a run. It can also be used in a variable formula if you wish to reference a second variable.
The second variable will be evaluated whenever the first variable is evaluated.

As an example, suppose you use this command in your input script to define the variable "v" as

variable v equal vol

before a run where the simulation box size changes. You might think this will assign the initial volume to the
variable "v". That is not the case. Rather it assigns a formula which evaluates the volume (using the
thermo_style keyword "vol") to the variable "v". If you use the variable "v" in some other command like fix
ave/time then the current volume of the box will be evaluated continuously during the run.

If you want to store the initial volume of the system, you can do it this way:

variable v equal vol
variable v0 equal $v

The second command will force "v" to be evaluated (yielding the initial volume) and assign that value to the
variable "v0". Thus the command

thermo_style custom step v_v v_v0

would print out both the current and initial volume periodically during the run.

Note that it is a mistake to enclose a variable formula in double quotes if it contains variables preceeded by $
signs. For example,

variable vratio equal "${vfinal}/${v0}"

This is because the quotes prevent variable substitution (see this section on parsing input script commands),
and thus an error will occur when the formula for "vratio" is evaluated later.

Variable Accuracy:

Obviously, LAMMPS attempts to evaluate variables containing formulas (equal and atom style variables)
accurately whenever the evaluation is performed. Depending on what is included in the formula, this may
require invoking a compute, either directly or indirectly via a thermo keyword, or accessing a value previously
calculated by a compute, or accessing a value calculated and stored by a fix. If the compute is one that
calculates the pressure or energy of the system, then these quantities need to be tallied during the evaluation of
the interatomic potentials (pair, bond, etc) on timesteps that the variable will need the values.

LAMMPS keeps track of all of this during a run or energy minimization. An error will be generated if you
attempt to evaluate a variable on timesteps when it cannot produce accurate values. For example, if a
thermo_style custom command prints a variable which accesses values stored by a fix ave/time command and

LIGGGHTS Users Manual

Variable References 1264

the timesteps on which thermo output is generated are not multiples of the averaging frequency used in the fix
command, then an error will occur.

An input script can also request variables be evaluated before or after or in between runs, e.g. by including
them in a print command. In this case, if a compute is needed to evaluate a variable (either directly or
indirectly), LAMMPS will not invoke the compute, but it will use a value previously calculated by the
compute, and can do this only if it is current. Fixes will always provide a quantity needed by a variable, but
the quantity may or may not be current. This leads to one of three kinds of behavior:

(1) The variable may be evaluated accurately. If it contains references to a compute or fix, and these values
were calculated on the last timestep of a preceeding run, then they will be accessed and used by the variable
and the result will be accurate.

(2) LAMMPS may not be able to evaluate the variable and will generate an error message stating so. For
example, if the variable requires a quantity from a compute that is not current, LAMMPS will generate an
error. This means, for example, that such a variable cannot be evaluated before the first run has occurred.
Likewise, in between runs, such a variable cannot be accessed unless it was evaluated on the last timestep of
the preceding run, e.g. by thermodynamic output.

One way to get around this problem is to perform a 0-timestep run before using the variable. For example,
these commands

variable t equal temp
print "Initial temperature = $t"
run 1000

will generate an error if the run is the first run specified in the input script, because generating a value for the
"t" variable requires a compute for calculating the temperature to be invoked.

However, this sequence of commands would be fine:

run 0
variable t equal temp
print "Initial temperature = $t"
run 1000

The 0-timestep run initializes and invokes various computes, including the one for temperature, so that the
value it stores is current and can be accessed by the variable "t" after the run has completed. Note that a
0-timestep run does not alter the state of the system, so it does not change the input state for the 1000-timestep
run that follows. Also note that the 0-timestep run must actually use and invoke the compute in question (e.g.
via thermo or dump output) in order for it to enable the compute to be used in a variable after the run. Thus if
you are trying to print a variable that uses a compute you have defined, you could insure it was invoked on the
last timestep of the preceding run by including it in thermodynamic output.

Unlike computes, fixes will never generate an error if their values are accessed by a variable in between runs.
They always return some value to the variable. However, the value may not be what you expect if the fix has
not yet calculated the quantity of interest or it is not current. For example, the fix indent command stores the
force on the indenter. But this is not computed until a run is performed. Thus if a variable attempts to print
this value before the first run, zeroes will be output. Again, performing a 0-timestep run before printing the
variable has the desired effect.

(3) The variable may be evaluated incorrectly and LAMMPS may have no way to detect this has occurred.
Consider the following sequence of commands:

pair_coeff 1 1 1.0 1.0
run 1000

LIGGGHTS Users Manual

Variable References 1265

pair_coeff 1 1 1.5 1.0
variable e equal pe
print "Final potential energy = $e"

The first run is performed using one setting for the pairwise potential defined by the pair_style and pair_coeff
commands. The potential energy is evaluated on the final timestep and stored by the compute pe compute (this
is done by the thermo_style command). Then a pair coefficient is changed, altering the potential energy of the
system. When the potential energy is printed via the "e" variable, LAMMPS will use the potential energy
value stored by the compute pe compute, thinking it is current. There are many other commands which could
alter the state of the system between runs, causing a variable to evaluate incorrectly.

The solution to this issue is the same as for case (2) above, namely perform a 0-timestep run before the
variable is evaluated to insure the system is up-to-date. For example, this sequence of commands would print
a potential energy that reflected the changed pairwise coefficient:

pair_coeff 1 1 1.0 1.0
run 1000
pair_coeff 1 1 1.5 1.0
run 0
variable e equal pe
print "Final potential energy = $e"

Restrictions:

Indexing any formula element by global atom ID, such as an atom value, requires the atom style to use a
global mapping in order to look up the vector indices. By default, only atom styles with molecular information
create global maps. The atom_modify map command can override the default.

All universe- and uloop-style variables defined in an input script must have the same number of values.

Related commands:

next, jump, include, temper, fix print, print

Default: none

LIGGGHTS Users Manual

Variable References 1266

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

velocity command

Syntax:

velocity group-ID style args keyword value ...

group-ID = ID of group of atoms whose velocity will be changed•
style = create or set or scale or ramp or zero

create args = temp seed
 temp = temperature value (temperature units)
 seed = random # seed (positive integer)

set args = vx vy vz
 vx,vy,vz = velocity value or NULL (velocity units)
 any of vx,vy,vz van be a variable (see below)

scale arg = temp
 temp = temperature value (temperature units)

ramp args = vdim vlo vhi dim clo chi
 vdim = vx or vy or vz
 vlo,vhi = lower and upper velocity value (velocity units)
 dim = x or y or z
 clo,chi = lower and upper coordinate bound (distance units)

zero arg = linear or angular
linear = zero the linear momentum
angular = zero the angular momentum

•

zero or more keyword/value pairs may be appended•
keyword = dist or sum or mom or rot or temp or loop or units

dist value = uniform or gaussian
sum value = no or yes
mom value = no or yes
rot value = no or yes
temp value = temperature ID
loop value = all or local or geom
rigid value = fix-ID

 fix-ID = ID of rigid body fix
units value = box or lattice

•

Examples:

velocity all create 300.0 4928459 rot yes dist gaussian
velocity border set NULL 4.0 v_vz sum yes units box
velocity flow scale 300.0
velocity flow ramp vx 0.0 5.0 y 5 25 temp mytemp
velocity all zero linear

Description:

Set or change the velocities of a group of atoms in one of several styles. For each style, there are required
arguments and optional keyword/value parameters. Not all options are used by each style. Each option has a
default as listed below.

The create style generates an ensemble of velocities using a random number generator with the specified seed
as the specified temperature.

The set style sets the velocities of all atoms in the group to the specified values. If any component is specified
as NULL, then it is not set. Any of the vx,vy,vz velocity components can be specified as an equal-style or
atom-style variable. If the value is a variable, it should be specified as v_name, where name is the variable

LIGGGHTS Users Manual

velocity command 1267

http://lammps.sandia.gov

name. In this case, the variable will be evaluated, and its value used to determine the velocity component.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters or other parameters.

Atom-style variables can specify the same formulas as equal-style variables but can also include per-atom
values, such as atom coordinates. Thus it is easy to specify a spatially-dependent velocity field.

The scale style computes the current temperature of the group of atoms and then rescales the velocities to the
specified temperature.

The ramp style is similar to that used by the compute temp/ramp command. Velocities ramped uniformly
from vlo to vhi are applied to dimension vx, or vy, or vz. The value assigned to a particular atom depends on
its relative coordinate value (in dim) from clo to chi. For the example above, an atom with y-coordinate of 10
(1/4 of the way from 5 to 25), would be assigned a x-velocity of 1.25 (1/4 of the way from 0.0 to 5.0). Atoms
outside the coordinate bounds (less than 5 or greater than 25 in this case), are assigned velocities equal to vlo
or vhi (0.0 or 5.0 in this case).

The zero style adjusts the velocities of the group of atoms so that the aggregate linear or angular momentum is
zero. No other changes are made to the velocities of the atoms. If the rigid option is specified (see below),
then the zeroing is performed on individual rigid bodies, as defined by the fix rigid or fix rigid/small
commands. In other words, zero linear will set the linear momentum of each rigid body to zero, and zero
angular will set the angular momentum of each rigid body to zero. This is done by adjusting the velocities of
the atoms in each rigid body.

All temperatures specified in the velocity command are in temperature units; see the units command. The
units of velocities and coordinates depend on whether the units keyword is set to box or lattice, as discussed
below.

For all styles, no atoms are assigned z-component velocities if the simulation is 2d; see the dimension
command.

The keyword/value option pairs are used in the following ways by the various styles.

The dist option is used by create. The ensemble of generated velocities can be a uniform distribution from
some minimum to maximum value, scaled to produce the requested temperature. Or it can be a gaussian
distribution with a mean of 0.0 and a sigma scaled to produce the requested temperature.

The sum option is used by all styles, except zero. The new velocities will be added to the existing ones if sum
= yes, or will replace them if sum = no.

The mom and rot options are used by create. If mom = yes, the linear momentum of the newly created
ensemble of velocities is zeroed; if rot = yes, the angular momentum is zeroed.

The temp option is used by create and scale to specify a compute that calculates temperature in a desired way.
If this option is not specified, create and scale calculate temperature using a compute that is defined as
follows:

compute velocity_temp group-ID temp

where group-ID is the same ID used in the velocity command. i.e. the group of atoms whose velocity is being
altered. This compute is deleted when the velocity command is finished. See the compute temp command for
details. If the computed temperature should have degrees-of-freedom removed due to fix constraints (e.g.
SHAKE or rigid-body constraints), then the appropriate fix command must be specified before the velocity
command is issued.

LIGGGHTS Users Manual

velocity command 1268

The loop option is used by create in the following ways.

If loop = all, then each processor loops over all atoms in the simulation to create velocities, but only stores
velocities for atoms it owns. This can be a slow loop for a large simulation. If atoms were read from a data
file, the velocity assigned to a particular atom will be the same, independent of how many processors are
being used. This will not be the case if atoms were created using the create_atoms command, since atom IDs
will likely be assigned to atoms differently.

If loop = local, then each processor loops over only its atoms to produce velocities. The random number seed
is adjusted to give a different set of velocities on each processor. This is a fast loop, but the velocity assigned
to a particular atom will depend on which processor owns it. Thus the results will always be different when a
simulation is run on a different number of processors.

If loop = geom, then each processor loops over only its atoms. For each atom a unique random number seed is
created, based on the atom's xyz coordinates. A velocity is generated using that seed. This is a fast loop and
the velocity assigned to a particular atom will be the same, independent of how many processors are used.
However, the set of generated velocities may be more correlated than if the all or local options are used.

Note that the loop geom option will not necessarily assign identical velocities for two simulations run on
different machines. This is because the computations based on xyz coordinates are sensitive to tiny differences
in the double-precision value for a coordinate as stored on a particular machine.

The rigid option only has meaning when used with the zero style. It allows specification of a fix-ID for one of
the rigid-body fix variants which defines a set of rigid bodies. The zeroing of linear or angular momentum is
then performed for each rigid body defined by the fix, as described above.

The units option is used by set and ramp. If units = box, the velocities and coordinates specified in the
velocity command are in the standard units described by the units command (e.g. Angstroms/fmsec for real
units). If units = lattice, velocities are in units of lattice spacings per time (e.g. spacings/fmsec) and
coordinates are in lattice spacings. The lattice command must have been previously used to define the lattice
spacing.

Restrictions: none

Related commands:

fix shake, lattice

Default:

The option defaults are dist = uniform, sum = no, mom = yes, rot = no, temp = full style on group-ID, loop =
all, and units = lattice. The rigid option is not defined by default.

LIGGGHTS Users Manual

velocity command 1269

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

write_data command

Syntax:

write_data file keyword value ...

file = name of data file to write out•
zero or more keyword/value pairs may be appended•
keyword = pair

pair value = ii or ij
ii = write one line of pair coefficient info per atom type
ij = write one line of pair coefficient info per IJ atom type pair

•

Examples:

write_data data.polymer
write_data data.*

Description:

Write a data file in text format of the current state of the simulation. Data files can be read by the read data
command to begin a simulation. The read_data command also describes their format.

Similar to dump files, the data filename can contain a "*" wild-card character. The "*" is replaced with the
current timestep value.

IMPORTANT NOTE: The write-data command is not yet fully implemented in two respects. First, most pair
styles do not yet write their coefficient information into the data file. This means you will need to specify that
information in your input script that reads the data file, via the pair_coeff command. Second, a few of the
atom styles (body, ellipsoid, line, tri) that store auxiliary "bonus" information about aspherical particles, do
not yet write the bonus info into the data file. Both these functionalities will be added to the write_data
command later.

Because a data file is in text format, if you use a data file written out by this command to restart a simulation,
the initial state of the new run will be slightly different than the final state of the old run (when the file was
written) which was represented internally by LAMMPS in binary format. A new simulation which reads the
data file will thus typically diverge from a simulation that continued in the original input script.

If you want to do more exact restarts, using binary files, see the restart, write_restart, and read_restart
commands. You can also convert binary restart files to text data files, after a simulation has run, using the -r
command-line switch.

IMPORTANT NOTE: Only limited information about a simulation is stored in a data file. For example, no
information about atom groups and fixes are stored. Binary restart files store more information.

Bond interactions (angle, etc) that have been turned off by the fix shake or delete_bonds command will be
written to a data file as if they are turned on. This means they will need to be turned off again in a new run
after the data file is read.

Bonds that are broken (e.g. by a bond-breaking potential) are not written to the data file. Thus these bonds will
not exist when the data file is read.

LIGGGHTS Users Manual

write_data command 1270

http://lammps.sandia.gov

The pair keyword lets you specify in what format the pair coefficient information is written into the data file.
If the value is specified as ii, then one line per atom type is written, to specify the coefficients for each of the
I=J interactions. This means that no cross-interactions for I != J will be specified in the data file and the pair
style will apply its mixing rule, as documented on individual pair_style doc pages. Of course this behavior can
be overridden in the input script after reading the data file, by specifying additional pair_coeff commands for
any desired I,J pairs.

If the value is specified as ij, then one line of coefficients is written for all I,J pairs where I <= J. These
coefficients will include any specific settings made in the input script up to that point. The presence of these I
!= J coefficients in the data file will effectively turn off the default mixing rule for the pair style. Again, the
coefficient values in the data file can can be overridden in the input script after reading the data file, by
specifying additional pair_coeff commands for any desired I,J pairs.

Restrictions:

This command requires inter-processor communication to migrate atoms before the data file is written. This
means that your system must be ready to perform a simulation before using this command (force fields setup,
atom masses initialized, etc).

Related commands:

read_data, write_restart

Default:

The option defaults are pair = ii.

LIGGGHTS Users Manual

write_data command 1271

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

write_dump command

Syntax:

write_dump group-ID style file dump-args modify dump_modify-args

group-ID = ID of the group of atoms to be dumped•
style = any of the supported dump styles•
file = name of file to write dump info to•
dump-args = any additional args needed for a particular dump style•
modify = all args after this keyword are passed to dump_modify (optional)•
dump-modify-args = args for dump_modify (optional)•

Examples:

write_dump all atom dump.atom
write_dump subgroup atom dump.run.bin
write_dump all custom dump.myforce.* id type x y vx fx
write_dump flow custom dump.%.myforce id type c_myF[3] v_ke modify sort id
write_dump all xyz system.xyz modify sort id elements O H
write_dump all image snap*.jpg type type size 960 960 modify backcolor white
write_dump all image snap*.jpg element element &
 bond atom 0.3 shiny 0.1 ssao yes 6345 0.2 size 1600 1600 &
 modify backcolor white element C C O H N C C C O H H S O H

Description:

Dump a single snapshot of atom quantities to one or more files for the current state of the system. This is a
one-time immediate operation, in contrast to the dump command which will will set up a dump style to write
out snapshots periodically during a running simulation.

The syntax for this command is mostly identical to that of the dump and dump_modify commands as if they
were concatenated together, with the following exceptions: There is no need for a dump ID or dump
frequency and the keyword modify is added. The latter is so that the full range of dump_modify options can be
specified for the single snapshot, just as they can be for multiple snapshots. The modify keyword separates the
arguments that would normally be passed to the dump command from those that would be given the
dump_modify. Both support optional arguments and thus LAMMPS needs to be able to cleanly separate the
two sets of args.

Note that if the specified filename uses wildcard characters "*" or "%", as supported by the dump commmand,
they will operate in the same fashion to create the new filename(s). Normally, dump image files require a
filename with a "*" character for the timestep. That is not the case for the write_dump command; no wildcard
"*" character is necessary.

Restrictions:

All restrictions for the dump and dump_modify commands apply to this command as well, with the exception
of the dump image filename not requiring a wildcard "*" character, as noted above.

Since dumps are normally written during a run or energy minimization, the simulation has to be ready to run
before this command can be used. Similarly, if the dump requires information from a compute, fix, or
variable, the information needs to have been calculated for the current timestep (e.g. by a prior run), else
LAMMPS will generate an error message.

LIGGGHTS Users Manual

write_dump command 1272

http://lammps.sandia.gov

For example, it is not possible to dump per-atom energy with this command before a run has been performed,
since no energies and forces have yet been calculated. See the variable doc page sectinn on Variable Accuracy
for more information on this topic.

Related commands:

dump, dump image, dump_modify

Default:

The defaults are listed on the doc pages for the dump and dump image and dump_modify commands.

LIGGGHTS Users Manual

write_dump command 1273

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

write_restart command

Syntax:

write_restart file keyword value ...

file = name of file to write restart information to•
zero or more keyword/value pairs may be appended•
keyword = fileper or nfile

fileper arg = Np
 Np = write one file for every this many processors

nfile arg = Nf
 Nf = write this many files, one from each of Nf processors

•

Examples:

write_restart restart.equil
write_restart poly.%.* nfile 10

Description:

Write a binary restart file of the current state of the simulation.

During a long simulation, the restart command is typically used to output restart files periodically. The
write_restart command is useful after a minimization or whenever you wish to write out a single current
restart file.

Similar to dump files, the restart filename can contain two wild-card characters. If a "*" appears in the
filename, it is replaced with the current timestep value. If a "%" character appears in the filename, then one
file is written by each processor and the "%" character is replaced with the processor ID from 0 to P-1. An
additional file with the "%" replaced by "base" is also written, which contains global information. For
example, the files written for filename restart.% would be restart.base, restart.0, restart.1, ... restart.P-1. This
creates smaller files and can be a fast mode of output and subsequent input on parallel machines that support
parallel I/O. The optional fileper and nfile keywords discussed below can alter the number of files written.

Restart files can be read by a read_restart command to restart a simulation from a particular state. Because the
file is binary (to enable exact restarts), it may not be readable on another machine. In this case, you can use
the -r command-line switch to convert a restart file to a data file.

IMPORTANT NOTE: Although the purpose of restart files is to enable restarting a simulation from where it
left off, not all information about a simulation is stored in the file. For example, the list of fixes that were
specified during the initial run is not stored, which means the new input script must specify any fixes you
want to use. Even when restart information is stored in the file, as it is for some fixes, commands may need to
be re-specified in the new input script, in order to re-use that information. See the read_restart command for
information about what is stored in a restart file.

The optional nfile or fileper keywords can be used in conjunction with the "%" wildcard character in the
specified restart file name. As explained above, the "%" character causes the restart file to be written in
pieces, one piece for each of P processors. By default P = the number of processors the simulation is running
on. The nfile or fileper keyword can be used to set P to a smaller value, which can be more efficient when
running on a large number of processors.

LIGGGHTS Users Manual

write_restart command 1274

http://lammps.sandia.gov

The nfile keyword sets P to the specified Nf value. For example, if Nf = 4, and the simulation is running on
100 processors, 4 files will be written, by processors 0,25,50,75. Each will collect information from itself and
the next 24 processors and write it to a restart file.

For the fileper keyword, the specified value of Np means write one file for every Np processors. For example,
if Np = 4, every 4th processor (0,4,8,12,etc) will collect information from itself and the next 3 processors and
write it to a restart file.

Restrictions:

This command requires inter-processor communication to migrate atoms before the restart file is written. This
means that your system must be ready to perform a simulation before using this command (force fields setup,
atom masses initialized, etc).

Related commands:

restart, read_restart, write_data

Default: none

LIGGGHTS Users Manual

write_restart command 1275

	angle_charmm.html
	angle_class2.html
	angle_coeff.html
	angle_cosine_delta.html
	angle_cosine.html
	angle_cosine_periodic.html
	angle_cosine_shift_exp.html
	angle_cosine_shift.html
	angle_cosine_squared.html
	angle_dipole.html
	angle_fourier.html
	angle_fourier_simple.html
	angle_harmonic.html
	angle_hybrid.html
	angle_none.html
	angle_quartic.html
	angle_sdk.html
	angle_style.html
	angle_table.html
	atom_modify.html
	atom_style.html
	body.html
	bond_class2.html
	bond_coeff.html
	bond_fene_expand.html
	bond_fene.html
	bond_harmonic.html
	bond_harmonic_shift_cut.html
	bond_harmonic_shift.html
	bond_hybrid.html
	bond_morse.html
	bond_none.html
	bond_nonlinear.html
	bond_quartic.html
	bond_style.html
	bond_table.html
	boundary.html
	box.html
	change_box.html
	clear.html
	communicate.html
	compute_ackland_atom.html
	compute_angle_local.html
	compute_atom_molecule.html
	compute_basal_atom.html
	compute_body_local.html
	compute_bond_local.html
	compute_centro_atom.html
	compute_cluster_atom.html
	compute_cna_atom.html
	compute_com.html
	compute_com_molecule.html
	compute_contact_atom.html
	compute_coord_atom.html
	compute_damage_atom.html
	compute_dihedral_local.html
	compute_displace_atom.html
	compute_erotate_asphere.html
	compute_erotate_sphere_atom.html
	compute_erotate_sphere.html
	compute_event_displace.html
	compute_group_group.html
	compute_gyration.html
	compute_gyration_molecule.html
	compute_heat_flux.html
	compute.html
	compute_improper_local.html
	compute_inertia_molecule.html
	compute_ke_atom_eff.html
	compute_ke_atom.html
	compute_ke_eff.html
	compute_ke.html
	compute_meso_e_atom.html
	compute_meso_rho_atom.html
	compute_meso_t_atom.html
	compute_modify.html
	compute_msd.html
	compute_msd_molecule.html
	compute_msd_nongauss.html
	compute_nparticles_tracer_region.html
	compute_pair_gran_local.html
	compute_pair.html
	compute_pair_local.html
	compute_pe_atom.html
	compute_pe.html
	compute_pressure.html
	compute_property_atom.html
	compute_property_local.html
	compute_property_molecule.html
	compute_rdf.html
	compute_reduce.html
	compute_slice.html
	compute_stress_atom.html
	compute_temp_asphere.html
	compute_temp_com.html
	compute_temp_deform_eff.html
	compute_temp_deform.html
	compute_temp_eff.html
	compute_temp.html
	compute_temp_partial.html
	compute_temp_profile.html
	compute_temp_ramp.html
	compute_temp_region_eff.html
	compute_temp_region.html
	compute_temp_rotate.html
	compute_temp_sphere.html
	compute_ti.html
	compute_voronoi_atom.html
	create_atoms.html
	create_box.html
	delete_atoms.html
	delete_bonds.html
	dielectric.html
	dihedral_charmm.html
	dihedral_class2.html
	dihedral_coeff.html
	dihedral_cosine_shift_exp.html
	dihedral_fourier.html
	dihedral_harmonic.html
	dihedral_helix.html
	dihedral_hybrid.html
	dihedral_multi_harmonic.html
	dihedral_nharmonic.html
	dihedral_none.html
	dihedral_opls.html
	dihedral_quadratic.html
	dihedral_style.html
	dihedral_table.html
	dimension.html
	displace_atoms.html
	dump.html
	dump_image.html
	dump_modify.html
	dump_molfile.html
	echo.html
	fix_adapt.html
	fix_addforce.html
	fix_addtorque.html
	fix_append_atoms.html
	fix_atc.html
	fix_ave_atom.html
	fix_ave_correlate.html
	fix_ave_euler.html
	fix_aveforce.html
	fix_ave_histo.html
	fix_ave_spatial.html
	fix_ave_time.html
	fix_bond_break.html
	fix_bond_create.html
	fix_bond_swap.html
	fix_box_relax.html
	fix_check_timestep_gran.html
	fix_colvars.html
	fix_deform.html
	fix_deposit.html
	fix_drag.html
	fix_dt_reset.html
	fix_efield.html
	fix_enforce2d.html
	fix_evaporate.html
	fix_external.html
	fix_freeze.html
	fix_gcmc.html
	fix_gld.html
	fix_gravity.html
	fix_heat_gran_conduction.html
	fix_heat.html
	fix.html
	fix_imd.html
	fix_indent.html
	fix_insert_pack.html
	fix_insert_rate_region.html
	fix_insert_stream.html
	fix_langevin_eff.html
	fix_langevin.html
	fix_lb_fluid.html
	fix_lb_momentum.html
	fix_lb_pc.html
	fix_lb_rigid_pc_sphere.html
	fix_lb_viscous.html
	fix_lineforce.html
	fix_massflow_mesh.html
	fix_mesh_surface.html
	fix_mesh_surface_stress.html
	fix_mesh_surface_stress_servo.html
	fix_meso.html
	fix_meso_stationary.html
	fix_modify.html
	fix_momentum.html
	fix_move.html
	fix_move_mesh.html
	fix_msst.html
	fix_neb.html
	fix_nh_eff.html
	fix_nh.html
	fix_nph_asphere.html
	fix_nph_sphere.html
	fix_nphug.html
	fix_npt_asphere.html
	fix_npt_sphere.html
	fix_nve_asphere.html
	fix_nve_asphere_noforce.html
	fix_nve_body.html
	fix_nve_eff.html
	fix_nve.html
	fix_nve_limit.html
	fix_nve_line.html
	fix_nve_noforce.html
	fix_nve_sphere.html
	fix_nve_tri.html
	fix_nvt_asphere.html
	fix_nvt_sllod_eff.html
	fix_nvt_sllod.html
	fix_nvt_sphere.html
	fix_orient_fcc.html
	fix_particledistribution_discrete.html
	fix_particletemplate_sphere.html
	fix_phonon.html
	fix_planeforce.html
	fix_poems.html
	fix_pour.html
	fix_press_berendsen.html
	fix_print.html
	fix_property_atom_tracer.html
	fix_property_atom_tracer_stream.html
	fix_property.html
	fix_qeq_comb.html
	fix_qeq_reax.html
	fix_reax_bonds.html
	fix_reaxc_species.html
	fix_recenter.html
	fix_restrain.html
	fix_rigid.html
	fix_setforce.html
	fix_shake.html
	fix_smd.html
	fix_sph_density_continuity.html
	fix_sph_density_corr.html
	fix_sph_density_summation.html
	fix_sph_pressure.html
	fix_spring.html
	fix_spring_rg.html
	fix_spring_self.html
	fix_srd.html
	fix_store_force.html
	fix_store_state.html
	fix_temp_berendsen.html
	fix_temp_rescale_eff.html
	fix_temp_rescale.html
	fix_thermal_conductivity.html
	fix_ti_rs.html
	fix_ti_spring.html
	fix_tmd.html
	fix_ttm.html
	fix_tune_kspace.html
	fix_viscosity.html
	fix_viscous.html
	fix_wall_gran.html
	fix_wall.html
	fix_wall_piston.html
	fix_wall_reflect.html
	fix_wall_region.html
	fix_wall_region_sph.html
	fix_wall_srd.html
	githubAccess_public.html
	gran_cohesion_sjkr2.html
	gran_cohesion_sjkr.html
	gran_model_hertz.html
	gran_model_hertz_stiffness.html
	gran_model_hooke.html
	gran_model_hooke_stiffness.html
	gran_rolling_friction_cdt.html
	gran_rolling_friction_epsd2.html
	gran_rolling_friction_epsd.html
	gran_tangential_history.html
	gran_tangential_no_history.html
	group2ndx.html
	group.html
	if.html
	improper_class2.html
	improper_coeff.html
	improper_cossq.html
	improper_cvff.html
	improper_fourier.html
	improper_harmonic.html
	improper_hybrid.html
	improper_none.html
	improper_ring.html
	improper_style.html
	improper_umbrella.html
	include.html
	jump.html
	kspace_modify.html
	kspace_style.html
	label.html
	lattice.html
	liggghts_2.X_coding.html
	liggghts_2.X_tutorial.html
	liggghts_3.X_tutorial.html
	log.html
	LIGGGHTS Users Manual
	mass.html
	minimize.html
	min_modify.html
	min_style.html
	neb.html
	neighbor.html
	neigh_modify.html
	newton.html
	next.html
	package.html
	pair_adp.html
	pair_airebo.html
	pair_awpmd.html
	pair_beck.html
	pair_body.html
	pair_bop.html
	pair_born.html
	pair_brownian.html
	pair_buck.html
	pair_buck_long.html
	pair_charmm.html
	pair_class2.html
	pair_coeff.html
	pair_colloid.html
	pair_comb.html
	pair_coul_diel.html
	pair_coul.html
	pair_dipole.html
	pair_dpd.html
	pair_dsmc.html
	pair_eam.html
	pair_edip.html
	pair_eff.html
	pair_eim.html
	pair_gauss.html
	pair_gayberne.html
	pair_gran.html
	pair_gromacs.html
	pair_hbond_dreiding.html
	pair_hybrid.html
	pair_kim.html
	pair_lcbop.html
	pair_line_lj.html
	pair_list.html
	pair_lj96.html
	pair_lj_cubic.html
	pair_lj_expand.html
	pair_lj.html
	pair_lj_long.html
	pair_lj_sf.html
	pair_lj_smooth.html
	pair_lj_smooth_linear.html
	pair_lubricate.html
	pair_lubricateU.html
	pair_meam.html
	pair_meam_spline.html
	pair_meam_sw_spline.html
	pair_mie.html
	pair_modify.html
	pair_morse.html
	pair_nb3b_harmonic.html
	pair_nm.html
	pair_none.html
	pair_peri.html
	pair_reax_c.html
	pair_reax.html
	pair_resquared.html
	pair_sdk.html
	pair_soft.html
	pair_sph_artvisc_tenscorr.html
	pair_sph_heatconduction.html
	pair_sph.html
	pair_sph_idealgas.html
	pair_sph_lj.html
	pair_sph_rhosum.html
	pair_sph_taitwater.html
	pair_sph_taitwater_morris.html
	pair_style.html
	pair_sw.html
	pair_table.html
	pair_tersoff.html
	pair_tersoff_mod.html
	pair_tersoff_zbl.html
	pair_tri_lj.html
	pair_write.html
	pair_yukawa_colloid.html
	pair_yukawa.html
	pair_zbl.html
	partition.html
	prd.html
	print.html
	processors.html
	quit.html
	read_data.html
	read_dump.html
	read_restart.html
	region.html
	replicate.html
	rerun.html
	reset_timestep.html
	restart.html
	run.html
	run_style.html
	Section_accelerate.html
	Section_commands.html
	Section_errors.html
	Section_example.html
	Section_gran_models.html
	Section_history.html
	Section_howto.html
	Section_intro.html
	Section_modify.html
	Section_packages.html
	Section_perf.html
	Section_python.html
	Section_start.html
	Section_tools.html
	set.html
	shell.html
	special_bonds.html
	suffix.html
	tad.html
	temper.html
	thermo.html
	thermo_modify.html
	thermo_style.html
	timestep.html
	uncompute.html
	undump.html
	unfix.html
	units.html
	variable.html
	velocity.html
	write_data.html
	write_dump.html
	write_restart.html

