Maxima Plots
Double click on the examples in blue to see the result.
plot2d
- Plot of a function of one variable:
plot2d (sin(x), [x, -%pi, %pi])$
- Plot of two implicit functions:
plot2d([x^2+y^2=1, -abs(x)], [x, -1.5, 1.5], [y, -2, 2],
same_xy, nolegend);
- Plot of a function and data points:
plot2d([[discrete,[[10,.6],[20,.9],[30,1.1],[40,1.3],[50,1.4]]],
2*%pi*sqrt(l/980)], [l,0,50], [style,points,lines],
[point_type, asterisk], [legend, "experiment", "theory"],
[xlabel,"length"], [ylabel,"period"])$
plot3d
When using the "gnuplot_pipes" or "xmaxima" plot formats, you can rotate the
object by dragging with the left mouse button depressed.
- To plot the function of two variables: z = 2^(-u^2+v^2) with u and v
varying in [-2,2] and [-2,2] respectively, and with u on the x axis, and v
on the y axis, do the following:
plot3d(2^(-u^2+v^2),[u,-2,2],[v,-2,2]);
- A Moebius band can be plotted given 3 expressions (for the
coordinates in the three axes) depending on two parameters, x and y in
this example
plot3d([cos(a)*(3+b*cos(a/2)), sin(a)*(3+b*cos(a/2)), b*sin(a/2)],
[a,-%pi,%pi], [b,-1,1], [grid,40,15]);
The additional optional option [grid,50,15]
gives the grid number of rectangles in the a direction and b direction.
- A Riemann surface: Real part of z^1/3
plot3d(r^.33*cos(th/3),[r,0,1],[th,0,6*%pi], [grid,12,80],
[transform_xy,polar_to_xy]);
- A Klein bottle:
plot3d([5*cos(x)*(cos(x/2)*cos(y)+sin(x/2)*sin(2*y)+3.0) - 10.0,
-5*sin(x)*(cos(x/2)*cos(y)+sin(x/2)*sin(2*y)+3.0),
5*(-sin(x/2)*cos(y)+cos(x/2)*sin(2*y))],
[x,-%pi,%pi], [y,-%pi,%pi], [grid,40,40]);
- A torus
plot3d([cos(y)*(10.0+6*cos(x)), sin(y)*(10.0+6*cos(x)), -6*sin(x)],
[x,0,2*%pi], [y,0,2*%pi], [grid,20,20]);